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Abstract:We develop a new systems modeling tool that integrates knowledge from hydrology, agriculture, and economics to understand the
effect of small-scale irrigation on food security and groundwater sustainability in Ethiopia. Irrigation is an effective tool to mitigate climate
impacts and improve agricultural yields. Small-scale irrigation, such as decentralized groundwater irrigation, is well suited for developing
countries where small-holder farming communities are widely dispersed and can only afford small infrastructure investment. We study the
underlying interdependencies between food and water systems in Ethiopia, where small-holder agriculture is the foundation of the nation’s
economy and climate variability has led to great challenges to its food security. Our coupled market and crop model with groundwater module
captures the interdependencies of climate, water availability, irrigation, crop yield, farmland allocation, crop production, transport, and con-
sumption based on a system approach across multiple spatial scales. We study the implication of small-scale irrigation to Ethiopia’s food
security and water resource conditions as a “what-if” question by comparing an irrigation scenario to the calibrated baseline in 2015, a year of
significant drought and crop failure over a large portion of Ethiopia. Our model offers fresh insights into geographic disparities in outcomes
that are driven by baseline climate variability, soil fertility, and market conditions. In general, we find that small-scale irrigation can poten-
tially improve food security through increases in food consumption, but it requires policy support to direct the increases of production to
domestic consumption while maintaining a sustainable groundwater condition. By using Ethiopia as an example, we show the strength of our
model to study how water infrastructure resources support critical functions and service in water and food systems.DOI: 10.1061/JWRMD5.
WRENG-6190. This work is made available under the terms of the Creative Commons Attribution 4.0 International license, https://
creativecommons.org/licenses/by/4.0/.

Introduction

Uneven spatial and temporal distribution of naturally occurring
water resources can cause flood and drought, decrease crop produc-
tion, and increase food insecurity. The effects are exacerbated
under climate change, threatening livelihoods in countries that rely
heavily on rainfed agriculture. Ethiopia—with less than 3% of ir-
rigated farmland (calculated value for 2015; FAO 2016; World
Bank 2019), 41% of GDP dependent on agriculture, and over
70% of labor force with main occupation in agriculture (World
Bank 2015, 2017)—is extremely vulnerable to the changing cli-
mate. In 2020, for instance, climate shocks such as erratic rainfall,
pest infestations, and ethnic conflict are projected to increase

emergency needs for food and displaced populations, leading
USAID to estimate that at least 8 million people will require
humanitarian assistance (USAID 2020). Rainfall variability in
Ethiopia is also highly heterogeneous. For instance, while the com-
munities were still in recovery from a severe drought in 2016,
which impacted the north and central highland regions in Ethiopia,
the subsequent 2017 drought led to extensive crop failure and
livestock losses in the south (USAID 2022). Going forward, cli-
mate variability will continue to be a major contributing factor in
Ethiopia’s food security challenges (USAID 2015), while climate
change projections show great uncertainties in the direction of rain-
fall change in this region (Trisos et al. 2022).

Ethiopia needs more productive agriculture to strengthen the
foundation of its economy, and more urgently, to achieve food
security. The government of Ethiopia has actively promoted irriga-
tion as an effective tool to mitigate climate impacts and improve
agricultural yields (Ethiopia National Planning Commission 2016).
The official performance evaluation of its national Growth and
Transformation Plan (GTP), which was implemented over the
period of 2009 and 2010 through 2014 and 2015, estimates that
2.34 million hectares (ha) of land is developed through small-scale
irrigation schemes during the plan period (Ethiopia National
Planning Commission 2016). However, other sources report a much
smaller expansion of area equipped for irrigation. For example,
according to the AQUASTAT database (FAO 2016), Ethiopia was
reported to have 860,000 ha equipped for irrigation in 2015, up from
690,000 ha in 2010. While there is uncertainty regarding the size
of historical and existing irrigating area because of variations in
data sources, the consensus is that Ethiopia has a great irrigation
potential and is in urgent need to reduce its dependence on rainfed
agriculture (Ethiopia National Planning Commission 2016; Haile
and Kasa 2015; Mendes and Paglietti 2015; Mirzakhail et al. 2012).
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The potential of irrigable land ranges from a lower value of
2.7 million ha estimated by FAO (Mendes and Paglietti 2015)
to an upper value of 5.1 million ha estimated by the Ethiopian
government (Ethiopia National Planning Commission 2016;
Mirzakhail et al. 2012). Other literature provides estimates around
3.5 million ha (Awulachew et al. 2007; Hagos et al. 2009; Haile
and Kasa 2015). Given that 74% of all farmers in Ethiopia are
small-holders, who work on land-holdings of up to approximately
two hectares (FAO 2017), small-scale irrigation plays an impor-
tant role in expanding irrigation nationwide. That is, small-holder
farmers can operate and maintain a type of irrigation technology
effectively by themselves to supplement unreliable rainfall at
small-scale plots.

Groundwater irrigation is well suited for widely dispersed
small-holder farming communities because of its flexibility and
affordability. In contrast, a stable surface-water irrigation system
often requires large-scale public investments and favors clustered
farming communities or large-scale farms (Pavelic et al. 2013). A
traditional focus on irrigation using surface water in Ethiopia, such
as individual household-based river diversions and rainwater har-
vesting, or a larger-scale community-based irrigation withdrawal
from a reservoir, has tended to distract decision makers from the
potential of groundwater irrigation (Chokkakula and Giordano
2013). Ethiopia has a vast and nearly unexplored groundwater po-
tential, estimated to be 2.5–47 billion cubic meters (Awulachew
et al. 2007; Ethiopia Ministry of Agriculture 2011; Makombe et al.
2011; Mengistu et al. 2021; Mirzakhail et al. 2012). This suggests
that a more broadly accessible small-scale irrigation strategy that
uses groundwater rather than surface water could be valuable,
and its growth may well be spurred by improved access to drilling
services and pumps at low costs (Villholth 2013).

A few studies estimate the groundwater potential for irrigation
covering all or a part of Ethiopia (Ayenew et al. 2013; Altchenko
and Villholth 2015; Worqlul et al. 2017), among which Worqlul
et al. (2017) provides spatially explicit estimates of irrigation po-
tential using shallow groundwater (<25 m) at a gridded scale of
1 km × 1 km in Ethiopia. They considered key factors including

groundwater depth, potential borehole yield, and net irrigation
requirement over the growing season to estimate the fraction of
potential irrigable area using shallow groundwater (Fig. 1 in this
study), which provides favorable locations for small-scale ground-
water irrigation as a supplement to rainfall during the growing
season. With additional considerations of land use, soil properties,
slope, and market access, a total area of approximately 0.5 million
ha is considered to be suitable for groundwater irrigation in
Ethiopia (roughly 8% of estimated potential irrigable land; Worqlul
et al. 2017).

Although irrigation may improve crop yield under climate vari-
ability and climate change, there is uncertainty in the effect of ir-
rigation on food security because the net benefit can be specific to
location and stakeholder. Additionally, irrigation is influenced
by different factors, such as allocation of crop land, market access,
and crop prices. A sustainable groundwater irrigation plan may also
be desirable and therefore requires ex ante evaluation to avoid
overexploitation.

There are some studies that develop decision support tool
for farmers in agricultural planning and management, including the
application of irrigation (e.g., Rader et al. 2009), while only a few
studies evaluate irrigation effects on food security, the economy,
and the environment through an integrated model framework
(e.g., Cai et al. 2003; Clarke et al. 2017; Worqlul et al. 2018;
Jander et al. 2023; Gai et al. 2022), and these studies are scaled
from farm to basin level and rarely include market access when
evaluating the food security and economic outcomes of irrigation.
For instance, Clarke et al. (2017) applied an integrated decision
support system to investigate the influences of new farming tech-
nologies (including irrigation) on production and economic out-
comes at two representative farms in Ethiopia while minimizing
negative environmental impacts at the watershed scale. Although
the two farms were selected to ensure a reasonable access to mar-
kets, they did not include an endogenous interconnected food mar-
ket network in their model beyond the area of the farms.

In this study, we develop a new systems modeling tool that can
integrate knowledge from hydrology, agriculture, and economics to

Fig. 1. Fraction of potential irrigable area using shallow groundwater (<25 m) overlaid with the boundaries of adaptation zones (a spatial unit
implemented in this study). (Data from Worqlul et al. 2017.)
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understand the effect of irrigation on food security and groundwater
sustainability. Although individual models exist for these factors, a
bottom-up integration of these factors has yet to take place in the
context of Ethiopia, a climate-vulnerable country. We address this
gap in the literature by developing an integrated model that couples
crop yield, subsurface hydrology (including groundwater re-
charge), and spatial food markets (Fig. 2). Specifically, a gridded
process-based crop model across Ethiopia is coupled with a spa-
tially interconnected food market model at the national scale.
We use this integrated model for regional evaluation of food secu-
rity under different small-scale irrigation scenarios, while also
endogenously tracking the associated groundwater resources in
Ethiopia. We compare two main outcome variables—the resulted
regional crop consumption and groundwater storage change—
under different irrigation scenarios to evaluate the effect of irriga-
tion. In this way, we test the hypothesis of whether small-scale
irrigation can improve food security under changing climate and
water resource conditions in the country. It is worth noting that crop
produced in one area may not be consumed in the same area be-
cause of spatial transport and trade (both domestic and international
trade). The spatially interconnected food market model included in
this integrated modeling framework can capture the effect of trade
on regional crop consumption. Therefore, we also compare other
outcome variables, such as transport and export of crops, under dif-
ferent irrigation scenarios to diagnose the underlying mechanism
of how irrigation affects food security.

The following section describes the model in detail and presents
the small-scale irrigation scenarios imposed to evaluate the corre-
sponding subnational impacts. Next, we present the model results,
followed by a discussion section, where we discuss the broader im-
plications of the study results as well as the limitations of this study.
Last, we conclude with the key findings of our study.

Methods

Extended from a previous study (Sankaranarayanan et al. 2020), we
develop a coupled model framework, which includes a crop model,
a spatial food market model, and a closed feedback loop between

them (Fig. 2). The crop model and its coupling to the spatial food
market model are new developments since the previous study,
where the spatial food market model was developed. The crop
model simulates crop yields based on soil properties, crop charac-
teristics, climate conditions and irrigation scenarios. The simulated
crop yield is then taken as the input to the food market model, af-
fecting decision-making on crop land allocation, together with
other decision factors such as total available land, cost of farming
(including cost of switching between crops), and endogenous crop
prices. Once their decisions on land allocation are made, this in-
formation is taken back to the crop model to compute the associated
groundwater conditions. In the spatial market model, farmers’ de-
cisions act on the supply chain of crops through a connected food
market network with explicitly modeled road infrastructure for crop
transport costs, which results in food consumption at the subna-
tional level.

Crop Model with Groundwater Module

The crop model is a gridded process-based soil-water balance
model that takes climate inputs (e.g., temperature and precipita-
tion), irrigation amount, soil water holding capacities, and crop-
specific characteristics (e.g., crop calendar and drought resistant
extent) as inputs. The model tracks the daily soil moisture change
over time, simulates daily crop root growth and evapotranspira-
tion, and produces a ratio of expected crop yield over maximum
yield for each growing period [Eq. (1)]. The ratio is called a yield
factor. It ranges from 0 to 1 given different climate and irrigation
conditions during the growing period. The maximum yield is de-
fined as the yield where there is no water stress for the crop to
grow. A yield factor multiplied to the maximum yield gives the
actual yield under potential water stress. Therefore, a yield factor
of zero indicates crop failure (i.e., zero crop yield), whereas
a yield factor of one indicates there is no water stress on the
crop yield

YFc ¼
Yac
Ymc

ð1Þ

where YF = yield factor; Ya = actual yield under potential water
stress; and Ym = maximum yield for crop c over a growing
period. The yield factor is estimated using

YFc ¼ 1 − Kyc

�
1 − ETc adj

ETc

�
ð2Þ

where Ky = empirical yield response factor, which varies across
crop types; ETc adj = adjusted (actual) crop evapotranspiration;
and ETc = crop evapotranspiration for standard conditions (no
water stress).

ETc is calculated using the reference evapotranspiration,
which depends on the local weather, multiplied by a crop-specific
empirical coefficient. ETc adj is calculated using the soil-water bal-
ance model. The general approach follows Food and Agricultural
Organization (FAO) published empirical methodology (Doorenbos
et al. 1980; Allen et al. 1998), which has been applied in multiple
studies to simulate climate impacts to crop yield (Block et al. 2008;
Sankaranarayanan et al. 2020; Williams et al. 2020; Zhang et al.
2020; Lala et al. 2021; Bazzana et al. 2022; Lala et al. 2023).
However, building on the previous studies, we developed a new
groundwater module within the crop model to simulate ground-
water conditions over time given climate inputs, crop patterns,
and groundwater exploitation for irrigation. The model is calibrated

Fig. 2. Coupled model framework. DECO stands for Distributed
Extendible Complementarity model.
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using climate and land surface model outputs customized for the
study region.

The newly developed groundwater module (Fig. S1) takes deep
percolation (DP) from the soil column above it as the recharge to
groundwater storage over time. A positive DP can occur when
there is excess water after going through all the layers in the soil
column, likely during an intense rainfall and/or irrigation event.
When groundwater irrigation occurs, the needed amount of irriga-
tion water is extracted from the groundwater storage. If the irri-
gation is overapplied, the remaining water would percolate back
to the groundwater reservoir. There is also a baseflow out of the
groundwater reservoir, which is calibrated so that the long-term
average of daily baseflow equals the long-term average of daily
DP. This assumes that groundwater storage under natural condi-
tions does not change in a long-term period. We do not consider
lateral flow in this simplified groundwater module. At every time
step i, the groundwater storage S is evaluated using

Si ¼ Si−1 þDPi − Bi − Ii ð3Þ

where B = baseflow and I is the irrigation amount applied, at daily
time step i. An initial groundwater storage is assumed, and the
storage change over time is tracked.

DP should converge to the same value as the groundwater re-
charge Rg after calibration. To obtain the value of Rg, we need to
first estimate the value of Rl [Eq. (4)], which is then partitioned into
the groundwater recharge Rg and the surface runoff Rs [Eq. (5)]

Rl ¼ Pe

�
SS

SSmax

�
γ

ð4Þ

where SS = soil water content and SSmax is the total available
soil water capacity, within the effective root zone; γ = calibration
parameter called the runoff coefficient; and Pe = effective precipi-
tation [Eq. (6)]. The calculation of Rl follows the approach of
Bergström (1995), which is applied in the WaterGap Global
Hydrology Model (WGHM; Döll et al. 2003). We calibrate γ and
the partition of Rl into surface runoff Rs and groundwater re-
charge Rg, such that DP and Rg converge to the same value after
model calibration

Rl ¼ Rgþ Rs ð5Þ

where Rl = lumped sum of groundwater recharge Rg and surface
runoff Rs. This approach is also applied in the WaterGAP
model (Döll et al. 2003; Döll and Fiedler 2008; Hunger and Döll
2008).

The calibration is performed using simulation outputs from
the Noah Multiparameterization Land Surface Model (Noah-MP
LSM, version 3.6; Niu et al. 2011) within the framework of
NASA’s Land Information System (LIS; Kumar et al. 2006).
Building on its earlier versions of Noah LSM (Ek et al. 2003),
Noah-MP offers multiphysics options such as dynamic leaf,
groundwater, and runoff schemes, and has delivered robust perfor-
mance in the simulation of water and energy fluxes in many river
basins across the globe (Yang et al. 2011; Cai et al. 2014). Noah-
MP LSM simulations used the Moderate Resolution Imaging
Spectroradiometer-International Geosphere Biosphere Program
(MODIS-IGBP; Friedl et al. 2010) 1-km resolution land cover,
State Soil Geographic (Schwarz and Alexander 1995) 1-km reso-
lution soil texture, and 30-m resolution Shuttle Radar Topography
Mission elevation data (Farr et al. 2007). The simulation is forced
by the combination of two atmospheric forcing data sets: NASA’s
Modern Era Reanalysis for Research and Applications version 2

(MERRA-2; Bosilovich 2015) and the Climate Hazards group
Infrared Precipitation with Stations data (CHIRPS; Funk et al.
2015). CHIRPS has been temporally disaggregated from daily to
6-hourly at 0.05° spatial resolution providing rainfall input to
Noah-MP while MERRA-2 provides the remaining meteorological
inputs such as temperature, humidity, radiation, and wind at hourly
scale. The simulation was run at a spatial resolution of 5 km and the
outputs of surface and subsurface runoff, groundwater recharge,
and soil moisture change for the period of 2000–2015 are used
for calibration analysis. Additional information on the calibration
can be found in the Supplemental Materials.

To calculate effective precipitation, we incorporate a new equa-
tion for canopy interception [Eq. (6)] in the crop model. Note that
the total rainfall would be partly intercepted by plant canopy and
the remaining part (i.e., the throughfall) either becomes surface
runoff or infiltrates the soil column. Compared to the original
model structure (Sankaranarayanan et al. 2020), which implicitly
assumes a certain portion of the total rainfall does not reach the
soil, our updated approach takes account of the effects of canopy
interception and loss to runoff. Incorporating the canopy intercep-
tion reduces the total water reaching the soil because of canopy
evaporation and increases infiltration to runoff ratio by spreading
the rain event out over a longer period of time as throughfall.
Meanwhile, capturing the surface runoff using a well-established
analytical equation (Döll et al. 2003) enables us to better calibrate
the crop model against data from land surface model simulations
and create a computationally efficient crop model in the two-
way coupling model framework (i.e., with the spatial food market
model).

Specifically, the canopy interception [Eq. (6)] is estimated using
the monthly Greenness Vegetation Fraction (GVF) map over 2002–
2015, which is derived from Moderate Resolution Imaging Spec-
troradiometer’s Normalized Difference Vegetation Index (MODIS
NDVI; Huete et al. 1999) data using methods described in Case
et al. (2014) as implemented by Nie et al. (2018). This data set
provides vegetation greenness information in the range of 0 to 1
at the global gridded scale. In land surface models, GVF is widely
used to calculate the canopy interception (Kumar et al. 2018). In
order to obtain the GVF or canopy interception ratio for main crop
types (e.g., maize, millet, teff, wheat, sorghum, and barley) such
that we can model the climate and irrigation effects on crop yield
specifically for each crop type, we overlay the monthly GVF map
averaged over the available years with the livelihood zonal map in
Ethiopia, which identifies where main crop types are grown (FEWS
NET 2018). Subsequently, we estimate the canopy interception
ratios for each crop type over each growing stage (i.e., planting,
vegetative, flowering, yield formation, and ripening, spanning dif-
ferent months) using the spatial average value of GVF in areas
where each main crop is growing

Pe ¼ ð1 − GVFÞ × P ð6Þ

where Pe = effective precipitation or throughfall given the total
precipitation P and the GVF.

Spatial Food Market Model

The improved Distributed Extendible COmplementarity model
(DECO2; Sankaranarayanan et al. 2020) is a multiplayer micro-
economic partial equilibrium model, which is designed and
calibrated to simulate the responses of Ethiopia’s food markets
under potential external shocks. In the model, there are multiple
representative players or market actors along the food supply
chain, including crop producers, distributors, storage managers,
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and consumers across subnational zones (Fig. S2). The crop pro-
ducers sell crops to distributors. The distributors transport the
crops across zones and sell them to storage managers, who then
sell them to consumers. The model solves for equilibrium between
supply and demand for every exchange between two representative
players, while every representative player maximizes her own
profit or utility noncooperatively. This is framed as a mixed com-
plementarity problem and thus the so-called “COmplementarity”
model. While partial-equilibrium models are common for analyz-
ing food markets (e.g., FAO 1998; Rosegrant et al. 2008; Wailes
and Chavez 2011; Robinson et al. 2015), DECO2 and its original
DECO (Bakker et al. 2018) distinguish themselves by providing a
detailed modeling of market actors across the country and their
decision-making process, and by serving as a tool for subnational
analyses of trade and commerce in Ethiopia. Mathematical formu-
lations of DECO2 are provided in the Supplemental Materials.

The model is also spatially disaggregated with representative
players in each subnational zone or food market. There are two
different layers of spatial disaggregation in the model. The first
layer is based on adaptation zones (Fig. 3), which are defined by
Ethiopian government considering agroclimatic factors (Federal
Democratic Republic of Ethiopia 2015). With one representative
crop producer in each zone, application of the adaptation zones
allows us to better represent production activities integrated with
climate and soil characteristics within each zone. However, using
adaptation zones to model crop transport with one representative
distributor in each zone is inappropriate, because some adaptation
zones spread far distances and some are noncontiguous. Therefore,
the second layer of spatial disaggregation is based on selected
transportation hubs in cities with the actual road network connect-
ing them to endogenously model crop transport in the country
(Fig. 3). We then apply Thiessen polygons (Thiessen 1911) sur-
rounding the transportation hubs to connect the two different

layers (Fig. 3). A Thiessen polygon has the property that every
point in that polygon is the closest to the center (i.e., the transpor-
tation hub) within that polygon. We assume that the representative
crop producer in any adaptation zone sells in one or more markets
proportionally based on the overlap between the adaptation zone
and each market’s Thiessen polygon. This indicates that the crop
productions are sold to the closest markets geographically.

In each adaptation zone, the crop producer decides the land
allotted to each crop with the objective of maximizing her profit.
We model individual primary food crops, which include teff, sor-
ghum, barley, maize, and wheat, a representative secondary food
crop of vegetables, and a lumped cash crop of coffee and oil
seeds. The crop producer makes decisions based on the expected
yield of each crop, the producer price (i.e., the price the crop pro-
ducer sells to the distributor), and the costs of production includ-
ing a penalty term for switching crop types in the same farmland
over growing seasons.

The distributor at a transportation hub then distributes the col-
lected crop production from multiple adaptation zones to the
spatially connected transportation hubs (i.e., food markets). The
flow-in (flow-out) of crops at each transportation hub is balanced
out with the supply deficit (surplus) at this hub. That is, the distribu-
tor transports crops from high supply and low demand areas to low
supply and high demand areas, bearing the transportation costs,
while making profits from the differentiated local market prices.
All the crop prices including the producer and the consumer price
are endogenously solved at each food market. In addition to the
transportation hubs, an external node for international import
and export is connected to the transportation hub in the capital city
(i.e., Addis Ababa). International import (export) occurs only when
the domestic crop price at Addis Ababa is higher (lower) than the
sum of global price and the import (export) cost, which are defined
exogenously.

Fig. 3. Spatial disaggregation of Distributed Extendible COmplementarity model (DECO2) with two different model spatial units of adaptation
zones and Thiessen polygons centered around transportation hubs (i.e., food markets). [Reprinted with minor modifications from Sankaranarayanan
et al. (2020), under Creative Commons-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).]
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DECO2 can be solved at yearly time-steps, with two growing
seasons per year. The model solves three years altogether and only
keeps the first year’s output in a rolling horizon. In this way,
the players neither have perfect knowledge of the future, nor
are they short-sighted. DECO2 is calibrated against historical
data, including crop area and production at the administrative zo-
nal level mainly in the cropping year of 2015 (Central Statistical
Agency of Ethiopia 2015). The two growing seasons in Ethiopia
are “meher” and “belg.” “Meher” is the main growing season,
which produces over 70% of all food (Sankaranarayanan et al.
2020) and relies on the rains falling primarily on western Ethiopia
during June–September (Zhang et al. 2016). The latter relies on
the minor rainy season spanning March–April. On the consump-
tion end, we assume that all produced crops are consumed. The
quantity demanded is proportional to the population in each trans-
portation hub and the area surrounding it (i.e., the Thiessen poly-
gon). We then obtain price elasticity of demand from Tafere
et al. (2010) to derive the food demand curves for food markets
in Ethiopia. Given the supply of food and demand of food, we
synthetically generate the food transport quantities in the model.
Subsequently, the model calibration is achieved by appropriately
adjusting the input parameters, namely the crop production costs
and the slope and intercept of the demand curves. We refer the
reader to Sankaranarayanan et al. (2020) for more information
on the model.

Model Coupling

The crop model and the spatial food market model are coupled
through the feedback of expected yield and allotted land of different
crops. This way of coupling the model assumes that the farmers
have reasonably a good understanding of their crops’ yield with
respect to water availability. Specifically in the coupled model,
the baseline yield can be calculated given the historical crop pro-
duction divided by the corresponding crop area. Using the baseline
(actual) yield in combination with the yield factor in the same year,
which is calculated by the crop model, we obtain the maximum
yield for each crop type. The maximum yield multiplied by an al-
ternative yield factor under a different water condition leads to a
different crop yield from the baseline. With this coupled model,
we can study the effects of irrigation on crop yield and the sub-
sequent responses in crop production, transport, and consumption
at spatially disaggregated levels.

As we feed the expected crop yields from the crop model into
DECO2 to drive crop producers’ decision-making, the resultant
crop land allocations are fed back into the crop model to estimate
the effect on groundwater conditions. The crop patterns in
each adaptation zone affect the groundwater conditions through
crop-specific canopy interceptions and crop water requirement
(i.e., evapotranspiration). In addition, spatially varying soil prop-
erties (e.g., water holding capacity) and crop-specific calendars
in combination with the spatial-temporal climate conditions
(e.g., daily precipitation and temperature at a gridded scale) also
affect the groundwater conditions. If groundwater irrigation exists,
in addition to the direct impact on groundwater conditions through
water withdrawals, the indirect impact through the change of crop
patterns in each adaptation zone is also accounted for.

The crop model operates at a gridded scale that covers Ethiopia
and produces an estimated yield factor in each grid-cell as if a cer-
tain type of crop is grown at this grid-cell. The gridded yield factors
are then aggregated to the level of the adaptation zone using area-
weighted averages, which are then taken into consideration by the
representative crop producer in each adaptation zone to maximize
her own profit in DECO2. The associated effect on groundwater

conditions in each adaptation zone is calculated using the ratio
of crop area (from DECO2) over total land area in this zone multi-
plied by the sum of groundwater storage change over all the grids in
this zone. More details on the model coupling can be found in the
Supplemental Materials.

Irrigation Scenarios

To show the coupled model’s capability, we run a scenario where an
irrigation of 2 mm=day is available to maize in every adaptation
zone. Maize is one of the primary food crops in the country, ranking
first and second in production and farming area, respectively
(Central Statistical Agency of Ethiopia 2015). Maize is also more
sensitive to dry conditions than the other primary food crops
(Zhang et al. 2020). Under the irrigation scenario, 2 mm=day acts
as supplementary irrigation to maize during the main growing sea-
son (i.e., “Meher”). In comparison, the calibrated baseline in 2015
is treated as no irrigation available for any of the crops. This is
a reasonable assumption given Ethiopia’s small irrigation extent
in 2015. The fraction of irrigable area using shallow groundwater
(<25 m) in each adaptation zone (Fig. 1) is also considered as an
upper limit when we implement the irrigation scenario. That is, the
total area being irrigated cannot exceed the irrigable area using
shallow groundwater defined based on Worqlul et al. (2017). By
comparing the irrigation scenario to the baseline, we address the
“what-if” question in the base year of 2015, a year of significant
drought and crop failure over a large portion of Ethiopia (Singh
et al. 2016). That is, whether small-scale irrigation using ground-
water can improve food security under the changing climate and
water resource conditions in Ethiopia. We do not consider irrigation
cost in this study.

While our study assumes that the irrigation is only available to
Maize, it is of course realistic to expect that crop producers might
use the irrigation for other crops too. Cash crops such as fruits and
vegetables may be more likely to be irrigated than maize; however,
the current crop yield model is only capable of modeling the
primary food crops (i.e., maize, millet, teff, wheat, sorghum, and
barley). Because of this model limitation as well as the nature of
maize and its prevalence in Ethiopia compared to other primary
food crops, most of the irrigation water is likely to be used by
maize. We encourage readers to understand this scenario as one of
small-scale irrigation possibilities, rather than an exact representa-
tion of what will happen, and interpret the associated results with
this scenario setup in mind. The goal here is not to come up with the
exact mix of crops that will be irrigated in this scenario, but the
impact on groundwater from a resulting mix of crops after irrigation
schemes have been applied.

Results

Spatial Effects of Irrigation on Cropland Allocation and
Production

We observe that the yield of maize improves given the available
groundwater irrigation compared to the nonirrigated baseline.
However, the extent of improvement varies across space with sig-
nificant positive effects observed in fertile and temperate, but
drought-prone areas. The improvement is attributed to the increase
in crop yield under irrigation, rather than an extensification of the
cropland.

In 2015, the northwestern part of the country was dry during the
main rainy season (June–September) with considerably less rain
than historical average [Fig. 4(a)]. As a result, simulated maize
yield in those regions is stressed by insufficient water in the
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baseline without irrigation, where the estimated yield factors for
maize are less than one for most areas [Fig. 4(b)]. Under the irri-
gation scenario, there is an overall increase of maize yield factors,
particularly in places where soil is fertile and temperature is mod-
erate, such as northwestern Ethiopia [Fig. 4(c)]. In contrast, some
regions still have low yield factors under the irrigation scenario be-
cause of low soil fertility and immoderate temperature, including
the Somali and Afar regions (Fig. 4), which are mostly desert. This
is also consistent with the map of adaptation zones, where the
“arid” category (i.e., A1) overlaps a large part of Somali and Afar
(Fig. 3).

In the baseline, the largest farming area among adaptation
zones is located at the moist highlands [i.e., M3; Fig. 5(a)], most
of which overlaps with Amhara and Oromia region in the north-
west and was significantly impacted by the dry conditions in 2015.
Overall, about 30% of M3’s land is used to grow crops, indicating
relatively high fertile soil in this zone particularly compared to the
arid zone (i.e., A1) where 0% of its land is used to grow crops
[Fig. 5(a)]. A relatively large farming area of maize is found in
the tepid subhumid mid highlands (i.e., SH3) and the moist high-
lands (i.e., M3), compared to other adaptation zones in Ethiopia
[Fig. 5(a)].

The largest changes in cropping patterns under the irrigation
scenario compared to the baseline occur in the semiarid zones,
SA1 and SA3 [Fig. 5(b)], where without irrigation growing maize
can be difficult and nonprofitable. Therefore, under the irrigation
scenario, crop producers in the two zones switch relatively large
farming areas to grow maize. However, the switched farming area
is a very small portion of the total farmland for all adaptation zones
(<0.1% overall; Fig. 5). Therefore, the crop patterns alter only
slightly under the irrigation scenario. Additionally, the total farm-
ing area for all the crops is barely changed, as the model heavily
penalizes changes of the farming area. The penalty is applied to
represent the land tenure system in Ethiopia, which limits rural
households’ farmland access.

Although the total farming area barely changes under the irri-
gation scenario, the total production of all crops increases more
than 100% in some adaptation zones (Fig. 6). This is because
the production of maize increases sharply under the irrigation sce-
nario despite the slight decrease in the production of all other crops.
It indicates that the yield of maize per unit of land is increased be-
cause of the availability of irrigation to maize. The crop producers
are willing to allot more land to grow maize instead of the crops that
are planted in the baseline, resulting in a reduced production of all

Fig. 4. (a) Total precipitation during Ethiopia’s main raining season (June–September) from 2000 to 2016 in Addis Ababa, Amhara region,
and Tigray region; (b) the calculated yield factor for maize in 2015 without irrigation; and (c) with irrigation of targeted 2 mm=day. The yield
factor ranges from 0 to 1, where 0 means crop failure and 1 means no water stress. A map showing administrative regions mentioned in the text
is provided in (a).
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other crops except maize. Among the adaptation zones, the moist
lowlands and highlands (i.e., M1 and M3), which were heavily hit
by the 2015 drought, benefit the most from the irrigation with the
largest increase in total production under the irrigation scenario
compared to the baseline.

Associated Effects on the Crop Transport, Trade, and
Consumption

The spatial change of maize production affects the transport of
maize for domestic consumption and international export (Fig. 7).
The interconnected spatial transport network and the potential for
international export lead to only an average of 0.18% increase in
domestic food consumption (roughly 0.3 kg per capita) despite a
substantial 28% boost in crop production (Fig. 8). This is because
distributors are likely to transport the crops for international export
because of higher profit than selling them to domestic consumers.

As a result, the domestic consumption does not always linearly in-
crease with the production in a region because of the interconnected
spatial transport network and the possibility of international export.

In general, there is a trend of transporting maize from the west to
the east of the country in the baseline; that is, from the more fertile
and productive west to the eastern desert. The patterns are changed
under the irrigation scenario, where 54% of total maize production
is transported to the national capital, Addis Ababa, for international
export. For comparison, the international export of maize counts for
only 2% of the total maize production in the baseline. This indicates
that under the irrigation scenario, distributors are willing to trans-
port the excess of domestic maize supply to Addis Ababa for
international export, gaining the profit from the price gap between
the domestic and international market. Additionally, almost all food
markets become net exporters of maize under the irrigation sce-
nario, indicating a surplus of maize supply compared to demand
in most regions.

Fig. 5. (a) Farming area allotted to each crop in each adaptation zone shown with stacked bars at the baseline (without irrigation); and (b) the changes
in farming area by crop under the irrigation scenario compared to the baseline, where the positive changes are for maize only while negative changes
are stacked together for other crops. The positive change in farming area in each adaptation zone is similar to the aggregate negative change, and thus
the total farming area for all the crops is barely changed. The percentage of total farming area of the total zonal area is shown using circles in (a) with a
secondary y-axis on the right. Note that the y-axis of the farming area in (a) is on a different scale from the y-axis in (b).
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Associated Effects on Stakeholders’ Profits

The percent change of farmer’s profit increases 18% on average
(Fig. 9). The increase is more evident in places where without ir-
rigation maize yield is low. Therefore, irrigation could bring them
comparatively high profit. For example, crop producer’s profit in
Harar, a food market in the east side of the country, increases
50% under the irrigation scenario compared to the baseline (Fig. 9).
Most of the producer sales (to distributer) in Harar is from the sub-
moist west (i.e., SM2), where the irrigation scenario brings over
100% increase in maize production [Fig. 6(a)].

Associated Effects on Groundwater Storage

The changes in groundwater storage because of the assumed irri-
gation are comparable to the changes in groundwater storage
caused by the drought in 2015 (Fig. 10). Although 2015 is a
drought year for a large part of the country, particularly in the moist
lowlands, moist highlands, and extreme moist highlands (i.e., M1,
M3, and M5), the overall groundwater storage is increased because

of an opposite climate effect to other parts of the country. Under
the irrigation scenario, groundwater storage decreases in all zones,
and the impact of irrigation is generally larger than the negative
impact of the drought. As a result, a 2 mm=day of irrigation for
maize causes an average of 4 mm annual reduction of groundwater
storage.

Correspondingly, the annual cumulative change in ground-
water storage volume because of irrigation reaches approximately
3 billion cubic meters. Compared to the range of potential ground-
water storage reported in the literature (i.e., 2.5–47 billion cubic
meters in Ethiopia), the experimental scenario of groundwater
irrigation applied to all maize planting areas could potentially de-
plete the aquifer storage. However, there is a wide range of uncer-
tainty in groundwater storage in the country, and the resultant
groundwater storage change because of the assumed irrigation falls
at the lower end of the available groundwater storage spectrum.
Additionally, the concurrent climate conditions in the model year
of 2015 increased the overall groundwater storage by approxi-
mately 0.9 billion cubic meters, resulting in a net reduction of

Fig. 6. Changes in production quantity for (a) maize (positive change) and all other crops in the model (stacked bar of negative changes) in each
adaptation zone under the irrigation scenario compared to the baseline (without irrigation). The percent change in total production of all crops is also
shown using circles with a secondary y-axis on the right. Note that the negative changes for other crops are much smaller than the positive changes for
maize and thus are almost invisible in (a). Therefore, (b) shows a zoom in for the other crops (excluding maize).
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Fig. 7.Maize transport pattern (a) under baseline (without irrigation); and (b) under the irrigation scenario. Note that the arrow scale is changed with
the same size arrow under the irrigation scenario representing transporting a quantity 5 times the baseline. A larger quantity of maize is transported
to Addis Ababa for international export under the irrigation scenario.

Fig. 8. Percent changes in food consumption (of all crops in quintals) in transportation hubs (i.e., food markets) under the irrigation scenario
compared to the baseline (without irrigation).

© ASCE 04024028-10 J. Water Resour. Plann. Manage.

 J. Water Resour. Plann. Manage., 2024, 150(8): 04024028 

 T
hi

s 
w

or
k 

is
 m

ad
e 

av
ai

la
bl

e 
un

de
r 

th
e 

te
rm

s 
of

 th
e 

C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

4.
0 

In
te

rn
at

io
na

l l
ic

en
se

. 



Fig. 9. Percent changes in crop producer’s profit in transportation hubs (i.e., food markets) under the irrigation scenario compared to the baseline
(without irrigation).

Fig. 10. Changes in groundwater storage due to climate variability (i.e., climate conditions in 2015) and irrigation.
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2.1 billion cubic meters in the groundwater storage under the com-
bined effects of climate and irrigation.

Discussion

Despite spatial variability, the overall crop production increases
28% under the irrigation scenario. This result can be contrasted
with the simulated economic impact of policies that directly target
export policy. For example, following the international food price
spikes of 2008, Ethiopia banned the export of teff, a grain that is a
primary staple of Ethiopian diets, in order to stabilize the domestic
price at a low level and ensure domestic teff consumption. In a pre-
vious study (Sankaranarayanan et al. 2020), the authors applied
DECO2 to evaluate the effect of lifting the teff ban on the food
system in Ethiopia. It was found that the percent change in profit
of the crop producer is very small. Even with a free export market
where the teff ban is completely lifted, the overall increase in crop
producers’ profit is slightly over 0.2%, because the profit from the
export is enjoyed almost exclusively by the distributor and storage
manager as opposed to the initial production activity. The extra
profit cannot pass down to the crop producers because of the lack
of market power, transportation infrastructure, and therefore access
to multiple markets for the crop producers to sell their teff at a
higher price (Sankaranarayanan et al. 2020). In comparison, this
study shows that small-scale irrigation, as opposed to lifting the
export ban, benefits the crop producer to a much higher extent with
crop producers gaining an average of 18% in profits. As an irriga-
tion policy is directly related to the initial production activity, it
brings direct benefit to the crop producers. In contrast, lifting an
export ban, although increases the demand for crops, does not nec-
essarily benefit the rural crop producers because of poor distribu-
tion markets and transportation infrastructure in Ethiopia.

It should be noted that this 28% increase in crop production and
18% increase in producer profits came with only a corresponding
0.18% increase in domestic consumption, because the majority of
the increase in production flows to the international export market.
This is consistent with what has been found in a previous study,
where significant increases in exports of agricultural products
were observed given simulated irrigation investments in Ethiopia
(Beyene and Engida 2016). Similarly, in another previous study
that focuses on the Sub-Saharan African region, it was found that
irrigation expansion can shift the region from a net import position
to a net export position (Xie et al. 2018). This is also consistent with
our finding that the feasibility of irrigation expansion for improving
food security not only depends on biophysical factors but also on
socioeconomic factors. Considering the importance of food secu-
rity in Ethiopia, which faces significant food shortage challenges
(Abduselam Abdulahi 2017), policymakers may implement rel-
evant policies to increase domestic consumption, such as another
restrictive cap on international exports, or a consumer subsidy
using export revenue. For example, the Productive Safety Net
Program launched by the Ethiopian government has been providing
payments to food insecure households to assure food consump-
tion (International Food Policy Research Institute & Ethiopia
Development Research Institute 2014). These kinds of policies
would shift the balance of irrigation benefits from increased pro-
ducer and distributor income through trade to increased food
consumption—an outcome that might be particularly valuable dur-
ing drought years like 2015.

The outcome of crop yield and production under the irrigation
scenario shows that groundwater is a good buffer of drought during
an acute, severe event like the drought of 2015, providing water
for the crops when necessary through groundwater irrigation.

However, the impact of irrigation on groundwater conditions in
the longer term cannot be ignored. Depending on local climate con-
ditions, the reduction of groundwater storage because of irrigation
may not be replenished in time during the noncropping season and
over the long run, and thus it can lead to gradual groundwater
depletion. A set of user-defined irrigation scenarios can be run us-
ing our model to evaluate the corresponding groundwater table
change along with food security and profits outcomes. Our model
can provide insights in developing a sustainable irrigation strategy
for the policy-makers.

There are limitations of our model that should be considered
when interpreting results. First, we do not model potential traffic
congestion. In our model, the travel time is not affected by the level
of occupied road capacity, and thus food transport costs, which are
a function of the travel time, are not affected. With a greater traffic
load toward Addis Ababa for international export under the irriga-
tion scenario, we may be overestimating the quantity of crop trans-
ported to Addis Ababa for international export given the possible
omitted increase in transport cost. From a policy implementation
perspective, the road network expansion may be necessary to facili-
tate food transport given increased domestic production.

Second, we do not explicitly model the international market
for crops. We assume that the changes in Ethiopia’s export would
not affect the global market condition. With increase in maize sup-
ply in the global market due to Ethiopia’s increasing export of
maize under the irrigation scenario, the international price of maize
may drop, resulting in a decrease in export profits. Therefore, our
results may overestimate the maize export quantity and profit.
Future research may improve this part of the model through cou-
pling with a global market model or incorporating a global supply
and demand curve.

Third, the groundwater module does not simulate lateral fluxes
of groundwater; therefore, the decrease of groundwater table in one
zone may be over or underestimated without considering the lateral
subsurface flow in or out of the zone. Additionally, we assume
the baseflow is constant such that the long-term groundwater stor-
age changes without human interventions stay relatively stable.
This serves the purpose of this study that changes in the modeled
groundwater storage are attributed to the short-term climate condi-
tions, cropping patterns, and irrigations. However, in the real world,
the baseflow can vary both seasonally and interannually, which can
lead to uncertainties in the resultant groundwater storage changes.
Future study can improve this part of modeling given available data
or empirical evidence in the region (e.g., baseflow trends could be
associated with precipitation trends; Ficklin et al. 2016).

Last, we do not model the cost of irrigation, such as the pumping
cost which depends on the groundwater depth, and how that affects
crop producers’ decision-making in applying irrigation. If there are
spatial differences in irrigation costs because of the availability and
depth of the groundwater, crop production under the irrigation sce-
nario may alter spatially. Future investigation regarding this aspect
requires a finer spatial scale analysis to determine the locations of
farmlands and how they overlay with groundwater availability and
depth. The costs of small-scale irrigation also depend on the type of
irrigation pumps or systems being used. The costs would consist of
investment and installation costs, operation and maintenance costs,
in addition to the cost of energy. For example, diesel and solar
pumps are identified as two potential options of powered ground-
water irrigation in Sub-Saharan Africa with different cost profiles,
where the cost of diesel-powered irrigation is affected by the vola-
tility of diesel prices while solar pumps have zero energy costs but
a high investment cost (Xie et al. 2021). Irrigation systems such
as drip irrigation versus canal irrigation are associated with differ-
ent installation costs; they also have different energy-water use
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efficiencies and thus could affect the energy and water costs (Bell
et al. 2020). Additionally, irrigation costs may be considered in the
model in a way such that the irrigation amount is endogenously
decided by the crop producers for a potential set of crops which
they choose to irrigate, instead of presetting a fixed amount
for a certain crop, as in this study. This may drive the irrigation
applied to high-profit crops. Furthermore, the irrigation efficiencies
may also affect crop producers’ decision regarding the irrigation
amount, leading to varied consumptive uses of irrigation water and
subsequently affecting water availability in a basin (Grafton et al.
2018; Contor and Taylor 2013). Moreover, the overall irrigation
development also requires institutional support, such as qualified
personnel to train and help farmers operate and maintain irrigation
pumps and systems and incentives to promote powered irrigation
(Alam 1991; Amede 2015), which can affect farmers’ willingness
to adopt small-scale irrigation as well as the costs associated with it.
In Ethiopia, one of the major institutional challenges of developing
small-scale irrigation is how to manage and efficiently use the
available water, considering competing water users and irrigable
plots of different crops (Amede 2015). In practice, institutional ar-
rangements can significantly affect the development of small-scale
irrigation and should be carefully designed by policymakers.

While this study has its limitations, it offers valuable insights
and contributions to our understanding of the complex interplay
between irrigation, food security, and groundwater sustainability
at a subnational scale in Ethiopia. The systems modeling tool
we developed bridges the gap in existing literature by integrating
hydrology, agriculture, and economics tailored to the climate-
vulnerable context of Ethiopia. The model can also be adapted to
other countries given available data to support macroscale decision-
making under potential irrigation interventions. This study also
paves the way for future improvements and refinements in model-
ing, such as incorporating global market dynamics and addressing
the variations in irrigation costs. It offers a foundation for further
investigations and policy considerations aimed at enhancing food
security and sustainable groundwater management in Ethiopia and
other countries.

Conclusion

In this study, we developed a model that integrates Ethiopia’s cli-
mate, crop water conditions, crop production, and food markets to
understand the economy-wide effect and the environmental impact
under groundwater irrigation. When we use our model to determine
the impact of widespread availability of groundwater irrigation for
maize, as expected, we found that farmers allocate more land to
grow maize. With improved maize yield under the irrigation, the
maize production also increased substantially. In addition, our
model offers fresh insights into geographic disparities in outcomes
that are driven by baseline climate variability (level of water deficit
that can be supplemented by irrigation), soil fertility (to what extent
irrigation water can be held in soil to benefit crop growth), and
market conditions (where supply needs to meet demand consider-
ing an interconnected distribution network). One of our key
contributions lies in identifying that in the absence of complemen-
tary food security policies, domestic consumption of maize does
not increase as much as production as a large portion goes to
international exports. The resultant decreases in groundwater tables
under the irrigation scenario also vary across regions given different
irrigated areas, soil properties, and local climate conditions in
recharging the groundwater. Small-scale irrigation using ground-
water can potentially improve food security through increases in
food consumption, but it requires policy support to direct the

increases of production to domestic consumption instead of
international export while maintaining a sustainable groundwater
condition. Although we only demonstrate one example scenario
in this study, our model can be used for a wide range of designed
scenarios to inform policy and decision-making.
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