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ABSTRACT Ensemble models such as gradient boosting and random forests are proven to offer the
best predictive performance on a wide variety of supervised learning problems. The high performance
of these black box models, however, comes at a cost of model interpretability. They are also inadequate
to meet regulatory demands and explainability needs of organizations. The model interpretability in high
performance black-box models is achieved with the help of post-hoc explainable models such as Local
Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). This paper
presents an alternate intrinsic classifier model that extracts a class of higher order patterns and embeds them
into an interpretable learning model. More specifically, the proposed model extracts novel High Utility Gain
(HUG) patterns that capture higher order interactions, transforms the model input data into a new space,
and applies interpretable classifier methods on the transformed space. We conduct rigorous experiments
on forty benchmark binary and multi-class classification datasets to evaluate the proposed model against
the state-of-the-art ensemble and interpretable classifier models. The proposed model was comprehensively
assessed on three key dimensions: 1) quality of predictions using classifier measures such as accuracy, F1,
AUC,H-measure, and logistic loss, 2) computational performance on large and high-dimensional data, and 3)
interpretability aspects. TheHUG-based learningmodel was found to deliver performance comparable to that
of the state-of-the-art ensemblemodels. Ourmodel was also found to achieve 2-40% (45%) prediction quality
(interpretability) improvements with significantly lower computational requirements over other interpretable
classifier models. Furthermore, we present case studies in finance and healthcare domains and generate one-
and two-dimensional HUGprofiles to illustrate the interpretability aspects of our HUGmodels. The proposed
solution offers an alternate approach to build high performance and transparent machine learning classifier
models. We hope that our ML solution help organizations meet their growing regulatory and explainability
needs.

INDEX TERMS Analytics, interpretable machine learning, explainable artificial intelligence, classification,
high utility patterns.

I. INTRODUCTION
Machine learning and advanced analytical models have
become an integral part of data-driven decision making in
numerous organizations. The decision support capabilities of
thesemodels are quite diverse in nature and include delivering
personalization services at Netflix, recidivism prediction for
criminal justice, credit risk assessment, patient health risk
management, delivery route optimization, and autonomous

The associate editor coordinating the review of this manuscript and

approving it for publication was Loris Belcastro .

self-driving cars. The decision support capabilites of
advanced analytical models have often surpassed humans in
numerous decision environments. However, an uncontrolled
use of such models have also created problems in several
domains. For instance, Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS) [1] is an
automated criminal justice system that is widely used in U.S.
for making parole and bail related decisions. The proprietary
and black-box nature of the COMPAS system poses the
following issues: First, the system takes automated decisions
without providing explanations. This makes it hard for
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defendants and their attorneys to understand the reasons for
denial of bail [2]. Second, a high stake decision environment
like criminal justice, require effective use of new information,
that was unavailable at the time of model building, and
adjust the model scores (or weights). A black-box models
like COMPAS would make it nearly impossible for a judge
to combine the new information to adjust the defendant’s risk
score and make a fair decision [3].

In the healthcare domain, Zech et al [4], analyze the
performance of a black-box model for predicting pneumonia
in chest radiographs. Their study observed that the word
‘‘portable’’, an equipment type, mentioned in the x-rays was
given higher weights by the model than the actual content
of the image for prediction. These model level insights are
crucial to design robust machine learning systems in high
stakes decision making environments.

In the financial services domain, Equal Credit Oppor-
tunity Act (ECOA) and the Fair Credit Reporting Act
(FCRA) require financial institutions to offer explanations
to their customers for denial of credit or other adverse
decisions. These regulatory demands often constrains the
financial institutions from using advanced machine learning
models.

The foregoing discussions reveal that there is a strong
need for deciphering how the decisions are being made by
advanced machine learning models. The scientific advance-
ments in interpretable and explainable models primarily aim
to address this problem, and help meet the diverse needs
of end-users, data scientists, developers, researchers, and
decision-makers. Du et al [5] present two broad categories
of interpretable models: intrinsic and post-hoc. The intrinsic
models are self-explanatory models such as decision trees,
rule based models, and linear models. On the other hand,
the post-hoc models are surrogate models that use local
approximations to generate explanations from blackbox
models. While post-hoc models such as Local Interpretable
Model-agnostic Explanations (LIME) and SHapley Additive
exPlanations (SHAP) have become popular, Rudin et al [6]
argue that post-hoc explanations are often incorrect or
incomplete. Several prior studies [3], [7], [8], [9] have also
reported concerns related to fidelity and false charaterizations
of post-hoc models that might create potential harm to
organizations and society. Chen et al [10] investigate the use
of post-hoc explainable models in the credit lending domain
and offer rich illustrations of contradictory explanations
generated by these models.

The past research studies in interpretable machine learning
show experimental evidence that the accuracy of classifier
models need not come at the cost of model interpretability [6].
Many of the real-world datasets are found to exhibit
Rashomon effect [6], [11], [12] and have large Rashomon
sets i.e. multiple descriptions or models of the same dataset
with similar performance results. Although the characteristics
of the Rashomon set are unknown [6], an exploration of
innovative and inherently interpretable models is needed to
identify simpler models within this set.

Recent research attempts on interpretable ML models
include: automated feature engineering [13], [14], Supervised
Assisted Feature Extraction (SAFE) [9], Penalized Logistic
Tree Regression (PLTR) [15], and INterpretable Automated
Feature ENgineering (INAFEN) [16]. These approaches
either use greedy heuristics to determine the best feature
transformations for automated feature engineering or rely
on other machine learning models (e.g. decision trees, rules,
random forest, boosting) for feature extraction. The identified
features are then used as part of another interpretable
machine learning model to achieve better interpretability.
Our study is distinct from these efforts and aim to build an
inherently interpretable model using a new class of features
and higher-order interaction patterns. More specifically, our
primary motivation is to investigate and answer the following
research questions:

1) Are there specific class of higher-order interaction
patterns that can be used to model supervised learning
problems and achieve better interpretability?

2) Can high-utility itemset mining or its variants identify
interesting patterns and support interpretable machine
learning and avoid costly exhaustive enumeration that
lacks scalability and suffer from overfitting issues?

3) How does the performance, scalability, and inter-
pretability of the models based on a specific class
of higher order patterns compare with that of other
state-of-the-art ensemble and interpretable classifier
models?

Frequent patterns and association rules [17], [18] have
been explored in the literature for associative classification
tasks. Some of the prominent methods of associative classifi-
cation include: Classification Based on Associations (CBA)
[19], Classification based on Multiple Association Rules
(CMAR) [20], Classification based on Predictive Association
Rules (CPAR) [21], Association Rule Tree (ART) [22],
and SigDirect [23]. These associative classification methods
use the occurrence frequency information of patterns and
are known to offer high interpretability. But, the predictive
performance of these methods is poor compared to advanced
state-of-the-art classifier ensembles such as random forest
and boosting. The use of frequency as the primary criterion in
these methods fail to account for complex feature interactions
and imbalanced nature of real-world data. In the recent
years, High Utility Itemset (HUI) mining [24], [25], [26]
has emerged as an alternative that addresses the common
limitations of methods that purely focus on occurrence
frequencies.

A. CONTRIBUTION AND ORGANIZATION
To the best of our knowledge, the use of high utility itemsets
or patterns for supervised learning problem has not been
studied in the literature. Our objective in this paper is
to design a new class of utility patterns and explore its
application in the domain of interpretable machine learning.
We introduce new data transformation methods, define new
approaches formeasuring utilities in the context of supervised
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learning problems and present a variant of high utility
patterns, named, High Utility Gain (HUG) patterns. We then
introduce intrinsic interpretable classifier models that utilize
the proposed High Utility Gain (HUG) patterns as higher-
order features.

The key contributions of the paper are as follows:
• Introduce a new class of utility patterns, named, High
Utility Gain (HUG) patterns that exploit the outcome
(or label) information available in supervised learning
problems.

• Propose intrinsic interpretable classifier models for
tabular data that leverage the proposed High Utility Gain
(HUG) patterns.

• Present a new algorithm to perform scalable extraction
of HUG patterns. The proposed algorithm adapts a
top-k HUI mining algorithm for the new pattern mining
problem.

• Propose three interpretable classifier models that use
the mined HUG patterns as features for supervised
learning. A rigorous comparative evaluation of the
proposed models against the state-of-the-art ensemble
and interpretable classifier models on 40 benchmark
datasets is also made.

• Assess the proposed models on three dimensions:
(1) prediction quality performance on diverse classifier
measures such as accuracy, F1, AUC, H-measure,
and logistic loss, (2) computational performance, and
(3) interpretability measures.

• Present case studies in finance and healthcare domains to
demonstrate the interpretability aspects of the proposed
interpretable classifier models.

The rest of this paper is organized as follows. We review
the literature in section II and present the key notations
and definitions in section III. The proposed high utility
gain pattern mining methods and interpretable learning
models are presented in section IV. A rigorous experimental
evaluation of the proposed ideas onwide variety of supervised
learning problem are made in section V. Illustrations of the
interpretability aspects of the model are given in section VI.
Discussions on theoretical and practical implications are then
made in section VI. Finally, the paper concludes with a
discussion of the limitations and future research directions.

II. RELATED WORK
Our work lies at the intersection of two distinct streams
of research literature, namely, high utility itemset mining,
and interpretable machine learning. We, therefore, present a
review of key research works that are related to the proposed
study.

A. HIGH UTILITY ITEMSET (HUI) MINING
High Utility Itemsets (HUI) [24] are itemsets that use a
notion of decision makers’ utility in place of occurrence
frequencies to mine interesting patterns. The decision mak-
ers’ utility is defined as a function of the quantity of items
purchased and the profitability of items. Unlike frequent

itemsets, a high utility itemset does not satisfy downward
closure property. Hence, they are computationally harder
than frequent itemsets. Numerous algorithms have been
proposed in the literature to efficiently mine HUIs: HUI-
Miner [24], FHM [29], EFIM [30] HMiner [31]. Several
variants of the basic HUI mining problem have also been
extensively studied in the literature. These variants include:
On-shelf patterns [32], sequential utility patterns [33], high
average utility patterns [34], top-k utility patterns [25], [35],
and HUIs with negative utilities [36] and multiple utility
thresholds [37].
The existing HUI methods and their variants primarily

consider unlabeled transaction data as primary input for
discovering patterns. They do not consider supervised labels
(or outcome variable) as part of the mining process.
Therefore, a direct application of the HUIs to a supervised
learning problem would not help uncover patterns that are
useful for supervised learning. Besides, no prior work has
explored the use of HUIs for supervised learning problems.
This paper makes a first attempt and presents a novel
approach to effectively exploit the supervised label informa-
tion and then discover a new class of patterns (named, High
Utility Gain patterns) that aid the downstream supervised
learning task. The proposed approach, as we demonstrate
in our experimental results section, offers superior learning
performance as well as interpretability.

B. INTERPRETABLE MACHINE LEARNING
While there is no mathematical definition of interpretability,
it is commonly defined as the degree to which a human
observer can understand the cause of a decision [38].
Interpretability in ML can be achieved either with inherently
interpretable models or via post-hoc explanations generated
using surrogate explainable models [15], [39]. A comprehen-
sive survey of explainable models can be referred to in [40],
[41]. We limit our review to the inherently interpretable
models that are closely related to the current research study.

Table 1 provides a comparative analysis of interpretable
machine learning models. The analysis is performed on
six aspects: (a) nature and type of benchmark data used,
(b) underlying models and data transformations performed as
part of feature engineering, (c) nature of interpretable models
used (e.g. rule-based, regression-based), (d) outcome variable
supported (e.g. binary, multi-class), (e) model assessments
considered, and (f) deployment related factors.

Supervised Assisted Feature Extraction (SAFE) [9] per-
forms automated feature engineering by relying on advanced
blackbox models such as random forest and gradient boost-
ing. Their approach creates transformations of numeric and
categorical variables using Partial Dependence Plot (PDP)
profiles and hierarchical clustering. The transformed data is
then used to build an interpretable model. SAFE model is
tested on 30 different binary classification datasets with no
missing values. The performance of the model is assessed
using AUC measure. The key limitation of the method is that
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TABLE 1. Comparative analysis of interpretable machine learning models.

it does not consider feature interactions. The method is also
computationally expensive as it uses Hierarchical Clustering
(HC) as part of feature engineering. The time complexity of
the HC is at least quadratic on the size of the data. We also
demonstrate through our experimental evaluation that the
scalability of the method is poor.

Dumitrescu et al [15] present Penalized Logistic Tree
Regression (PLTR). The algorithm primarily uses rules
extracted from short-depth decision trees as predictors in
a penalized logistic regression model. The authors evaluate
their approach on 4 credit scoring datasets and demonstrate
that their interpretable model offers performance comparable
to that of random forest. The authors also show that PLTR

avoids overfitting prevalent in non-linear logistic regression
(with quadratic and interaction terms) by capturing only the
relevant feature interactions.

Liu et al [16] present INterpretable Automated Feature
ENgineering (INAFEN) that extends the core ideas presented
in SAFE and PLTR. More specifically, INAFEN transforms
features using decision trees and then mines feature interac-
tions using association rules. It also predicts soft target using a
black-boxmodel. Subsequently, a logistic regressionmodel is
built on the transformed features and the predicted soft target.
Their model is evaluated on 10 different binary classification
datasets using a variety of performance measures (AUC, F1
measure, and Brier score). One of the key limitations of
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the model is its sensitivity to the itemset and rule mining
thresholds, and the consequent computational overhead.
We support our claims through experimental evaluation of our
approach against INAFEN on diverse performance measures.

Associative classifiers such as Classification Based on
Associations (CBA) [19], Classification based on Multiple
Association Rules (CMAR) [20], and Classification based on
Predictive Association Rules (CPAR) [21] apply constrained
association rule mining using support-confidence framework.
The constraints limit rules with class label as the consequent.
These methods suffer from multiple issues: (a) support-
confidence framework is limited in capturing interesting
rules that influence classifier performance, and (b) generate
a large number of rules that affects the readability and
interpretability. SigDirect [23] learns statistically dependent
rules using Fisher’s test as a significance measure. The
method also does not require setting minimum support and
minimum confidence thresholds. The authors evaluate their

TABLE 2. Notations.

approach on 20 different datasets against multiple associative
and rule based methods.

Wang and Rudin [27] propose Falling Rule Lists (FRL)
that generates an ordered list of if-then rules using a
Bayesian approach. The approach is highly interpretable
and customized for a healthcare application that predicts
patient re-admissions. The method is designed for better
interpretability. But, the performance of FRL is not at par with
ensemble models.

Our work aims to explore a novel intepretable learning
approach that is distinct from decision trees, rule lists, asso-
ciative classifiers or ensemble model based feature extraction
commonly studied in the literature. More specifically, our
work investigates the use of a variant of high utility patterns
for interpretablemachine learning.We introduce the notion of
utilities for a supervised learning problem, adapt HUI mining
methods for the learning task, and show that our approach
can be valuable for interpretable machine learning through
rigorous experimental evaluation and case studies. The key
differences of our approach against the related interpretable
machine learning models are summarized in Table 1.

III. NOTATIONS AND DEFINITIONS
We first describe the key notations used throughout this
paper. We also introduce several definitions that are related to
data transformation, utility patterns, and supervised learning
process. The summary of the notations can be referred to in
Table 2.

Let D represent a database that contains the input
supervised learning examples. Each observation or instance
in D contains predictors and a known class label, (x(i), y(i)),
where i refers to a specific example and its value ranges from
1, 2, . . .m. Let C = {0, 1, . . .} denote the distinct set of class
labels. Then, y(i) ∈ C is the target or label of a particular data
instance i. Let the training and test instances of D , x i, and yi

be denoted as D tr , D tst , x i,tr , x i,tst , yi,tr , yi,tst . Each x(i) has a
set of d predictors or features. Let x if denote the feature f for
a given instance x i.
The examples in D can be viewed as a set comprising X

matrix of sizem×d and a vector of class labels y.Without loss
of generality, we apply a label encoding transformation of the
target variable and assign integer labels in descending order
of the size of examples in each class. Intuitively, we assign

TABLE 3. Sample supervised learning database (D).

126092 VOLUME 12, 2024



S. Krishnamoorthy: Interpretable Classifier Models for Decision Support

TABLE 4. Database with encoded features.

greater importance to minority classes. This is in line with
most real-world problems where the data is often highly
imbalanced (e.g. fraud detection) and deciphering patterns
from minority classes have a greater practical significance.

For the illustration, let us consider a simple credit lending
decision problem. In this problem, the predictors for a
specific customer (x(i)) could include variables such as age,
income, gender, number of personal loans, and number of
credit cards. The target variable (y(i)) is whether the selected
customer has a good or bad credit (1 or 0). A sample classifier
learning database D is given in Table 3.
The proposed HUGmodel performs quantile discretization

(of themin-max normalized numerical) and one-hot encoding
(of the categorical) predictor variables as part of initial data
preparation. Let the number of bins used for discretization be
denoted asB. Let cat[x(i)f ] denote the specific encoded bin or
category of feature (f ) for example i. Let brf denote the bin
ranges for feature f . For the running example withB = 4, the
bin ranges of the min-max normalized variables x1 and x2 are:
br1 = [(0, 0.269), (0.269, 0.5), (0.5, 0.856), (0.856, 1.0)],
br2 = [(0, 0.0893), (0.0893, 0.179), (0.179, 0.5), (0.5, 1.0)].
The discretized and one-hot encoded version of the

database D is shown in Table 4.
Let the correlation coefficient between the predictors

and target variable (y) be denoted as σfy. For the running
example, the correlation values (computed from Table 4)
are σ1y = 0.7824, σ2y = −0.3390, σ3y = 0.6599, σ4y =
0.1099, σ5y(F) = 0.25, σ5y(M ) = −0.25.

Normalized Mutual Information (NMI), a commonly
used information theoretic concept, measures the mutual
dependence between two variables and ranges between 0
(no mutual dependence) and 1 (perfect association). Let
the NMI between the categorical predictors and the target
variable y be denoted asNMI (xf , y). For the running example,
NMI (x5, y) = 0.0478.
Definition 1: Each predictor xf is assigned an external

utility value, referred to as EU (xf ). In the supervised learning
context, we propose the use of feature correlations (σfy)

TABLE 5. Item external utilities.

and Normalized Mutual Information (NMI ) as proxies for
predictor utilities. Additionally, the class weights, denoted as
wc, are considered. More specifically, the external utilities are
computed for each feature and class c ∈ C as:

EU (xf , c) = abs(σfy) ∗ wc, if f is numerical

= NMI (xf , y) ∗ wc, o.w. (1)

The default class weights (w) for each class is assumed as 1.
Our model implicitly captures class level variations through
ordinal transformation of the target variable based on the size
of examples in each class. This obviates the need for explicit
class imbalance treatments with sampling or class weighting
schemes. Our model incorporates the class weighting scheme
to offer additional flexibility to handle unique class specific
requirements. For the running example, the computed EU
values are shown in Table 5.
Definition 2: The discretized (or encoded) item xf ∈ Ti

is assigned an internal utility value, referred to as IU (xf ,Ti).
The internal utilities for numeric predictors are computed as:

IU (xf ,Ti) = brf [cat[x
(i)
f ]].right, if σf > 0

= brf [b− cat[x
(i)
f ]+ 1].right, o.w. (2)

IU (x1,T1) = br1[cat[x
(1)
1 ]].right = 0.269 for the running

example. Similarly, IU (x2,T5) = br2[4 − cat[x(5)2 ] +
1].right = br2[4− 1+ 1].right = br2[4].right = 1.0.
Note that the bin edges are chosen in reverse order

for negatively correlated features. This heuristic primarily
enables identification of the right set of patterns through
utility mining for the downstream learning task.

The internal utilities for the one-hot encoded categorical
predictors are computed as:

IU (xf ,Ti) = 1, if σfy > 0

= 0.05, o.w. (3)

The utility weighting scheme in equation 3 gives higher
weights to the positively correlated feature. This allows
extraction of relevant utility patterns for the downstream
learning task. For the running example, the x5 = F has a
positive correlation, and hence its internal utility will be set
to 1. On the other hand, the transactions with x5 = M will be
assigned an internal utility value of 0.05.
Definition 3: The utility of an item xf ∈ Ti, denoted as

U (xf ,Ti), is computed as the normalized product of external
and internal utilities of items in the transaction, Ti. That is,

U (xf ,Ti) =
1
Zc

EU (xf , c) · IU (xf ,Ti) (4)

c is the class label of the transaction Ti. The denominator
Zc is the normalizing constant and is computed as the
maximum of the numerator values over all the features for
each class c (∈ C).

The discretized database D is transformed to a transaction
list format with associated utility information for mining util-
ity patterns. The items in the transaction list are the encoded
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TABLE 6. Transaction database with internal utilites.

features in our model. That is, I = {x11, x12 . . . xdB}, where
B is the number of discretized bins or categories of individual
features (1..d). A transaction Ti = {tl |l = 1, 2 . . . ni, ∀tl ∈
I }, where ni is the number of items in transaction Ti. The
transactional data for the running example is shown in
Table 6. Using the computed internal and the external utilities,
overall utilities of each item in each transaction are then
computed by applying equation 4. The resulting transaction
database with utility information (denoted as D̈) is used for
utility mining.
Definition 4: The utility of an itemset X in transaction Ti

(X ⊆ Ti) is denoted as U (X ,Ti), and is defined as:

U (X ,Ti) =
∑
xf ∈X

U (xf ,Ti) (5)

Definition 5: The utility of an itemset is denoted as U (X ),
and is defined as:

U (X ) =
∑
X⊆Ti

U (X ,Ti) (6)

Definition 6: Let us denote the information gain of an
itemset as IG(X ). This is a standard measure used in
information theory and machine learning. It is computed as
the difference in entropy at the parent node (i.e. the itemset
X ’s immediate ancestor) and the current node (X ).
Definition 7: High Utility Itemsets (HUI ) are set of item-

sets whose utility threshold values are above an user-defined
utility threshold minU . More formally,

HUI = {X : U (X )|X ⊆ I ,U (X ) ≥ minU} (7)

Definition 8: Top-K High Utility Itemsets are the set of
all k-HUIs with the highest utility values, and denoted as
topkHUI .
Definition 9: Let the pattern length and the user-defined

maximum HUI pattern length be denoted respectively as
HUIl and L .

If a user-defined maximum pattern length is set, our model
generates only the HUIs whose lengths are less than or equal
toL . Let the length constrained set of top-kHUIs be denoted
as topkHUIL .
Definition 10: High Utility Gain (HUG) patterns are the

set of itemsets in topkHUIL that satisfy the user-defined
information gain threshold value, G . That is,

HUG = {X |X ∈ topkHUIL and IG(X ) ≥ G } (8)

The original database D is transformed using the mined
HUG patterns, denoted as D̃ , for interpretable machine
learning. We describe our complete HUG modeling steps
next using the key notations and definitions introduced in this
section.

IV. HUG-IML: AN INTERPRETABLE CLASSIFIER MODEL
The proposed High Utility Gain (HUG) Interpretable
Machine Learning (IML) model consists of seven broad
stages. The overall process workflow of the proposed model
is shown in Figure 1. The individual stages of our model are
described in the following pages.

For the running example, let us assume B = 4, L =

1, G = 0.2 for the three parameters used in our model.

A. STAGE 1: PREPARE DATA
Our model takes input learning examples D as input. Basic
data preparation operations performed onD include: deletion
of rows with a large number of missing values, removal
of duplicate rows, missing value replacement, and label
encoding of target variable. Missing values are replaced using
median (numerical features) and mode (categorical features).
For the target variable y, labels or integer values are assigned
in descending order of the size of the examples in each class,
c ∈ C .

After the basic data preparation, a stratified sample of train
and test data are generated. In our experiments, we used a
stratified, ten-fold cross-validation to ensure robustness of
our model results.

TABLE 7. Transaction list data with utility information.

B. STAGE 2: CONSTRUCT TRANSACTIONS WITH UTILITY
FOR PATTERN MINING
In the second stage, our model applies discretization and
one-hot encoding of features. For discretiztion, a quantile
binning is applied using the user-defined number of bins B
without considering the labels y. Future work may consider
alternate discretization methods designed for supervised
learning task [42]. For the sample database shown in Table 3,
the discretized and one-hot encoded output is given in Table 4.
The internal, external, and overall utilities of items

(discretized or one-hot encoded features) are computed using
equations 1 to 4. For the running example, the computed
internal utility(IU ) values at the transaction level are shown
in Table 6.
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FIGURE 1. HUG-IML process Workflow.

The transaction level overall utility information (D̈ tr ) is
computed using equation 4 and an illustration for the running
example is provided in Table 7.

C. STAGE 3: MINE HUG PATTERNS
We mine the HUG patterns from the training data and then
transform the test data using the discovered patterns in
subsequent steps. The proposed algorithm for mining HUG
patterns is described in the following pages.

High utility itemset mining requires specification of the
minimum utility (minU ) values. However, the minimum
utility values (minU ) are often difficult to determine for
individual datasets. Hence, we use a top-k HUI mining
algorithm (THUI [25]) and adapt it to mine HUG patterns.
The k value in our model is specified as the function of the
pattern length L (default value is set as

(
|I |
L

)
). We applied the

following major changes to the THUI algorithm for mining
HUG patterns introduced in this paper:
1) Threshold raising strategies. The proposed HUG

model imposes pattern length constraints (L ). Our
model handles its impact on threshold raising strate-
gies used in THUI (EUCS and LIU), by applying
suitable constraints. More specifically, EUCS strategy
is enabled if and only if L >= 2. Similarly, the
LIU strategy is enabled if and only if the length is
unconstrained.

2) Information gain. The proposed model computes
information gain measure during the mining process.
We first compute entropy at each node during the depth
first traversal of the THUI algorithm. The information
gain value is then computed as the difference in entropy
at the parent and the child nodes. It is to be noted that
at each level of the THUI search tree exploration, only
binary splits are made (given the binary nature of the
items). This allows inferring entropy values of both the
branches of the child node by visiting just one branch
of the search tree.

3) Additional pruning rules. During the search tree
exploration, the pattern length (L ) and minimum gain
constraints (G ) are applied to limit the search space.

4) Duplicate patterns. The proposed HUG mining
algorithm filter patterns that occur in identical set of
transactions. It retains just one of the patterns with
higher information gain. The dropped patterns are
likely to be part of the Rashomon set [11] and may
potentially be used for generating alternate model
explanations.

For the running example with L = 1 and G = 0.2, the
HUG mining algorithm generates three HUG patterns of size
1: (1) x14, (2) x33, and (3) x22. In the original data space, the
generated patterns are equivalent to: x1 = [7.524−8.1], x3 =
[4.7− 6.773], x2 = [2.225− 2.351].
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TABLE 8. Binary HUG pattern matrix.

D. STAGE 4: BUILD CLASSIFIER MODEL
The mined HUG patterns are used to create a binary HUG
pattern matrix (D̃ tr ). The resulting binary matrix is shown in
Table 8. In the actual implementation, theHUGpatternmatrix
is stored in sparse binary matrix format. The pseudo-code of
the key steps of our interpretable classifier model is given in
Algorithm 1.

The generated binary HUG pattern matrix is used as
an input for classifier modeling. We used three simple
models, namely, Binomial Naive Bayes (BNB), Logistic
Regression (LR), and L1 regularized Logistic Regression
(LR-L1). We refer to the logistic regression model built
on HUG pattern matrix as HUG-LR. The HUG-LR model
primarily fits an additive model over the HUG patterns of
different lengths. Mathematically,

y = β0 +

L∑
l=1

|HUGl |∑
p=1

βlp ∗ Xlp + λ ∗ ||β||1 (9)

where HUGl ∈ HUG|∀Xp ∈ HUG, |Xp| = l and Xlp ∈
HUGl . βlp is the learned coefficient for a HUG pattern
of specific length l (Xlp). The second term in the above
expression is the L1 regularization that is used to select sparse
set of patterns and control overfitting. The default value of the
regularization parameter (λ) is set to 0 (1) for the HUG-LR
(HUG-LR-L1) models.

The size of L , as we show through rigorous experimental
evaluation, is very small (≤ 2) for most real-world problems.
Besides, the size of HUG is likely to be small in comparison
to standard non-linear LR models that require exhaustive
enumeration of higher order terms. This is due to the fact
that our model can effectively capture piece-wise linear
relationships across predictors and target variables through
novel application of utilities. It also makes our HUG model
less prone to overfitting and help achieve high performance,
scalability, and interpretability.

E. STAGE 5: CONSTRUCT TRANSACTIONS FOR TEST DATA
The transaction construction process for the test data is
similar to stage 2 of our model (refer to section IV-B). The
key differences are: (1) the discretizer and one-hot encoding
models fitted on training data are used for transformation, and
(2) no utility information is computed. The output generated
will resemble Table 7 with just columns 1 and 2.

F. STAGE 6: EVALUATE MODEL ON TEST DATA
The stage six of our model takes three inputs (refer to
Figure 1): the transaction list data generated from the test

data, HUG patterns mined from the training data, and the
classifier model. The first two inputs are used to construct
the binary HUG pattern matrix (D̃ tst ). The classifier model
is then applied on D̃ tst to predict outcomes. The model
performance is comprehensively assessed on three dimen-
sions: (1) quality of predictions using five diverse measures
used in the literature: (2) computational performance, and (3)
quantitative interpretability measures.

G. STAGE 7: INTERPRET MODEL
The model interpretation is carried out at three levels. First,
the overall model performance is assessed by analyzing
probability score distributions, margin distributions [44],
and HUG profiles. Second, class-wise analysis is conducted
to assess class-level HUG patterns to generate model
descriptions. One and two dimensional HUG profile analysis
is introduced for generating model descriptions. Third, the
individual instances are examined to understand the factors
that drive prediction outcomes. Counterfactual analysis may
also be conducted to study the factors that need to be changed
for realizing alternate (or desired) outcomes. We illustrate the
interpretability aspects of the proposed model with the help
of three case studies in section VI.

V. EXPERIMENTAL RESULTS
In this section, we first explain the details of our experiments
in terms of the datasets used, model implementations,
comparative ensemble models, related interpretable models,
and performance measures. Subsequently, we assess the
performance of our model and compare it with other related

Algorithm 1 HUG-IML Classifier
Input:D : input transactional database

B : number of bins (computed from D tr )
L : maximum pattern length (default: 1)
G : information gain threshold (default: 1e-4)

Output: IML classifier model

1: Scan D and prepare data //stage 1
2: Generate train and test data D tr , D tst

3: qdModel← Quantile-discretizer(D tr , B) //stage 2
4: oheModel← One-hot-encoder(D tr )
5: Compute EU , IU , and U
6: Build transaction list with utility D̈ tr (e.g. Table 7)
7: HUG←Mine-HUG(D̈ tr , L , G ) //stage 3
8: D̃ tr

← construct(D̈ tr , HUG) //stage 4
9: hugModel← Build-Model(D̃ tr )
10: Discretize test data: qdModel(D tst ) //stage 5
11: One hot encode test data: oheModel(D tst )
12: Build transaction list D̈ tst

13: D̃ tst
← construct(D̈ tst , HUG) //stage 6

14: Apply model on test data: hugModel(D̃ tst )
15: Evaluate model performance
16: return hugModel
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TABLE 9. Description of benchmark datasets.

TABLE 10. HUG-model parameters.

ensemble and interpretable models. We then share our key
observations and insights.

A. EXPERIMENTAL DESIGN
In our experiments, we used forty benchmark datasets with
varying characteristics in terms of its size, number of predic-
tors, and the mixture of numerical and categorical attributes.
Thirty of these datasets pertain to binary classification tasks.
The imbalanced ratio of the datasets range from a low of 2
(mushroom dataset) to 579 (for cc wordline ULB dataset).
The remaining ten datasets are multi-class datasets with
up to 26 distinct classes. The datasets were obtained from
the UCI machine learning repository [45] and Kaggle.1

1https://kaggle.com

The characteristics of the benchmark datasets are shown in
Table 9. The fourth column in the table gives the total features
and the count of nominal or categorical features. The last
column gives the size of the class with the least number of
examples.

The proposed model was implemented using python
scripts.2 We also used standard open source machine learning
packages (sklearn,3 xgboost4) for the implementation and
comparison with the state-of-the-art ensemble models.

The HUG patterns were mined by adapting the THUI [25]
algorithm written in Java programming language. The mined
HUG patterns were used to transform the train and test data
as described in section IV. The transformed data matrices
(i.e. D̃ tr , D̃ tst )) were highly sparse. More specifically, the
sparsity of the HUG pattern transformed train (test) matrices
(D̃) were found to be about 13% (12%) with a standard
deviation of about 12% (11%) across all benchmark datasets.
Therefore, to optimize memory utilization, a sparse matrix
representation was used in our implementation though the
running example (section IV) was illustrated with a dense
matrix format (Table 8).

The comparative evaluation of the proposed three HUG
models (HUG-BNB, HUG-LR, and HUG-LR-L1) were
made against both the baseline (including ensembles) and
interpretable classifier models. For the baseline models,
we used: Logistic Regression (LR), Random Forest (RF)
and eXtreme Gradient Boosting (XGB). For the interpretable
models, we used: SAFE [9], and INAFEN [16]. The publicly
available code shared by the authors were used for the
comparative evaluation.

A k-fold stratified cross-validation was performed to
ensure robustness of the results. The k value was set to

2https://github.com/srikumar2050/hugiml
3https://scikit-learn.org/stable/
4https://xgboost.readthedocs.io/en/stable/
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10 or the size of the class with the least number of examples
(|Cm|). The learning algorithms such as Naive Bayes,
Boosting, and Random forest do not generate well-calibrated
probabilities [46] that are of importance to human decision
making [47]. We, therefore, applied calibration methods to
obtain well-calibrated probabilities. A sigmoid (isotonic)
calibrationmethod is applied to the small (large) datasets. It is
to be noted that the isotonic calibration method is known to
overfit on smaller datasets [46] and hence we applied sigmoid
calibration for training data with less than 500 records.

The optuna library5 was used for hyperparameter tuning
and optimization. Our HUG models require specification of
three parameters: (1) number of bins (B), (2) maximum
HUG pattern length (L ), and (3) information gain threshold
value (G ). A grid search over a range of these parameter
values were performed using the optuna library. The final
parameters selected for our experiments are given in Table 10.
The hyperparamter tuning was also done for the related
interpretable methods. For example, INAFEN [16] requires
specification of support and confidence threshold values.
A grid search was performed for support (0.005-0.15) and
confidence (0.5-0.9) thresholds and the best values were
chosen based on validation performance.

The overall classifier model performance was assessed
on three dimensions: (1) quality of predictions using
five diverse classifier measures: Accuracy, F1, AUC,
H-measure [43], and log loss, (2) computational performance,
and (3) interpretability measures. In line with past research
studies [9], [16], wemeasure the interpretability as the inverse
of the number of model parameters (complexity). In the
case of ensemble models such as random forest and gradient
boosting, the number of parameters are based on the number
and depth of trees, threshold for each of the nodes (2) and
the weights of child nodes (2) [16]. A standard RF (XGB)
model with 100 (10) trees and max depth of 3 (6) will have
3200 (2560) parameters. A more complex model with a large
number of parameters are difficult to interpret by humans.
The highly interpretable models, therefore, are expected to
use a lower number of parameters without degrading quality
of predictions and computational performance.

B. PERFORMANCE COMPARISON WITH ENSEMBLE
MODELS
In the first set of experiments, we compare our models
(HUG-BNB, HUG-LR, and HUG-LR-L1) against three
baseline methods: LR, RF and XGB. We assess the average
rankings obtained by each of these six models on diverse
classifier measures (Accuracy, F1, AUC, H-measure, and
logistic loss) on forty benchmark datasets. The results of
our experiments are shown in Table 11. The best values are
marked with a † symbol. The results reveal that the proposed
HUG-LR model offers the best overall average rankings. The
XGB and RF obtained results that are closer to the HUG-
LR model. The detailed performance results of the proposed

5https://optuna.org/

TABLE 11. Mean (std deviation) of rankings across all benchmark
datasets.

FIGURE 2. Execution time performance across all benchmark datasets.

HUG-LR and ensemble models (RF and XGB) are shown
in Tables 12 and 13. It is evident that the proposed HUG
model offers identical performance results (and superior
results in a few cases) compared to a more complex ensemble
models. We also conducted Wilcoxon rank sum tests for
equality of performance measures against HUG-LR (HLR)
and ensemble models. We did not find sufficient evidence to
reject the null hypothesis at a significance level of 0.05. This
indicates that the proposed HLR model offer performance
comparable to that of the ensemble models.

We also assessed the computational performance of our
model against the best performing ensemble model. The
results of our experiments are shown in Figure 2. The boxplot
shows the overall distribution of the execution times (in
seconds) across forty benchmark datasets. The results clearly
reveal that our HUG-based model do not incur additional
execution overhead in comparison to advanced ensemble
models across the forty benchmark datasets studied.

C. PERFORMANCE COMPARISON WITH INTERPRETABLE
MACHINE LEARNING MODELS
The performance of our HUG-based model was then
compared against the state-of-the-art interpretable classifier
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TABLE 12. Classifier performance evaluation of HUG-LR, RF, and XGB models (Accuracy, F1 and AUC measures).

models: SAFE [9] and INAFEN [16]. It is to be noted that
INAFEN [16] extends the basic ideas proposed in SAFE [9]
and PLTR [15] and is the most recent and state-of-the-art
interpretable model.

The SAFE [9] was found to be computationally expensive.
Hence, we first analyzed the performance of all three
interpretable methods (HLR, SAFE, and INAFEN) on a
subset of 15 smaller benchmark datasets. The results of
our experiments on prediction quality and computational
performance are shown in Figure 3. It is evident that
the HLR offers superior performance on both prediction
quality and computation against the other two related
methods. The prediction quality performance (except log
loss) of INAFEN was much closer to that of HLR but the
computational performance was observed to be poor. The
higher computational overhead in INAFEN is due to the use
of occurrence frequencies and the sensitive nature of support
and confidence thresholds. The proposed HLR method use
the notion of utilities and explores patterns that are useful

for downstream supervised learning task. The experimen-
tal results clearly reveal the value of the utility based
approach.

We also compared the most recent INAFEN model against
our method on all thirty binary classification datasets. It is
to be noted that INAFEN and SAFE supports only binary
classification tasks. The results of our experiments are shown
in Figure 4. It is evident that the HLR method offer better
performance over INAFEN.

The Wilcoxon rank sum tests for the performance of HLR
and other interpretable models are shown in Table 14. The
results reveal that the performance improvement of HLR over
SAFE was statistically significant at 5% significance level
across all the performance measures. While HLR also shows
better performance over INAFEN on Accuracy, F1, AUC,
and H-measure, the results were not found to be statistically
significant. On other performance measures such as logistic
loss, HLR’s improvement over INAFEN was statistically
significant.

VOLUME 12, 2024 126099



S. Krishnamoorthy: Interpretable Classifier Models for Decision Support

TABLE 13. Classifier performance evaluation of HUG-LR, RF, and XGB models (H-measure and Log loss).

TABLE 14. Wilcoxon rank sum test: HLR vs other interpretable models.

D. INTERPRETABILITY ASSESSMENTS
We perform model interpretability evaluation against an
ensemble model (XGB) and an interpretable model,
INAFEN [16]. The normalized interpretability score of the
three models are shown in Figure 5. The normalized score
is computed by treating the baseline LR model as the
best interpretable model (with a perfect score of 1). The
results clearly indicate that the proposed HLR model offer

higher interpretability over state-of-the-art ensemble and
interpretable models. We also conducted Wilcoxon rank sum
test to check the statistical significance of improvements
offered by the interpretable models (HLR and INAFEN).
The hypothesis tested was H0: The interpretability levels of
HLR and INAFEN are equal and H1: HLR offers greater
interpretability over INAFEN [16]. The observed p-value was
0.0246 signifying that the interpretability improvements are
statistically significant at 5%.

VI. CASE STUDIES
Three case studies in healthcare and finance domains are
presented to demonstrate the interpretability aspects of the
proposed models. The first case study is based on a dataset
shared by National Institute of Diabetes and Digestive and
Kidney Diseases [45].6 The objective is to predict the onset of
diabetes based on diagnosticmeasures. The second case study
is based on a direct marketing campaign data collected by a

6https://data.world/uci/pima-indians-diabetes
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FIGURE 3. Comparative analysis of SAFE [9], INAFEN [16], and HUG-LR (HLR) interpretable classifier models on diverse prediction
quality and computational performance measures.

FIGURE 4. Comparative analysis of INAFEN [16] and HUG-LR (HLR) interpretable classifier models on diverse prediction quality and
computational performance measures.

Portugese banking institution [45].7 The objective of the bank
was to predict the success of their tele-marketing campaign

7https://archive.ics.uci.edu/dataset/222/bank+marketing

for term deposit subscriptions. The third case study pertains
to FICO explainable machine learning challenge8 where the

8https://community.fico.com/s/explainable-machine-learning-challenge
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FIGURE 5. Normalized interpretability score of XGB, INAFEN [16] and
HUG-LR (HLR) models.

objective is to predict whether an applicant will repay their
Home Equity Line of Credit (HELOC) account within two
years.

A. CASE 1: PREDICT ONSET OF DIABETES MELLITUS
This case involves the use of female patient data who are
at least 21 years of age and are of Pima Indian heritage.
The data consists of 8 diagnostic measure variables and
1 outcome variable. The diagnostic measures captured were:
number of pregnancies, glucose levels, blood pressure, skin
thickness, insulin, BMI, diabetes pedigree function, and age.
The outcome variable is whether the patient had diabetes or
not. The data has 768 patient observations and 268 of them
are known to have diabetes mellitus condition. The objective
is to train a model based on this data and determine the factors
that influence the onset of diabetes mellitus disease.

We applied the proposed HUGmodels on this dataset (B8)
with B = 7, L = 1, and G = 5e-3. Our model generated
on an average 24 patterns across all the 10 cross-validation
folds. The performance results of our model was comparable
to that of advanced ensemble models (refer to Table 12).
Figure 6 gives a scatter plot (1D HUG profiles) of

top-30 instances with highest prediction probabilities. The
plot indicates whether a particular instance has a specific
pattern or not. One can observe clear differences in observed
patterns for patients with and without diabetes.

The class level patterns (with predicted probabilities above
75%) are shown in Figure 7. One can clearly observe distinct
differences in the age, bmi, bp, and other diagnostic measure
values of patients. While there are some observed overlap in
patterns, the higher values of age, bmi, and pregnancies are
observed in the case of patients with diabetes. The profiles
can be generated at different predicted probability values to
study the distinct and overlapping patterns across classes to
design suitable patient intervention strategies.

An illustrative individual patient level prediction and the
observed explanatory pattern is shown in Figure 8. The
differences in patterns discovered by the model is in line with
the expected diagnostic profiles of diabetic and non-diabetic
patients. The generated profiles can also be easily extended to

generate counterfactual explanations to help a patient achieve
desired outcomes.

B. CASE 2: TERM DEPOSIT SUBSCRIPTION IN A
PORTUGESE BANK
A Portugese banking institution has conducted a direct
marketing campaign for term deposit subscriptions. Based
on the campaign, the bank had collected information on
15 different variables. These variables can be broadly catego-
rized as: demographics, credit performance, past and current
campaign performance, and socio-economic variables. The
data (B28) has 41,188 client observations and 4,640 of
them belonged to those who have successfully subscribed
to term deposits. The objective of the bank was to use an
analytical model to predict factors that influence term deposit
subscriptions.

Our model was applied with B = 11, L = 2, and
G = 3e-3. Figure 9 gives the scatter plot of top-30 instances
with highest predicted probabilities. It is evident that a
fewer set of patterns are required to explain non-subscription
outcomes. The higher 3-months euribor rate is associated
with non-subscription of term deposits. Similarly, a lower
3-months euribor rate contributes to higher term deposit
subscription outcomes. This finding corroborates earlier
findings in the literature [48]. Other patterns discovered by
the model also aligns well with the past observations on
feature importance analysis on the bank marketing data.

Figure 10 provides two dimensional HUG profiles. The
figure primarily depicts the discovered patterns of length
two using a relationship plot. The ‘x’ (closed ‘o’) symbol
indicates instances belonging to successful (unsuccessful)
subscription outcomes. All the patterns that pertain to a
specific instance are marked in the same color. A jitter is
applied to display all the instances that share a common
pattern.

The class profiles and individual instance predictions
can also be generated as illustrated in the earlier diabetes
prediction case study. These plots can help a decision maker
easily explain prediction outcomes. It also allows a decision
maker to identify necessary intervention strategies to achieve
improved term deposit subscription outcomes.

C. CASE 3: HOME EQUITY LENDING DECISIONS
The introduction of data protection acts such as General Data
Protection Regulation (GDPR) and Equal Credit Opportunity
Act (ECOA) and their emphasis on ‘right to explanation’
has made it imperative for financial institutions to invest in
explainable and more accurate credit scoring models. The
FICO explainable machine learning challenge is primarily an
attempt to leverage community skills and explore innovative
explainable models in the credit scoring domain. This case
uses the Home Equity Line of Credit (HELOC) dataset that
was shared as part of the FICO challenge to demonstrate the
utility of the proposed models.
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FIGURE 6. Pima DM Case: Overall pattern analysis (30 instances).

FIGURE 7. Pima DM Case: Class profiles.

The data available for this study has information about
10,459 (5,000) real home owners (good) credit applications
described on 23 different variables. The variables can be
broadly categorized as estimated risk, length of applicant’s
credit history, delinquency, inquiries, and balances.

We filtered records with no bureau records (identified with
a special flag of -9). We replaced other missing value cases

FIGURE 8. Pima DM Case: Individual instance explanations.

(marked with a special flag of -7 and -8) with median column
values. The final dataset used in our experiments had 9,861
client observations with 4,733 of them labeled as the ones
with good credit. Our HUG model was then applied on the
processed dataset with B = 8, L = 1, and G = 1e-3.
Our model discovered 75 patterns (on an average across all
10 cross-validation folds). The performance of the proposed
model against the ensemble models (RF and XGB) can be
referred to in Table 12.

Figure 11 gives the class profiles of good and bad credit
clients whose predicted probabilities are more than 94%.
It is evident that good credit customers had higher estimated
external risk, higher average number of months in file,
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FIGURE 9. Bank Marketing Case: Overall pattern analysis.

incurred lower revolving burdens, and completed higher
number of satisfactory trades. These findings are in line
with prior interpretability analysis that explored complex
models [10].

D. DISCUSSIONS AND IMPLICATIONS
The foregoing discussions clearly reveal the merits of the
proposed HUG based models for interpretable machine
learning. The model relies on three key parameters (B,
L , G ). The value of the pattern length (L ) was found to be
quite small (≤ 2 for 90% of the datasets studied). It is to be
noted that exhaustive enumeration of patterns of size 2 and
3 can be also very expensive. This paper explored a specific
class of patterns (HUG) to limit the search space and identify
key patterns that aid the downstream supervised learning
task. Rigorous experimental evaluation and illustrative cases
demonstrate the value of the proposed approach in terms of
prediction quality performance, computational performance,
and interpretability.

1) THEORETICAL CONTRIBUTIONS
The paper makes important contributions to the field of
utility pattern mining as well as machine learning. High
utility pattern mining is one of the active areas of research.

Numerous algorithms have been proposed in the literature to
mine several variants of utility patterns. However, there are
limited research studies on demonstrations of the practical
use of utility mining for specific business contexts. This
paper introduced a new class of utility patterns (named
HUG), presented a seven stage HUG-IML process workflow,
and demonstrated how it could effectively be used in
supervised learning problem contexts. Our experiments
primarily focused on binary and multi-class classification
tasks. But, the core ideas can be easily extended to regression
and multi-label learning problems.

The HUG-IML model proposed in this paper allows one
to systematically explore simpler models in the Rashomon
set [11]. The simpler models can be explored by tuning the
three key parameters in the HUG model. For instance, one
could reduce the size of L to explore if an alternate model
descriptions can be generated without significant reduction in
overall model performance. A more systematic investigation
of the search for simpler models will require development of
exact or meta-heuristic search algorithms.

One can also view the proposed idea as a flipped neural
model. In a standard neural model, the neural architecture
is initialized (or fixed) and weights are learnt through
optimization. On the other hand, the proposed model uses a

126104 VOLUME 12, 2024



S. Krishnamoorthy: Interpretable Classifier Models for Decision Support

FIGURE 10. Bank Marketing Case: 2D HUG Profile.

FIGURE 11. Home equity lending case: Class profiles.

additive weighting scheme (i.e. utilities acts as fixed weights)
and learns the best architecture (higher-order interactions)
through pattern mining. The latter approach explored in this

paper makes the model easily interpretable as demonstrated
through this research study.

The existing utility mining algorithms in the literature
are evaluated using synthetically generated utility values on
both real and artificial datasets. The external (internal) utility
values are commonly generated using log-normal (uniform)
distributions [29]. Our novel utility construction mechanism
based on supervised labels allows generation of large-scale
benchmark datasets, assess the efficacy of utility mining
algorithms, and advance the field further.

2) MANAGERIAL IMPLICATIONS
There is a growing need in organizations to build machine
learning models that can generate explanations. The prac-
titioners who use complex models for high performance
often use post-hoc models for explanation. However, prior
research has raised concerns on use of such models and
called for development of new models that are intrinsically
interpretable [6]. This paper presented an approach to
address this need and achieve high interpretability without
compromising overall model performance. It also presented
case studies on diabetes prediction, term deposit subscrip-
tions, and lending decisions. The practitioners can use the
HUG models and the interpretability profiles to generate
rich explanations. They also have the flexibility to explore
alternate model explanations and manage their performance
and interpretability needs by configuring the HUG model
parameters.
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3) LIMITATIONS OF THE STUDY
Our HUG-based classifier model uses three parameters
namely, the number of bins B, maximum pattern length L ,
and information gain threshold value G . While our model
uses certain heuristics for automatic selection of default
parameter values, it may not always produce the best results.
The parameter tuning using grid search is an expensive
process and is one of the limitations of the current study.
The data transformation process used in this work converts
the tabular data to an unordered transaction list format before
HUGpatternmining. This obviates the need formissing value
imputations. But, our current work do not consider these
factors. Our work also doesn’t consider rapidly changing
environments and streaming data that require continuous
model monitoring and management. Another limitation of
the work is the nature of tasks (binary and multi-class
classifications) supported by our model.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
We presented an intrinsically interpretable machine learning
model for classification problems. The model explored
novel HUG patterns to identify specific class of higher
order patterns that aid supervised learning tasks. A seven
stage HUG-IML process workflow was also presented.
The utility of the proposed model was demonstrated
through rigorous experimental evaluation on forty benchmark
binary and multi-class classification datasets. Three case
studies in healthcare and finance domains were described
to illustrate the interpretability aspects of the proposed
HUG models.

As part of the future work, we plan to extend the
HUG model to handle other supervised learning tasks e.g.
regression, ranking, and recommender system problems.
We also plan to investigate the use HUG-based models in
environments where there are very high missing and noisy
values without any imputation mechanisms or treatments.
The proposed approach adapted the THUI algorithm [25]
that relies on simple utility list structure for pattern mining.
More recent algorithms in the literature use advanced utility
list structures (e.g. compact lists) to significantly speed up
the mining process. Future work could explore use of such
advanced methods to achieve further scale in performance for
the supervised learning problems. Another interesting avenue
of research is to examine the applications of sequential
high utility patterns [49] or its variants for problems that
involve use of non-tabular data sources such as images
and text.
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