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A B S T R A C T   

It is now much discussed that Artificial Intelligence (AI) as a General-Purpose Technology (GPT) can resolve the 
efficiency problems of industries, including in pharmaceutical markets where productivity challenges continue in 
costs and time for new drug discovery. But did the COVID-19 pandemic inadvertently accelerate the pace of AI 
adoption in pharmaceutical innovation? We answer this question using novel data on pharmaceutical patents. 
We use two different databases to analyze abstracts of pharmaceutical patents applied in the USA. Topic 
modeling was used to identify patents with technical artifacts and classify them as treated group AI-adopting 
patents. An AI dictionary is used to match AI-related keywords in the patent abstracts. Subsequently, using a 
difference-in-differences research design we observe that both presence and count of AI keywords in pharma
ceutical patents have increased with pandemic. An increase in AI is also related to reduced time taken from 
application to publication of a patent suggesting innovation efficiencies in the industry. Finally, we find that 
results are driven by firms that have already built AI capability in the past. Our results remain consistent with 
various robustness checks, and we conclude by discussing managerial and policy implications of our findings.   

“COVID-19 has fast-tracked the usage of AI in disease identification, 
drug discovery, clinical trials, and predictive forecasting” – 
GlaxoSmithKline1 

1. Introduction 

There has been a rise in the investigation and use of AI and other data 
analytic tools in multiple areas since the outbreak of the pandemic 
(Sipior, 2020).2 The pandemic has affected global health, individuals, 

and firms differently. From an individual's perspective, it is important to 
get timely treatment and effective vaccines in times of high uncertainty 
and evolving virus variants (Muguerza, 2020).3 From a firm's perspec
tive, sustainable innovation has become an important aspect for survival 
with rising global costs post-pandemic (Kramme, 2021; Lee and Trimi, 
2021). Amidst all this, COVID-19 has put a spotlight on AI as a GPT, 
which is now seen as to be playing an important role in providing quick, 
sustainable and affordable solutions in the biotech field (Block, 2020).4 

AI as a GPT has received increasing interest in recent work in the 
economics of technological change (Agrawal et al., 2022; Bianchini 
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et al., 2022; Cockburn et al., 2018; Trajtenberg, 2018). Scholars have 
studied the antecedents to how the adoption of AI by firms and in
dustries resulted in product innovation and changed employee profiles 
(Haefner et al., 2021; Mikalef and Gupta, 2021; Rammer et al., 2022; 
Yang, 2022). Evidence also suggests that size of firm matters herein 
(Davenport and Ronanki, 2018; Grimaldi et al., 2013), as also human 
absorptive capacity (Agrawal et al., 2019; Cao et al., 2021; Mikalef and 
Gupta, 2021) along with regulatory environment (Hammadou et al., 
2014; Porter and Stern, 2001). However, there are limited studies on 
how necessity of innovation management can propel the usage of AI. 

In this study, we investigate how AI adoption increased in pharma
ceutical innovation during the COVID-19 pandemic. Our context is 
important from a societal welfare perspective because past work has 
indicated that the pharmaceutical industry is going through a produc
tivity crisis (Pammolli et al., 2011). It takes 12 years and an average of 
almost $2 billion to bring a drug to market (Abramo et al., 2011; Burki, 
2019; DiMasi et al., 2016). This translates into high prices of drugs like 
the recently approved most expensive medicine Hemgenix, which is 
priced at $3.5 million a dose to treat Haemophilia B.5 It would thus be 
important to know if COVID-19 unintendedly accelerated the adoption 
of AI in the pharmaceutical innovation process, potentially rendering 
better productivity that can ultimately have positive societal welfare 
consequences with reduced market power exercised by firms (Bloch and 
Metcalfe, 2018; Schumpeter, 1942). 

A solution to the pharmaceutical productivity crises has been to 
compress drug development timelines (Kummar et al., 2007), and AI has 
been argued to be useful in achieving that (Shanbhogue et al., 2021). AI 
can help the pharmaceutical sector in different dimensions, such as 
developing new drugs, tackling diseases previously thought to be diffi
cult to manage, interpreting clinical data, and finding appropriate pa
tients for clinical trials (Zielinski, 2021).6 As per Babu et al. (2021), AI is 
supposed to revolutionize how drugs are discovered, along with 
amplifying several tasks in pharmacy and overall medical care. 

Drug discovery is a complex process that can be divided into four 
stages: (i) target selection and validation; (ii) compound screening and 
lead optimization; (iii) preclinical studies; and (iv) clinical trials. Major 
contribution of AI, as of now, it seems, has been in stage 2 as it reduces 
cost and time when compound screening and lead optimization are done 
(Smalley, 2017). A traditional screening library contains around one 
million compounds, and each compound typically costs $50 –$100 
(Green, 2017). Thus, an initial screening process can cost millions plus 
several months of work. Subsequent lead optimization can take several 
years to pinpoint preclinical drug candidates. With AI, a virtual com
pound library of billion molecules can be screened in a few days (Chan 
et al., 2019). Additionally, an AI-based computational pipeline might 
only take a few months to identify preclinical candidates.7 

AI growth is still in the early phase, and data post COVID-19 is too 
small to see the effects at all stages of drug discovery. Much work here 
might also be tacit knowledge and not visible through patenting data 
because firms might be holding back from filing patents in important 
complex steps where they use AI – purely for competitive intelligence 
purposes vis-a-vis market peers. That said, some evidence still exists that 
AI has brought significant change in drug discovery. For example, an AI 
company, Recursion Pharmaceuticals, in collaboration with Takeda 
Pharmaceutical Ltd., announced breakthrough results in identifying 
preclinical compounds for rare diseases recently. Interestingly, they 

could do it in 1.5 years while ideally the traditional preclinical drug 
discovery takes a decade.8 Similarly, Merck has successfully used Deep 
Learning algorithms for predicting native protein folding which can now 
be achieved within a few days. This process used to take several years 
(Bada, 2019). 

Though AI is considered an important tool in business innovation, 
the adoption rate until the recent past has not been inspiring (KPMG, 
2019), especially in healthcare (Goldfarb and Teodoridis, 2022; 
Stempniak, 2022). Tradeoffs in adopting AI may include technological 
as well as wage inequality effects (Acemoglu and Restrepo, 2020). New 
work seems to suggest the importance of complementary investments 
required along with AI implementation (Brynjolfsson et al., 2021). There 
are also cultural issues to deal with as workforce composition changes 
with firms and industries adopting AI to enhance their innovation (Yang, 
2022). Thus, there are broader managerial ramifications within and 
beyond the boundary of the traditional bio-pharmaceutical firm. 

Several studies seem to indicate that healthcare at large and phar
maceuticals, in particular, seem to have been disrupted during COVID- 
19 days in their innovation organization (Block, 2020; Irving, 2020; 
Kramme, 2021; Lee and Trimi, 2021; Rathi et al., 2022; Tietze et al., 
2020).9 But a systematic investigation of whether the adoption is actu
ally happening and does it translate into reduced timelines is not yet 
done especially using patenting data from the industry. 

In this paper, we investigate this question using two important patent 
datasets. Using Derwent Innovation database10 we analyze abstracts of 
all pharmaceutical patents filed in the U.S. from October 2019 to August 
2020. We use Latent Dirichlet Allocation (LDA) based topic modeling as 
an unsupervised technique and identify hidden topics within the patent 
abstracts.11 Next, we identify the topic (Topic 14)12 that comprise 
keywords representing technical artifacts and use that to divide all 
patents into two groups.13 Abstract of the patents that comprise Topic 14 
in highest probability are considered as Treated Group Patents (or pat
ents that likely use AI) and others are Control Group Patents (patents 
that don't use AI). 

To identify the presence of AI in these patent abstracts, we use an AI 
dictionary comprising all artificial intelligence-related functional ap
plications and the key phrases (See Table A1 for excerpts of AI Dictio
nary keywords). The main source of this dictionary is the Patentscope 
artificial intelligence index by World Intellectual Property Organization 
(WIPO).14 We search for words in the AI dictionary in all patent ab
stracts in our sample (see Table A2 for an example).15 We check how the 
presence and count of usage of these words changed in treated group 
patents as compared to control group patents during COVID-19. Using 
difference-in-differences we find that both the presence and count of AI 

5 https://www.bloomberg.com/news/articles/2022-11-23/world-s-most-e 
xpensive-drug-csl-hemgenixhemophilia-approved-by-fda?leadSource=uverify 
%20wall.  

6 https://www.digitalauthority.me/resources/artificial-intelligence-phar 
ma/.  

7 https://www.prnewswire.com/in/news-releases/insilico-medicine-achi 
eves-industry-first-nominatingpreclinical-candidate-discovered-by-ai-8774494 
36.html. 

8 https://www.businesswire.com/news/home/2019010700534 
9/en/Recursion-Announces-Options-Exercise-Takeda-Extension-AI-enabled.  

9 BlueDot, a Canadian artificial intelligence platform, detected a cluster of 
pneumonia cases in Wuhan before the world even knew about COVID-19.  
10 For more than 50 years, Derwent™ has been a leader in life sciences – 

connecting research applications, exclusive patent data, and expert IP services 
to support the commercial success of pharmaceutical and biotechnology com
panies around the world.  
11 Prior work has used topic modeling to identify disruptive technologies 

(Momeni and Rost, 2016) and the commercial viability of healthcare in
novations (Erzurumlu and Pachamanova, 2020)  
12 As we can see in Table 1 Topic 14 comprises most of the keywords with 

technical artifacts. Detailed keyword cloud of Topic 14 can be seen in Fig. 2.  
13 Since AI is an advanced technology, its important to focus on patents that 

comprise technical artifacts and how presence of AI among these technical 
artifacts changes during COVID-19.  
14 https://www.wipo.int/techtrends/en/artificialintelligence/patentscope. 

html.  
15 We understand that the AI Dictionary keywords may have some overlap 

with software and business method patents. To the extent there may be some 
overlap, our results might be a lower bound. 
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keywords have significantly increased in treated group patents filed 
during the pandemic. To evaluate the impact that use of increased AI has 
had on patents, we calculate the time lapsed from patent application to 
publication. We find that presence of AI has interestingly speeded up the 
publication process of patents for pharmaceutical firms. A detailed 
pictorial representation of the flow of our research is shown in Fig. 1. We 
conduct multiple robustness and falsification checks to strengthen our 
claim and buttress our identification strategy. 

We cross-check these results using Artificial Intelligence Patent 
Dataset (AIPD) (Giczy et al., 2022) from the United States Patent and 
Trademark Office (USPTO). AIPD dataset is generated using a machine 
learning (ML) approach that analyzes patent text and citations to iden
tify patents with AI.16 Along with the indicator that identifies whether 
AI is used, AIPD also provides information of the presence of 8 different 
components of AI in the patents (Details in Section 3.2). We find that 
likelihood of usage of AI along with most of its components has signif
icantly increased during COVID-19 in pharmaceutical patents. This is 
followed by a significant reduction in time to publication that we now 
observe in both datasets. 

In further investigation, we identify the firms in our sample which 
applied for patents with a high presence of AI and classify these firms as 
leader firms, while others who don't use AI classified as laggard firms. 
We analyze patents filed by the leader and laggard firms two years 
before our study period (2018–2019). We find a consistent trend of 
innovation capability building done by leader firms. Thus, the mecha
nism of emphasis on the usage of AI in pharmaceutical research during 
the pandemic can be associated with apriori built-up capabilities. 

All these findings highlight the likely normative shift in the adoption 
of AI in pharmaceutical innovation, thereby enhancing the role of AI as a 
GPT. As per Bresnahan and Trajtenberg (1995), a GPT should possess 
three characteristics: pervasiveness, improvement and innovation 
spawning. Our results in many ways take ahead the debate of AI as GPT 
as we show how AI gets quickly adopted by pharmaceutical firms 
nudged by the pandemic shock. Ours is the first study to investigate the 
adoption of AI in innovation of industry, specifically in pharma, and 
hence it is important from a public policy perspective. We seem to find 
robust partial equilibrium evidence which is tested on two different 
datasets to inform that AI is increasingly used by pharmaceutical firms 
during COVID days leading to the quickening of the publication process. 

The paper proceeds as follows. In Section 2, we discuss the related 
literature and present our research questions. In Section 3, we describe 
our data sources and methodology. This is followed by Section 4, where 
we report our findings. In Section 5, we conduct multiple robustness 
checks. Finally, in Section 6, we discuss policy implications and 
conclude. 

2. Literature review & research questions 

2.1. AI emerging as GPT 

Prior work suggests that there are five key attributes that define a 
technology to be defined as emerging - radical novelty, fast growth, 
coherence, prominent impact, and ambiguity & uncertainty (Rotolo 
et al., 2015). AI confirms all these attributes of being an emerging 
technology (Aristodemou and Tietze, 2018; Bianchini et al., 2022). 
What is interesting to know is whether AI emerges as a GPT. Bresnahan 
and Trajtenberg (1995) argue that a GPT should spread across sectors 
(pervasiveness), should get better over time (improvement), and should 
make it easier to invent (innovation spawning). To prove its perva
siveness AI has already spread across sectors (Bresnahan, 2010). A few 
examples could be from noticing how in the machinery and equipment 
industry AI is used through virtual factories that simulate the production 

process and improve efficiency (Nolan, 2020). In pharmaceuticals, prior 
work has shown that, on implementation of AI, delay in drug develop
ment and failure at the marketing and clinical level can be reduced 
(Shanbhogue et al., 2021). 

To demonstrate its improvement characteristic, AI is upgrading the 
process of R&D by extensive use of enhanced prediction algorithms and 
large datasets (Cockburn et al., 2018). AI is bringing forth new methods 
for research and invention. Deep learning methods and prediction 
technologies are influencing the knowledge production process by 
increasing the efficiency of searching relevant prior knowledge and by 
easing the discovery of new results (Agrawal et al., 2019; Bianchini 
et al., 2022). AI-based assistive tools are increasingly used for drug 
repurposing (Zhou et al., 2020) as also can be seen from works by MIT's 
Broad Institute. 

AI is likely also innovation spawning as firms that have applied AI 
using different methods in different applications areas have obtained 
experience in using AI that provides them significantly higher innova
tion output (Rammer et al., 2022). Thus, AI, in many ways, fulfills the 
requirements of being pervasive, improving, and innovation-spawning 
for it to be characterized as a GPT. Our research contributes to this 
literature by showing how AI as a GPT is increasingly used in the 
pharmaceutical industry and is giving rise to improvement in its inno
vation timelines. 

2.2. Innovation management in pharma 

The pharmaceutical industry seems to be under serious productivity 
crises (Cockburn, 2006; Schuhmacher et al., 2021). The rising cost of 
newly approved drugs, late-stage abandonment of drug development 
projects, and proliferation of plausible targets resulting from advances in 
molecular biology are major woes of the pharmaceutical industry 
(Pammolli et al., 2011). Ideally, given the unique ability of humans to be 
creative, innovation, many argue, should be the domain of humans 
(Amabile, 2020). But in the contemporaneous world, innovation needs 
to be challenged by introducing AI and ML because of their cost ad
vantages, higher quality, and greater efficiency than humans (Agrawal 
et al., 2019; Bughin et al., 2018). Finding ways to apply AI to firms' 
innovation processes should be of substantial interest to innovation 
managers in present times (Calvino et al., 2022; Dernis et al., 2023; 
Haefner et al., 2021). 

Innovation, specifically in the pharmaceutical industry, is driven by 
the drug development process, which depends on compound discovery 
and searches through combinatoric space (Lou and Wu, 2021). In drug 
development, input, behavior, and output should be simultaneously 
controlled with the focus on radical and incremental innovation (Car
dinal, 2001). AI and ML tools offer the promise of revolutionizing drug 
development and overcoming hurdles in the drug discovery pipeline 
(Malandraki-Miller and Riley, 2021).17 AI can also play a part at the 
design level by having an empowering effect on knowledge translation 
at different levels (Dal Mas et al., 2020) and nurture open innovation 
(Secundo et al., 2020) which is the need of the pandemic-ridden world 
today. 

From the literature above, we understand that pharmaceutical firms 
need streamlined innovation management, and AI as GPT could be a 
viable solution. We build upon this literature to construct our research 
questions for this study. We start with a core construction on whether 
the COVID-19-induced pandemic propelled AI usage in pharmaceutical 
innovation. 

Research Question 1: Did the likelihood of the presence and count of AI 
keywords in pharmaceutical patent abstracts increase during COVID-19? 

The healthcare ecosystem comprises various players that can be 
classified as regulators, providers, payers, suppliers, clinicians, and 

16 https://www.uspto.gov/ip-policy/economic-research/research-datasets/ar 
tificial-intelligence-patent-dataset. 

17 AI can help screen compounds 100 times faster than humans can by using 
conventional methods (Wu et al., 2020). 
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patients (Bessant et al., 2012). It is worth noting that extant literature 
suggests that patent examiners and the patent examination process are 
not homogeneous (Cockburn et al., 2002). Although the examination 
process of a patent office is standardized, it is imperfect in that it sub
stantially depends on the examiners' experience, motivation, and skills 
(Kim and Oh, 2017). The duration between the application to publica
tion process depends a lot on the quality of patent and US examiners 
tend to devote more search effort to weaker patents (Lei and Wright, 
2017). 

There are also instances where firms lobby for their patents to pub
lish faster. For example, Tabakovic and Wollmann (2018) find that 
patent examiners grant more patents to the firms that hire them later 
and that much of this leniency extends to eventual employers. This 
strand in the literature on economics of innovation thus addresses a key 
concern, which is that firms actually can influence the examination 
process and hence time to publication. 

It is also worth reflecting on the institutional structure of the patent 
examination process. When entering an examination, a patent applica
tion is assigned to an art unit based on the subject matter of the inven
tion. The art unit is an administrative set of eight to fifteen patent 

examiners specializing in a particular technology responsible for the 
examination. Palangkaraya et al. (2011) find that if the patent office 
possesses specialization, it is less likely to misclassify an application 
which may result in a longer duration of examination. Building on this 
finding, one can hypothesize that specialized examiners may have 
believed that AI and related technology can lead us towards new med
icines like Covid-19 vaccines more quickly, especially if tacit knowledge 
embedded within patents using AI is linear and simplified. This is 
potentially why also it's important to highlight why the AI effect in 
pharmaceutical patents is translating into reduced publication time. 
This leads to our second research question. 

Research Question 2: Was there a reduction in the duration for pub
lishing patents comprising AI in the pharmaceutical industry during COVID- 
19? 

AI contributes at the resource level not just in generating and 
developing ideas but also helps remove barriers to innovation such as 
ineffective search routines and information processing constraints 
(Haefner et al., 2021). To realize performance gains from AI, it's 
important to examine how firms build on AI capability (Mikalef and 
Gupta, 2021). To create sustainable AI capability, organizations require 

Fig. 1. Research flow diagram. In the pictorial representation, we show that we first shortlist pharmaceutical patents filed in the US from the Derwent database. We 
then apply Topic Modeling, which helps us bifurcate treatment and control groups of patents. Using AI dictionary we find if abstract of these patents has AI present 
along with its count. Eventually, we show how COVID-19 caused increase in presence and count of AI keywords on pharmaceutical patents which also led to 
reduction in duration of patent publication. In addition to patents from Derwent we also used AIPD dataset. 
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a unique blend of physical, human, and organizational resources 
(Davenport and Ronanki, 2018), which can deliver value by differenti
ating it from that of competitors (Igna and Venturini, 2023; Ransbotham 
et al., 2018). Drawing from the resource-based theory (RBT) perspec
tive, it's important for a firm to build up capability and resource 
complementarity to react in time when hit by a shock (Priem and Butler, 
2001). In line with this thought, we propose that firms that had built 
apriori capabilities in the past were nudged in the COVID-19 era to 
adopt AI to change their innovation process more than those that hadn't. 
We summarize our proposition below formally. 

Research Question 3: Did firms that increasingly used AI during 
COVID-19 have built-in AI capability in past years? 

In the next section, we will empirically evaluate these research 
questions. 

3. Data and methodology 

We use the Derwent Innovation database and the AIPD dataset for 
our study. Owing to the time lag involved from ideation to the publi
cation stage in a patent, we use the application date of the patent in both 
databases to determine whether a patent was initiated before or after the 
COVID-19 shock. 

3.1. Derwent database 

The study uses abstracts of 30,527 pharmaceutical patents filed in 
the US between October 2019 to August 2020 obtained from Derwent 
Innovation.1819 We do topic modeling using LDA on the abstracts of the 
pharmaceutical patents to render constructs and conceptual relation
ships from textual data.20 All this is done without the aid of predefined, 
explicit dictionaries or interpretive rules. 

Using statistical associations of words in the patent abstract, 15 
latent topics are identified as clusters of co-occurring words representing 
higher-order concepts. After a close look at the words associated with 15 
topics (see Table 1), we identify a topic (Topic 14) that represents the 
use of technical artifacts because AI and related keywords will be part of 
technical artifacts. A detailed description of the composition of the 
words in Topic 14 is shown via word cloud in Fig. 2. We aim to see how 
AI usage in the patents that used technical artifacts changed during 
COVID-19. Thereby, all the patents that have Topic 14 with the highest 
probability are considered as a treated group of patents, and the rest 
become part of control group of patents. 

We use an AI dictionary generated using Patentscope Artificial In
telligence Index by WIPO (shown in Table A1). This dictionary com
prises keywords that indicate the presence of artificial intelligence in 
general. Each patent abstract is searched for the presence of words from 
the dictionary. To apply empirical text analytics to the patent abstracts, 
we create two variables, AI Presence and Count of AI Keywords. AI 
Presence is a binary variable coded as one if the patent abstract contains 
an AI-related keyword as matched from the AI dictionary, 0 otherwise. 
The Count of AI Keywords measures the number of AI-related keywords 
in the patent's abstract. 

Table A2 shows three different abstracts which we use to explain our 
methodology. In the first patent abstract, there is no presence of tech
nical artifacts which we identify from Topic modeling. So, the first 
patent shall be part of control patents group. The second patent com
prises words like computer, system, methods etc. which are part of 
technical artifacts as seen in Topic 14. This makes the second patent a 
treated patent but since there are no AI-related keywords, the value of AI 
Presence and Count of AI Keywords is 0. The third patent comprises 
Topic 14 words making it a treated patent, and also has AI-related 
keywords like machine learning, training dataset etc. We match these 
keywords from AI Dictionary and obtain values for AI Presence and 
Count of AI Keywords. Thus, within the treated patents (like second and 
third) we check how AI Presence and Count of AI Keywords change post 
COVID-19 compared to control patents. 

As AI Presence is a limited dependent variable with binary values, we 
use a logistic model for its estimation along with the standard OLS. The 
Count of AI Keywords, on the other hand, has values ranging from 0 to 9. 
Because of high dispersion we also check the estimations with logarithm 
of Count of AI Keywords. To find the impact of AI on the pharmaceutical 
innovation process, we also generate a variable where we find number of 
days lapsed between application of patent and publication of the patent 
(see Table 2 for detailed variable description). 

In Table 3, we show summary statistics of these variables by dividing 
them into two groups (treated and control group patents) and then 
specifying their statistics before and after January 2020. We assume that 
the impact of COVID-19 on pharmaceutical research started in January 
2020 in US.21 We use the difference-in-differences method as our 
empirical identification strategy. Fig. 3 shows the timeline diagram of 
our methodology. The empirical specification is shown below: 

yp = β0 + β1TreatedGroupp + β2Covidt + β3TreatedPatentsp ×Covidt

+Control+ δt + θp + γf + ζfp + ε
(1) 

The subscript p represents individual patents. Dependent variable yp 
is used as AI Presence, Count of AI Keywords, Days App. to Pub. in three 
different estimations. TreatedPatentsp corresponds to whether the patent 
comprises of technical artifacts group, identified by the presence of 
keywords in Topic 14 at the highest probability (1 for the treated group) 
or a nontechnical artifacts group (0 for the control group). Covidt would 
equal one if the patent were filed in months after which COVID-19 
affected US (January 2020 to August 2020), zero otherwise. 

Our coefficient of interest β3 measures the change in the likelihood of 
the presence of AI keywords during COVID-19 when the dependent 
variable is AI Presence. When the dependent variable is Count of AI 
Keywords, β3 measures change in the number of times dictionary 

Table 1 
Keywords corresponding to all topics obtained after LDA topic modeling.  

Topics Keywords 

Topic 1 Antibodies, Protein, Polypeptide 
Topic 2 Comprise, Material, Method, Particles 
Topic 3 Cancer, Cell, Tumor 
Topic 4 Methods, Treatment, Invention 
Topic 5 Light, Image, Optical 
Topic 6 Nucleic, Gene, DNA, RNA 
Topic 7 Present, Composition, Invention, Formulation 
Topic 8 Drug, Present, Improved 
Topic 9 Sample, Method, Biological, Detection 
Topic 10 Fluid, Liquid, Portion 
Topic 11 Pharmaceutical, Composition, Invention, Therapeutic 
Topic 12 Needle, Syringe, Device, 
Topic 13 Invention, Virus, Vaccine, Immune, Infection 
Topic 14 Device, Sensor, Data, System, Information, Signal 
Topic 15 Method, Composition, Formulation, Using  

18 We also replicate the results based on this sample to an extended period 
from January 2017 to December 2022. See Section 5.4 for details.  
19 We agree that there could be a generalizability concern since we use only 

US pharmaceutical industry data. However, note that US pharmaceutical 
market is the most innovative in the world, perhaps also the most vibrant. 
Though it may also be the most unregulated market, US patents are well used in 
prior work to draw generalizable trends. Prior work attest to the criticality of 
US patent data. For example, Singh et al. (2021) predict technology improve
ment rates for all technologies based on US patent data while Wagner and 
Wakeman (2016) verify patent-based measures with product commercialization 
using US-based pharmaceutical patents.  
20 LDAGIBBS command in STATA15 is used to obtain clustered keywords 

along with word probability. 

21 https://www.history.com/this-day-in-history/first-confirmed-case-of-coron 
avirus-found-in-us-washingtonstate. 
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keywords are used in the patent abstract in treatment group as compared 
to the control group during pandemic. Positive and significant β3 would 
indicate an increase in usage of AI in pharmaceutical research during 
pandemic. Similarly, when dependent variable is Days App. to Pub. β3 
measures change in number of days taken from application to publica
tion of a patent. Negative and significant β3 would indicate the reduced 
time taken for a pharmaceutical patent comprising AI to publish during 
pandemic. 

In the specification, we control for the number of words in the ab
stract since there is a possibility of larger abstracts showing a higher 
count of AI keywords. We apply month dummies (δt) to account for time- 
varying common shocks, pharma subclass dummies (θp) are added to 
cover variations across different pharma subclasses, firm dummies (γf) 
are included to control for unobserved time-invariant heterogeneity 
across firms. We also add firm - pharma subclass dummies ζfp to account 
for unobserved heterogeneity across pharma subclasses within a firm. 
Robust standard errors clustered at topic level are used in all 
specifications. 

The causal relation estimated from the difference-in-differences 
framework is based on the assumption of a parallel trend. It implies 

Fig. 2. Word cloud for topic 14. The figure represents all the major words that Topic 14 comprises. The larger the size of the word higher is the prominence of the 
keyword in the topic. We can see that the majority of the words highlight the technical artifact. 

Table 2 
Variable description.  

Dependent variables Definition and construction 

AI presence Coded as 1 if the patent abstract contains a AI related 
keyword, 0 if not present 

Count of AI 
keywords 

Number of AI related keywords present in the abstract of the 
patent 

Log count of AI 
keywords 

Logarithm of Count of AI Keywords 

Log days App. to 
Pub. 

Logarithm of number of days lapsed from application of the 
patent to publication of the patent 

Independent 
variables 

Definition and Construction 

Treatment patent 
group 

Coded as 1 if the patent abstract contains topic 14 obtained 
after LDA in highest probability, 0 otherwise 

Covid Coded as 1 if the patent application date is from January 
2020, 0 otherwise 

Control variable Definition and Construction 
Log number of words Logarithm of number of words in the abstract of the patent  

Table 3 
Summary statistics.  

Treated patents   Control patents   

Oct 2019 to Dec 2020 N Mean Std. Dev. Oct 2019 to Dec 2020 N Mean Std. Dev. 

AI Presence 614 0.052 0.008 AI Presence 11,073 0.009 0.000 
Count of AI Keywords 614 0.091 0.019 Count of AI Keywords 11,073 0.013 0.001 
Log Count of AI Keywords 614 0.048 0.009 Log Count of AI Keywords 11,073 0.007 0.000 
Log Days App. to Pub. 614 5.27 0.016 Log Days App. to Pub. 11,073 5.249 0.003 
Log Number of Words 614 4.539 0.022 Log Number of Words 11,073 4.165 0.006 
Jan 2020 to Aug 2020 N Mean Std. Dev. Jan 2020 to Aug 2020 N Mean Std. Dev. 
AI Presence 1227 0.064 0.007 AI Presence 17,763 0.009 0.000 
Count of AI Keywords 1227 0.122 0.018 Count of AI Keywords 17,763 0.013 0.001 
Log Count of AI Keywords 1227 0.062 0.007 Log Count of AI Keywords 17,763 0.007 0.000 
Log Days App. to Pub. 1227 5.059 0.009 Log Days App. to Pub. 17,763 5.099 0.002 
Log Number of Words 1227 4.521 0.015 Log Number of Words 17,763 4.160 0.004 

Notes: The table shows the number of observations (N), mean and standard deviation separately for Treated and Control patents from October 2019 to August 2020 – 
with a split at January 2020 indicating pre- and post-treatment periods. 
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that changes in outcome for the treatment group without the treatment 
would have been similar to the changes in the outcome in the control 
group. In other words, in the absence of COVID-19 shock, the presence 
and count of AI keywords should follow parallel trajectories over time. 
To validate this assumption for our study, we estimate the coefficient by 
plotting the pre-trends by using the event study design specification 
shown below: 

yp = β0 +
∑Aug′20

t=Nov′19

βtTreatedGroupp +Control+ δt + θp + γf + ζfp + ε (2)  

where t ranges from November 2019 to August 2020, with October 2019 
as the base year. 

We plot the coefficients from the above equation for the outcome 
variables- AI Presence and Count of AI Keywords. Insignificant co
efficients in the pre-period (till January 2020) would satisfy the 
assumption of parallel trends between the treatment and control group 
in our estimated results. 

3.2. AIPD database 

We crosscheck our findings using AIPD database from USPTO. This 
externally provided database by Giczy et al. (2022) helps us validate our 
conjecture from another data source, and also component-level analysis 
of AI enhances our inspection. The AIPD dataset is generated using 
machine learning models that use patent text, claims, and citations to 
identify eight AI component technologies - Machine Learning Model, 
Natural Language Processing, Evolutionary Computation Model, 
Knowledge Processing Model, AI Hardware Model, Planning/Control 
Model, Speech Model, and Vision Model. Through this algorithm, each 
patent receives a probability score between 0.0 and 1.0 indicating the 
presence of a technology component.22 We select all the pharmaceutical 
patents in this database using CPC codes23 from January 1980 to 
December 2020 and check how likelihood of presence of AI and all its 
components change during COVID-19 using below-mentioned 
specification: 

yp = β0 + β1Covidt +Control+ δt + θp + ε (3) 

The subscript p represents individual patents. Dependent variable yp 
is used as the likelihood of the presence of AI and its components and 
Log Days App. to Pub. in separate estimates. Covidt would equal one if 
the patent was filed in year 2020 after which COVID-19 affected US, zero 
otherwise. In the specification we control for number of words in the 
abstract since there is a possibility of larger abstracts showing higher 
count of AI keywords. Our coefficient of interest β1 measures the change 
in the presence of AI and its components and time taken from applica
tion to publication of patents during pandemic in separate estimates. In 
the specification we apply year dummies (δt) to account for time-varying 

common shocks, pharma subclass dummies (θp) are added to cover 
variations across different pharma subclasses. 

3.3. Leader vs. laggard firms - AI capability building 

We further analyze the patent data to understand the mechanism 
through which an exogenous shock could propagate AI-related research. 
We first identify firms of all the patents in our baseline sample from 
October 2019 to August 2020. Within this set of firms, we mark the firms 
which have applied the patents where AI is present (as obtained from 
matching with the AI dictionary) and name these firms as leader firms 
and others as laggard firms. Next, we search for all the patents filed by 
the leader and laggard firms in the past two years, from September 2017 
to September 2019. We look for the presence and count of AI keywords 
in the patents using the AI Dictionary in this time frame. We check if 
patents filed by the leader firms had better presence and higher count of 
AI keywords than the laggard firms. We use the below mentioned 
specification. 

yp = β1LeaderFirmf +Control+ δt + θp + ε (4) 

The subscript p represents individual patents. Dependent variable yp 
is used as AI Presence and count of AI keywords in separate estimations. 
LeaderFirmf would equal one if the patent was filed by the leader firm, 
zero otherwise. Our coefficient of interest β1 measures the presence and 
count of AI keywords used by leader firms as compared to laggard firms 
in last two years. In the specification we control for number of words in 
the abstract since there is a possibility of larger abstracts showing higher 
count of AI keywords. We apply month dummies (δt) to account for time- 
varying common shocks, pharma subclass dummies (θp) are added to 
cover variations across different pharma subclasses.24 Robust standard 
errors clustered at firm level are used in all specifications. 

4. Findings 

4.1. Descriptive analysis 

We show a simple trend of the average monthly presence of AI dic
tionary keywords in patent abstracts in treated and control group pat
ents in Fig. 4. The left panel shows the average AI Presence, and the right 
panel indicates average Log Count of AI Keywords. The vertical line on 
January 2020 depicts the cut-off indicating the time after which COVID- 
19 effects were felt in the US. The smoothened lines in pre-treatment 
period from October 2019 to August 2020 in both panels are mostly 
parallel till January 2020 post when the dashed line in blue (repre
senting treated group patents) starts rising. We can also see that the line 
in red representing control group remains mostly flat throughout the 
sample period. The sharp increase in the presence and count of AI dic
tionary keywords in patent abstracts of treated patents after the onset of 
COVID-19 highlights the increase in usage of innovative technologies in 

Fig. 3. Timeline diagram. The patents are classified as treated patents if the abstract comprises the topic (Topic 14) possessing technical artifacts, and the control 
group is all other patents. The study period is from October 2019 to August 2020. ‘Covid’ indicates months from January 2020 onwards. 

22 AI probability scores are translated into binary variables taking value one if 
the score ≥ 0.50 and zero otherwise.  
23 CPC: Cooperative Patent Classification. https://www.uspto.gov/web/pa 

tents/classification/cpc/html/cpc.html. 

24 Unlike previous specifications we don't use firm fixed effects since we wish 
to analyze firm-level changes and applying firm fixed effects would drop the 
leader firms variable. 
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pharmaceutical research in the US. 
Table 3 corroborates the above descriptive findings with summary 

statistics pre and during COVID-19. For the control group, the mean 
value of AI presence remains unchanged at 0.009; on the other hand, for 
the treated patents group, it increases from 0.052 to 0.064 (23.07 % 
increase). Similarly, the Count of AI Keywords increases from 0.091 to 
0.122 (34.06 % increase) for the treatment group, while for control 
group there is no change. Thus, descriptive analysis depicted via trend- 
line and summary statistics displays higher usage of AI techniques in 
pharmaceutical patents during the pandemic. We conduct a more sys
tematic empirical analysis in the next sections to substantiate our 
research questions. 

4.2. Main findings: Derwent database 

In this section, we empirically evaluate the impact of COVID-19 on 
the usage of AI in pharmaceutical patents. Estimation of research 
question 1 using Eq. (1) is shown in Table 4, where the dependent 
variable is AI Presence in columns (1)–(3), Count of AI Keywords in 

columns (4)–(5) and the logarithm of Count of AI Keywords in column 
(6). Estimations in column (1) use logistic regression, and all other 
columns use ordinary least squares (OLS). Columns (1), (2) and (4) show 
the baseline estimations without any controls. In columns (3), (5) and 
(6) we introduce control for number of words in abstract, month 
dummies, pharma subclass dummies, firm dummies and firm-pharma 
subclass dummies. 

Results in columns (1)–(3) show a positive and statistically signifi
cant increase in the likelihood of AI presence in the treated group after 
COVID-19. Causal estimates from logit estimation in column (1) reveal 
that the odds of AI's presence in pharmaceutical patents increased by 
1.294 (exp (0.258)) after COVID-19. Results in column (2) indicate that 
the likelihood of the presence of AI increases by 1.3 % points in treated 
patents compared to control patents during pandemic. Same estimate 
goes up to 2.0 % points when all the controls are applied. 

Columns (4)–(6) focus on the count of AI keywords. Results in col
umn (4) indicate an increase of 0.031 in the count of AI keywords. With 
all controls, this goes up to 0.054 in column (5) which is 200 % increase 
over mean count of AI keywords (0.018) in our sample. In column (6) 

Fig. 4. Trend lines: figure on the left panel shows the monthly trends of the average AI Presence for treatment and control group patents. The figure on the right 
panel shows the monthly trends of the average Log Count of AI Keywords for treatment and control group patents. Treated patents in both figures are represented in 
blue dashed lines, while control patents are represented in solid red. The vertical grey lines in both figures indicate the commencement of COVID-19 in US in both 
panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
Change in presence and count of AI keywords in pharmaceutical patents post COVID-19.   

(1) (2) (3) (4) (5) (6)   

AI presence   Count of AI keywords 

LOGIT OLS OLS OLS OLS Log count of AI keywords 

Treated patents x Covid 0.258*** 0.013*** 0.020*** 0.031*** 0.054*** 0.024***  
[0.073] [0.001] [0.003] [0.001] [0.007] [0.003] 

Treated patents 1.758*** 0.043*** 0.031*** 0.078*** 0.047*** 0.027***  
[0.198] [0.002] [0.004] [0.003] [0.008] [0.004] 

Covid − 0.023 − 0.000  0.000    
[0.073] [0.001]  [0.001]   

Log number of words   0.009***  0.018*** 0.009***    
[0.002]  [0.005] [0.002] 

Month dummies No No Yes No Yes Yes 
Pharma sub-class dummies No No Yes No Yes Yes 
Firm dummies No No Yes No Yes Yes 
Firm-pharma sub class dummies No No Yes No Yes Yes 
Observations 30,527 30,527 30,527 30,527 30,527 30,527 

Notes: The dependent variable in columns (1) to (3) is the likelihood of presence of AI while in columns (4) and (5) is Count of AI Keywords and in column (6) is Log 
Count of AI Keywords. In column (1) we use logistic regression estimated by maximum likelihood method. From column (2) to (6), we use ordinary least square 
method. Across model specifications, we see that the interaction term is positive and statistically significant. Thus, presence and intensity of AI increased significantly 
post COVID-19 for patents with technical artifacts. The time horizon is October 2019 to August 2020. The constant term is included but not reported. Robust standard 
errors clustered at topic level are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1 %, 5 % and 10 % respectively. 
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with logarithm of count of AI keywords as the dependent variable and 
with all controls in the specification, there is a significant increase of 2.4 
% in count of AI keywords. Overall, empirical analysis on patents using 
AI Dictionary helps us claim that there has been an increase in usage of 
AI not just in presence but also in count. 

We also checked for pre-trends in the data to establish the identifi
cation strategy. In Fig. 5, we present the coefficient estimates pre and 
during COVID-19. In the left panel, we generate a coefficient plot using 
Eq. (2) for AI Presence, and in the right panel, we do the same with Log 
Count of AI Keywords as the dependent variable. The horizontal red line 
indicates zero coefficient, indicating no significant difference between 
the treated and control groups. The vertical red line indicates initiation 
of treatment in January 2020. We can see that before January the trend 
line in both figures was close to zero which indicates the absence of any 
significant pre-trends between treated and control groups. We find a 
sharp change in coefficient estimates as the pandemic began in January 
2020. 

4.3. Increasing speed of publication 

We have established the increase in AI usage in pharmaceutical 
patents with the onset of COVID-19. In this section, we seek to evaluate 
the impact of this increase on the speed of publication, especially given 
long time frames involved in the pharmaceutical innovation process. In 
Fig. A1 we show how the time taken from application to publication of 
all pharmaceutical patents changes month-on-month from 2017 to 
2022. We see that post COVID-19 there is a significant dip in the time 
taken from application to publication for patents with AI. 

Table 5 empirically evaluates research question 2 and presents the 
results of the regression analyses by estimating Eq. (1). The dependent 
variable in all columns is the logarithm of the number of days from the 
application date to publication date. In all columns we apply ordinary 
least square method. Column (1) shows the baseline result without any 
fixed effects. In column (2) we introduce control for number of words in 
abstract, month dummies and pharma subclass dummies. In column (3) 
we add firm dummies and firm-pharma subclass dummies. 

Results in columns (1)–(3) show a negative and statistically signifi
cant decrease in the days it takes from application to publication of 
patent during COVID-19. Causal estimates from baseline estimation in 
column (1) reveal that number of days decreased by 6.0 % after COVID- 
19. With all the controls in column (3) same estimate is 5.4 %.25 Overall, 
we find the presence of AI is nudging the authorities to fast-track the 
publication process. One possible reason is that it may be because they 
find more value in AI-driven patents in the future. A 5 % decrease in the 
overall innovation process in a world where new drugs take 12 years to 
hit the market seems non-trivial and perhaps will only improve in the 
coming days. 

4.4. Crosschecking using AIPD database 

Table 6 presents the results of the regression analyses by estimating 
Eq. (3). In column (1), the dependent variable is the overall AI Presence. 
In column (2), the dependent variable is Log Days App. to Pub. and 
dependent variables from column (3) to column (9) are different com
ponents of AI. In all columns, we apply ordinary least square method 
with year and pharma subclass dummies. 

In column (1), we find a significant increase in the presence of AI in 
pharmaceutical patents during the pandemic. In column (2), we find a 
significant decrease in time taken from application to publication in 
pharmaceutical patents during COVID-19. Similarly, all AI components 

show a significant increase during COVID-19 in the range of 0.4 % points 
to 3.6 % points except for speech model and natural language process
ing. Thus, these results help us triangulate our main findings using a 
different dataset to strengthen our claim that there was an increase in AI 
in pharmaceutical patents during COVID-19. 

4.5. Leader firms build capability in advance 

Table 7 presents the results of the regression analyses for research 
question 3 by estimating Eq. (4). The dependent variable is AI Presence 
in columns (1) and (2), the Count of AI Keywords in column (3), and the 
logarithm of Count of AI Keywords in column (4). Estimations in column 
(1) use logistic regression, and all other columns use ordinary least 
squares (OLS). Column (1) shows the baseline estimations controlling 
for the number of words in the abstract without any fixed effects. In 
column (2) - column (4) we introduce month dummies and pharma 
subclass dummies. 

Results in Table 7 estimate the difference in the presence and count 
of AI keywords in patents filed by leader firms compared to laggard 
firms two years before the pandemic. We would refer to columns (2) and 
column (4) for interpretation as these models are most conservative with 
full controls. Column (2) where we evaluate AI Presence, shows a pos
itive and significant coefficient (β = 0.077), indicating that likelihood of 
presence of AI in patents filed by leader firms was 7.7 % points higher 
than the laggard firms. Similarly, findings in column (4), where we look 
at count of AI keywords, indicate a positive and significant coefficient (β 
= 0.102). Thus, count of AI keywords was higher by 10.2 % in phar
maceutical patents of leader firms compared to laggard firms. Therefore, 
this analysis indicates that the firms that adopted AI quickly during the 
pandemic could do so because of the AI capability they had built in 
previous years, also suggesting an absorptive capacity argument to the 
AI adoption process in biopharmaceutical innovation. 

5. Robustness checks 

5.1. Coarsened exact matching (CEM) 

CEM acts as a means for robustness test for differences in differences 
estimates where researcher arbitrariness in choosing control groups 
could create biased results (Iacus et al., 2012). CEM improves causal 
estimation by narrowing down the imbalance in covariates among 
treated and control groups. “In coarsened exact matching, we tempo
rarily coarsen the data, exact match on these coarsened data, and then 
run their analysis on the uncoarsened, matched data” (Blackwell et al., 
2009). Coarsened exact matching is fast, easy to use, requires fewer 
assumptions, is easily automated, and possesses better statistical prop
erties than existing matching methods. These advantages of the coars
ened exact matching method have led to the use of this method in recent 
studies (see Chen et al. (2022); Fry (2021); Wang and Zheng (2022)). 

In this study, our interest outcomes are AI Presence, Log count of AI 
keywords, and Log Days App. to Pub. We match treatment and control 
groups of patents based on the number of words in the patent abstract, 
pharma subclass, and cited patents. Estimation using the CEM approach 
is shown in Table 8. We can see a slight drop in the number of obser
vations in the CEM approach as it generates causal analysis on 
uncoarsened control group. We can see that the interaction coefficient 
obtained from CEM has same or improved magnitude and significance as 
compared with our main estimates. CEM lends strength to our identified 
causal impact of COVID-19 on the increase in usage of AI in pharma
ceutical patents. 

5.2. Falsification test with 2018–19 sample 

As shown in Fig. 3, our baseline results timeline is from October 2019 
to August 2020, with the COVID-19 shock coming in January 2020. In 
this exercise, we replicate all our estimations with a changed timeline 

25 We also generate coefficient plot using Eq. (2) with Log Days from App. to 
Pub. as the dependent variable and find a sharp decrease in interaction coef
ficient estimates as the pandemic began in January 2020. The plot can be made 
available on request. 
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exactly a year before, from October 2018 to August 2019, with an 
alternate placebo treatment from January 2019. Estimations are shown 
in Table 9. We find that all interaction coefficients in all estimations are 
insignificant. Thus, keeping a similar time trend month-on-month, a 
placebo treatment one year before doesn't cause changes. This analysis 

helps us establish the exogenous nature of COVID-19 shock and the ef
fects caused by it. This analysis also helps us to rule out existing pre- 
trends (if any). 

5.3. Alternate control group 

In all our analyses till now, we took treated patents as the ones that 
had technical artifacts identified by Topic 14, and all other patents 
became part of the control group. In this section we revise our control 
group to be comprised of the topics that are closer to Topic 14. Thus, the 
new control group comprises patents with topics 2, 4, 7 and 15 in highest 
probability. Results of this analysis using Eq. (1) is shown in Table 10. 
We can see that all interaction coefficients remain positive and signifi
cant even with a stringent sub-sample analysis. 

5.4. Extended time period 

In this section, we replicate our baseline results on the extended data 
from January 2017 to December 2022. The purpose of choosing this 
sample was to select an extended period of three years before and three 
years during COVID-19. Table 11 presents the results of the regression 
analyses for extended time by estimating Eq. (1). We find that all our 
baseline results hold in the long term. These results act as a robustness 
check to allay the concern about the time-enduring nature of our base
line results. 

Fig. 5. Event study design: left panel shows the fully specified coefficient plot for AI Presence, showing difference-in-differences coefficients comparing the treatment 
and control group of patents for each month. The right panel shows the difference-in-differences coefficients for each month for the Log Count of AI Keywords 
estimation. The vertical red line indicates the commencement of COVID-19 in the US in both panels. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 5 
Reduction in time from application to publication of patents post COVID-19.  

DV: log days App. to Pub. (1) (2) (3) 

Treated patents x Covid − 0.060*** − 0.055*** − 0.054**  
[0.019] [0.019] [0.025] 

Treated patents 0.020 0.032* 0.052**  
[0.017] [0.017] [0.022] 

Covid − 0.151*** 
[0.005]   

Log number of words  − 0.006* 0.001   
[0.003] [0.005] 

Month dummies No Yes Yes 
Pharma sub-class dummies No Yes Yes 
Firm dummies No No Yes 
Firm-pharma sub class dummies No No Yes 
Observations 30,527 30,527 30,527 

Notes: The dependent variable in all columns is logarithm of days taken from 
application of patent to publication. Negative and statistically significant 
interaction coefficient indicates that time taken from application to publication 
significantly reduced post COVID-19 in treated patents. The time horizon is 
October 2019 to August 2020. The constant term is included but not reported. 
Robust standard errors are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate 
significance at the 1 %, 5 % and 10 % respectively. 

Table 6 
Crosschecking with AIPD database the presence of AI components in pharmaceutical patents post COVID-19.   

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  

Overall AI 
presence 

Log days 
App. to Pub. 

Knowledge 
processing 
model 

Planning/ 
control 
model 

Vision 
model 

Machine 
learning 
model 

Evolutionary 
computation 
model 

AI 
hardware 
model 

Speech 
model 

Natural 
language 
processing 

Covid 0.048*** − 1.317*** 0.036*** 0.025*** 0.017*** 0.008** 0.004** 0.004* 0.000 − 0.000  
[0.010] [0.016] [0.007] [0.006] [0.006] [0.004] [0.002] [0.002] [0.000] [0.000] 

Year dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
Pharma sub- 

class 
dummies 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Observations 482,075 482,075 482,075 482,075 482,075 482,075 482,075 482,075 482,075 482,075 

Notes: The dependent variable in columns (1) is the likelihood of overall presence of AI in pharma patents. In column (2) it is the logarithm of days taken from 
application of patent to publication. Dependent variable in column (3)–(9) are different components of AI. We find that in all components of AI except for speech and 
NLP there is a positive and significant change post COVID-19. The time horizon is January 1980 to December 2020. The constant term is included but not reported. 
Robust standard errors are presented in the parenthesis ‘***’,‘**’,‘*’ indicate significance at the 1 %, 5 % and 10 % respectively. 
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6. Discussion 

Research and development in pharmaceutical firms recently are 
going through productivity crises (Cockburn, 2006; Pammolli et al., 
2011). Importantly, there is additional pressure on the pharmaceutical 
sector to produce drugs to curb the spread of evolving new variants of 
COVID-19. At this point, the role of emerging technologies such as data 
analytics and artificial intelligence is undeniable for ‘ultrafast’ innova
tion. AI is seen as an important tool providing a long-term and sus
tainable solution (Aristodemou, 2020; Yamashita et al., 2021). AI has a 
role in targeting drug discovery (Zielinski, 2021), in designing modality 
(Colombo, 2020), in designing preclinical experiments (Shanbhogue 

et al., 2021) and in choosing patients for clinical trials (Smalley, 2017). 
Thus AI could enter into drug development life cycle at every step. 

Though the benefits of AI are long known, its uptake by pharma
ceutical firms has been appalling. In 2019, KPMG surveyed Fortune 500 
companies to find only 17 % of firms using AI or ML at scale (KPMG, 
2019).26 We study if the situation changed during COVID-19 and if there 
is a change in the way innovation is done in pharmaceutical industry, 
especially given broader trends in digitalization of the average firm, 

Table 7 
Tracing capability building between leader and laggard firms.   

(1) (2) (3) (4)  

AI presence 
LOGIT 

AI presence 
OLS 

Count of AI 
keywords 

Log count of 
AI keywords 

Leader firm 0.318*** 0.077*** 0.316*** 0.102***  
[0.018] [0.004] [0.028] [0.006] 

Log number of 
words 

0.637*** 0.129*** 0.853*** 0.214***  

[0.011] [0.002] [0.024] [0.003] 
Month dummies No Yes Yes Yes 
Pharma subclass 

dummies 
No Yes Yes Yes 

Observations 81,958 81,958 81,958 81,958 

Notes: The dependent variable in columns (1) and (2) are AI Presence and in 
columns (3) and (4) are Count of AI Keywords and Logarithm of Count of AI 
Keywords respectively. In column (1) we use logistic regression estimated by 
maximum likelihood method. From column (2) to (4), we use ordinary least 
square method. Across model specifications, we see that the coefficient of leader 
firm is positive and statistically significant. Thus, firms that were adopting AI 
quickly post COVID-19 could do so because they had already built-up capability 
in past years. The time horizon is September 2017 to September 2019. The 
constant term is included but not reported. Robust standard errors clustered at 
firm level are presented in the parenthesis. ‘***’,‘**’,‘*’ indicate significance at 
the 1 %, 5 % and 10 % respectively. 

Table 8 
Robustness check: coarsened exact matching.   

(1) (2) (3)  

AI 
presence 

Log count of AI 
keywords 

Log days App. to 
Pub. 

Treated patents x Covid 0.020*** 0.024*** − 0.069***  
[0.004] [0.003] [0.010] 

Treated patents 0.030*** 0.026*** 0.056***  
[0.004] [0.004] [0.012] 

Log number of words 0.010*** 0.012*** 0.008  
[0.002] [0.003] [0.005] 

Month dummies Yes Yes Yes 
Pharma sub-class 

dummies 
Yes Yes Yes 

Firm dummies Yes Yes Yes 
Firm-pharma sub class 

dummies 
Yes Yes Yes 

Observations 29,924 29,924 29,924 

Notes: The dependent variable in columns (1), (2) and (3) are AI Presence, Count 
of AI Keywords and Log Days App. to Pub. We use ordinary least square method 
in all models. We can see that the interaction coefficient for AI Presence and 
Count of AI Keywords are positive and significant and that of Log Days App. to 
Pub. is negative and significant as in the baseline results. Thus, when we match 
the treatment and control groups based on pharma class, number of words in 
abstract and citation of patents we see that all the results improve. The time 
horizon is October 2019 to August 2020. The constant term is included but not 
reported. Robust standard errors clustered at topic level are presented in the 
parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1 %, 5 % and 10 % 
respectively. 

Table 9 
Falsification check: sample of 2018–19.   

(1) (2) (3)  

AI 
presence 

Log count of AI 
keywords 

Log days App. to 
Pub. 

Treated patents x Covid 0.009 0.056 − 0.032  
[0.011] [0.056] [0.029] 

Treated patents − 0.015 − 0.023 0.059**  
[0.022] [0.050] [0.025] 

Log number of words 0.087*** 0.685*** 0.016***  
[0.015] [0.012] [0.006] 

Month dummies Yes Yes Yes 
Pharma sub-class 

dummies 
Yes Yes Yes 

Firm dummies Yes Yes Yes 
Firm-pharma sub class 

dummies 
Yes Yes Yes 

Observations 24,643 24,643 24,643 

Notes: The dependent variable in columns (1), (2) and (3) are AI Presence, Count 
of AI Keywords and Log Days App. to Pub. We use ordinary least square method 
in all models. Across model specifications, we see that the interaction coefficient 
is insignificant. Thus, these results provide a placebo check and show that results 
don't hold exactly one year back. The time horizon is October 2018 to August 
2019 with placebo COVID dummy starting from January 2019. The constant 
term is included but not reported. Robust standard errors are presented in the 
parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1 %, 5 % and 10 % 
respectively. 

Table 10 
Robustness check: alternate control group.   

(1) (2) (3)  

AI 
presence 

Log count of AI 
keywords 

Log days App. to 
Pub. 

Treated patents x Covid 0.019* 0.023** − 0.041**  
[0.007] [0.006] [0.015] 

Treated patents 0.034** 0.028** 0.043  
[0.008] [0.006] [0.027] 

Log number of words 0.007 0.007 0.004  
[0.004] [0.004] [0.012] 

Month dummies Yes Yes Yes 
Pharma sub-class 

dummies 
Yes Yes Yes 

Firm dummies Yes Yes Yes 
Firm-pharma sub class 

dummies 
Yes Yes Yes 

Observations 11,923 11,923 11,923 

Notes: The dependent variable in columns (1), (2) and (3) are AI Presence, Count 
of AI Keywords and Log Days App. to Pub. We use ordinary least square method 
in all models. We can see that the interaction coefficient for AI Presence and 
Count of AI Keywords are positive and significant and that of Log Days App. to 
Pub. is negative and significant as in the baseline results. Thus, when we restrict 
the sample to keep control groups that comprise of topics that closely match with 
topic in treatment group we find all results hold. The time horizon is October 
2019 to August 2020. The constant term is included but not reported. Robust 
standard errors clustered at topic level are presented in the parenthesis. 
‘***’,‘**’,‘*’ indicate significance at the 1 %, 5 % and 10 % respectively. 

26 “https://advisory.kpmg.us/content/dam/advisory/en/pdfs/2019/8-ai-tr 
ends-transforming-the-enterprise.pdf”. 
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work from home models and technology enabled AI diffusion in 
manufacturing sector during COVID-19. 

To investigate this, we use LDA based topic modeling technique on 
patent abstracts to identify patents with technical artifacts as treated 
group patents. Then using the AI dictionary, we observe AI usage change 
in these patents. Using difference-in-differences methodology we find a 
significant increase in AI Presence and Count of AI Keywords in treated 
group patents compared to control group patents. We also find that with 
the usage of AI in treated patents there is a significant decrease in time 
taken from application to publication of the patent. All these results are 
cross-checked using two different databases. 

In further investigations, we search for the catalyst behind this 
sudden change in innovation priorities to find that these results are 
driven by firms that had already built AI capability in the past. Our 
research highlights that the state of AI capability for pharmaceutical 
firms and the pandemic acted as a digital accelerator for embracing AI 
methodologies for pharmaceutical research (Jacobides et al., 2021). 

Contrary to general perception, there is a body of prior work that 
mentions that AI adoption in healthcare has lagged when compared to 
other industries (Goldfarb et al., 2020; Stempniak, 2022). AI can offer 
unprecedented opportunities, but there are barriers to AI adoption in 
healthcare, some recent scholars have argued (Goldfarb and Teodoridis, 
2022). There is also a discussion on major hurdles in diffusion of AI in 
healthcare at managerial and regulatory levels (Agrawal et al., 2022). 
Interestingly, success of AI depends on the physicians whose thriving is 
threatened by AI (Dranove and Garthwaite, 2022). Our paper possibly 
provides the first evidence of how AI usage has increased in pharma
ceutical patents and is in the right direction to bring change in health
care contrary to what this prior work has argued. 

Since we now find an increase in the usage of AI-based approaches in 
the pharmaceutical space, policymakers should effectively formulate 
policies that will govern the ‘dark side’ of AI (Cao et al., 2021) and 
ensure the ethics of AI in the pharmaceutical sector. Key potential 
concerns caused by AI are the trustworthiness of decisions by AI tech
nologies, the privacy of data, and the cybercrime threat (Carter, 2020). 
Formal regulation of AI technologies is necessary to ensure that already 
established human rights and the legal and ethical principles of society 
are not contravened (Carter, 2020). 

In healthcare, the concern about AI is more serious because AI sys
tems learn to make decisions based on training data, which can include 
biased human decisions or reflect historical or social inequities (Many
ika, 2019). A recent survey found that 75 % of healthcare insiders are 
worried that AI could threaten the privacy and security of patient data 
(Samantha, 2020). Another ethical concern with AI is people losing their 
jobs and whether the machines should replace healthcare workers, 
where feelings, empathy, and warmth are very important factors (Kostic 
et al., 2019). 

At the firm level, while considering the ethical concerns is important, 
it shall be prudent to fund advanced technology research to stay future- 
ready. A recent study by Boutillier et al. (2023) substantiates our results 
as they explain how Sanofi, a leading French pharmaceutical company, 
lagged behind Pfizer, AstraZeneca, and Moderna in developing COVID- 
19 vaccine because of reluctance in usage of modern technology in the 
past. Thus, though COVID-19 nudged the pharmaceutical industry to
wards adoption of AI, all firms were not equally responsive. This is an 
important finding to highlight in the conversation on absorptive ca
pacity around firm-level AI adoption that we are among the first to 
unearth. 

Since we find that AI patents are getting approved faster and are 
percolating into pharmaceutical patents, it may mean that there is an 
increase in the R&D efficiencies in the pharmaceutical sector. An in
crease in R&D efficiencies with quicker patent approvals mean that 
firms can cut down on R&D costs and this could impact prices of med
icines in a direction that is socially welfare-enhancing. 

With all its merit, we agree that our baseline results are obtained at a 
partial equilibrium stage, and the data we observe is only based in the 
US. One can always include patents from European Union, China, Japan 
or other important global jurisdictions and markets for broader analysis. 
Future researchers can also build upon this analysis to observe in detail 
the benefits or drawbacks that increasing AI usage can provide. Much 
more, therefore, remains to be done. 

CRediT authorship contribution statement 

Sawan Rathi: Conceptualization, Data curation, Software, Formal 
analysis, Investigation, Writing - original draft, Writing - review & 
editing. Adrija Majumdar: Conceptualization, Validation, Formal 
analysis, Investigation, Software, Supervision, Writing - review & edit
ing. Chirantan Chatterjee: Conceptualization, Validation, Formal 
analysis, Investigation, Funding acquisition, Project administration, 
Supervision, Visualization, Writing - review & editing. 

Data availability 

The authors do not have permission to share data.  

Table 11 
Extended time period: January 2017–December 2022.   

(1) (2) (3)  

AI 
presence 

Log count of AI 
keywords 

Log days App. to 
Pub. 

Treated patents x Covid 0.024*** 0.047*** − 0.052***  
[0.007] [0.017] [0.009] 

Treated patents 0.073** 0.259*** 0.056***  
[0.025] [0.012] [0.007] 

Log number of words 0.105*** 0.259*** 0.002  
[0.012] [0.004] [0.002] 

Month dummies Yes Yes Yes 
Pharma sub-class 

dummies 
Yes Yes Yes 

Firm dummies Yes Yes Yes 
Firm-pharma sub class 

dummies 
Yes Yes Yes 

Observations 141,379 141,379 141,173 

Notes: The dependent variable in columns (1), (2) and (3) are AI Presence, Log 
Count of AI Keywords and Log Days App. to Pub. We use ordinary least square 
method in all models. Across model specifications, we see that the interaction 
coefficient is significant. Thus, these results provide a check and show that re
sults hold even if we extend the time period. The time horizon is January 2017 to 
December 2022 with COVID dummy starting from January 2020. The constant 
term is included but not reported. Robust standard errors are presented in the 
parenthesis. ‘***’,‘**’,‘*’ indicate significance at the 1 %, 5 % and 10 % 
respectively. 

S. Rathi et al.                                                                                                                                                                                                                                    



Technological Forecasting & Social Change 198 (2024) 122940

13

Appendix A  

Table A1 
AI dictionary keywords.  

3d imaging image segmentation phonological analysis speech-to-speech 
active vision information extraction phonology speech-to-text 
activity recognition interest point detection predictive stemming 
artificial intelligence knowledge representation prescriptive synthesizer 
augmented reality lemmatization recommender text analytics 
biometrics machine translation reconstruction text mining 
camera calibration mechatronic robotic text-to-speech 
chatbot mobile agent salient region detection text-to-voice 
computational control morphological scene anomaly detection texture representations 
computational photography morphology scene understanding video segmentation 
computer vision motion capture semantic video summarization 
content extraction motion path semantics virtual reality 
data-mining multi-agent shape inference visual 
distributed ai natural language processing shape representation visual indexing 
epipolar geometry object detection speech processing visual inspection 
hierarchical representation object identification speech recognition visual retrieval 
hyperspectral imaging object recognition speech synthesis voice recognition 
image representation personal assistant speech-generating voice-to-text 

Notes: Table shows excerpts of the keywords in the AI dictionary that we use to match in the patent abstract to identify if AI is present and to what extent.  

Table A2 
Patent abstract example.  

Patent Number: US10322193B1; Application Date: 2019-06-18. 
Abstract: The present invention relates to therapeutic conjugates with improved ability to target various diseased cells 

containing a targeting moiety (such as an antibody or antibody fragment), a linker and a therapeutic moiety, and further 
relates to processes for making and using the conjugates. 

Treated Patent: No; AI Presence: No; Count of AI Keywords: 0. 
Patent Number: US10395761B1; Application Date: 2019-04-22. 
Abstract: Various methods, systems, computer readable media, and graphical user interfaces (GUIs) are presented and 

described that enable a subject, doctor, or user to characterize or classify various types of cancer precisely. Additionally, 
described herein are methods, systems, computer readable media, and GUIs that enable more effective specification of 
treatment and improved outcomes for patients with identified types of cancer. Some embodiments of the methods, 
systems, computer readable media, and GUIs described herein comprise obtaining RNA expression data and/or whole 
exome sequencing (WES) data for biological samples; determining a respective plurality of molecular-functional (MF) 
profiles for a plurality of subjects; clustering the plurality of MF profiles to obtain MF profile clusters; determining a 
molecular-functional (MF) profile for an additional subject; and identifying, from among the MF profile clusters, a 
particular MF profile cluster with which to associate the MF profile for the subject. 

Treated Patent: Yes; AI Presence: No; Count of AI Keywords: 0. 
Patent Number: US2020395100A1; Application Date: 2020-08-26. 
Abstract: Systems and methods are disclosed for generating a therapeutic response predict or detecting a disease, by: using 

a genetic analyzer to generate genetic information; receiving into computer memory a training dataset comprising, for 
each of a plurality of individuals having a disease, (1) genetic information from the individual generated at first time 
point and (2) treatment response of the individual to one or more therapeutic interventions determined at a second, 
later, time point; and implementing a machine learning algorithm using the dataset to generate at least one computer 
implemented classification algorithm, wherein the classification algorithm, based on genetic information from a 
subject, predicts therapeutic response of the subject to a therapeutic intervention. 

Treated Patent: Yes; AI Presence: Yes; Count of AI Keywords: 5 

Notes: Table shows three examples of patent abstracts along with the patent number and application date. The 
first abstract doesn't belong to a treated patents as it doesn't contain any technical artifact in the abstract. The 
second abstract is the treated patent because it comprises words like computer, system, method etc. but doesn't 
contain any AI related words. Third abstract is from a treated patent and contains AI keywords. We also show 
values of AI Presence and Intensity that are obtained post this matching in all patents.  
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Fig. A1. Days from application to publication of patent.  

References 

Abramo, G., D’Angelo, C.A., Di Costa, F., Solazzi, M., 2011. The role of information 
asymmetry in the market for university–industry research collaboration. J. Technol. 
Transfer 36 (1), 84–100. 

Acemoglu, D., Restrepo, P., 2020. The wrong kind of AI? Artificial intelligence and the 
future of labour demand. Camb. J. Reg. Econ. Soc. 13 (1), 25–35. 

Agrawal, A., Gans, J.S., Goldfarb, A., 2019. Exploring the impact of artificial intelligence: 
prediction versus judgment. Inf. Econ. Policy 47, 1–6. 

Agrawal, A., Gans, J.S., Goldfarb, A., et al., 2022. Similarities and Differences in the 
Adoption of General Purpose Technologies. National Bureau of Economic Research. 

Amabile, T.M., 2020. Creativity, artificial intelligence, and a world of surprises. Acad. 
Manag. Discov. 6 (3), 351–354. 

Aristodemou, L., 2020. Identifying Valuable Patents: A Deep Learning Approach 
(Unpublished doctoral dissertation). University of Cambridge. 

Aristodemou, L., Tietze, F., 2018. The state-of-the-art on intellectual property analytics 
(IPA): A literature review on artificial intelligence, machine learning and deep 
learning methods for analysing intellectual property (IP) data. World Patent Inf. 55, 
37–51. 

Babu, K.A., Shirlin, M., Manjula Devi, A., 2021. Artificial intelligence in pharma. Int. J. 
Curr. Res. Physiol. Pharmacol. 5 (1), 1–3. 

Bada, A., 2019. World’s Oldest Pharmaceutical Merck Wins New AI & Blockchain Patent. 
BTCNN. 

Bessant, J., Kunne, C., M̈ oslein, K., 2012. Opening up Healthcare Innovation: Innovation 
Solutions for a 21st Century Healthcare System. Advanced Institute for Management 
Research. 

Bianchini, S., Muller, M., Pelletier, P., 2022. Artificial intelligence in science: an 
emerging̈ general method of invention. Res. Policy 51 (10), 104604. 

Blackwell, M., Iacus, S., King, G., Porro, G., 2009. CEM: coarsened exact matching in 
Stata. Stata J. 9 (4), 524–546. 

Bloch, H., Metcalfe, S., 2018. Innovation, creative destruction, and price theory. Ind. 
Corp. Chang. 27 (1), 1–13. 

Block, J., 2020. COVID-19 puts spotlight on artificial intelligence: pandemic amplifies 
the power of AI to generate actionable information. GEN Edge 2 (1), 149–155. 

Boutillier, S., Laperche, B., Lebert, D., Elouaer-Mrizak, S., 2023. A systemic analysis of 
the technological trajectory at company level based on patent data: the case of 
Sanofi’s vaccine technology. Technovation 124, 102746. 

Bresnahan, T., 2010. General purpose technologies. In: Handbook of the Economics of 
Innovation, 2, pp. 761–791. 

Bresnahan, T.F., Trajtenberg, M., 1995. General purpose technologies ‘engines of 
growth’? J. Econ. 65 (1), 83–108. 

Brynjolfsson, E., Rock, D., Syverson, C., 2021. The productivity J-curve: how intangibles 
complement general purpose technologies. Am. Econ. J. Macroecon. 13 (1), 
333–372. 

Bughin, J., Hazan, E., Lund, S., Dahlstrom, P., Wiesinger, A., Subramaniam, A., 2018. 
Skill shift: automation and the future of the workforce. McKinsey Glob. Inst. 1, 3–84. 

Burki, T., 2019. Pharma blockchains AI for drug development. Lancet 393 (10189), 
2382. 

Calvino, F., Samek, L., Squicciarini, M., Morris, C., 2022. Identifying and Characterising 
AI Adopters: A Novel Approach Based on Big Data. OECD. 

Cao, G., Duan, Y., Edwards, J.S., Dwivedi, Y.K., 2021. Understanding managers’ attitudes 
and behavioral intentions towards using artificial intelligence for organizational 
decisionmaking. Technovation 106, 102312. 

Cardinal, L.B., 2001. Technological innovation in the pharmaceutical industry: the use of 
organizational control in managing research and development. Organ. Sci. 12 (1), 
19–36. 

Carter, D., 2020. Regulation and ethics in artificial intelligence and machine learning 
technologies: where are we now? Who is responsible? Can the information 
professional play a role? Bus. Inf. Rev. 37 (2), 60–68. 

Chan, H.S., Shan, H., Dahoun, T., Vogel, H., Yuan, S., 2019. Advancing drug discovery 
via artificial intelligence. Trends Pharmacol. Sci. 40 (8), 592–604. 

Chen, W., Zaiyan, W., Xie, K., 2022. The battle for homes: how does home sharing 
disrupt local residential markets? Manag. Sci. 68 (12), 8515–9218. 

Cockburn, I.M., 2006. Is the pharmaceutical industry in a productivity crisis? Innov. 
Policy Econ. 7, 1–32. 

Cockburn, I.M., Kortum, S.S., Stern, S., 2002. Are all Patent Examiners Equal? The 
Impact of Examiner Characteristics. National Bureau of Economic Research. 

Cockburn, I.M., Henderson, R., Stern, S., 2018. The impact of artificial intelligence on 
innovation: An exploratory analysis. In: The Economics of Artificial Intelligence: An 
Agenda. University of Chicago Press, pp. 115–146. 

Colombo, S., 2020. Applications of artificial intelligence in drug delivery and 
pharmaceutical development. In: Artificial Intelligence in Healthcare. Elsevier, 
pp. 85–116. 

Dal Mas, F., Biancuzzi, H., Massaro, M., Miceli, L., 2020. Adopting a Knowledge 
Translation Approach in Healthcare Co-production. A Case Study. Management 
Decision. 

Davenport, T.H., Ronanki, R., 2018. Artificial intelligence for the real world. Harv. Bus. 
Rev. 96 (1), 108–116. 

Dernis, H., Calvino, F., Moussiegt, L., Nawa, D., Samek, L., Squicciarini, M., 2023. 
Identifying Artificial Intelligence Actors Using Online Data. OECD. 

DiMasi, J.A., Grabowski, H.G., Hansen, R.W., 2016. Innovation in the pharmaceutical 
industry: new estimates of R&D costs. J. Health Econ. 47, 20–33. 

Dranove, D., Garthwaite, C., 2022. Artificial Intelligence, the Evolution of the Healthcare 
Value Chain, and the Future of the Physician. National Bureau of Economic 
Research. 

Erzurumlu, S.S., Pachamanova, D., 2020. Topic modeling and technology forecasting for 
assessing the commercial viability of healthcare innovations. Technol. Forecast. Soc. 
Chang. 156, 120041. 

Fry, C.V., 2021. Crisis and the trajectory of science: evidence from the 2014 Ebola 
outbreak. Rev. Econ. Stat. 1–35. 

Giczy, A.V., Pairolero, N.A., Toole, A.A., 2022. Identifying artificial intelligence 
invention: a novel AI patent dataset. J. Technol. Transf. 47 (2), 476–505. 

Goldfarb, A., Teodoridis, F., 2022. Why Is AI Adoption in Health Care Lagging. 
Brookings. 

Goldfarb, A., Taska, B., Teodoridis, F., 2020. Artificial intelligence in health care? 
Evidence from online job postings. AEA Papers Proc. 110, 400–404. 

Green, C., 2017. Technology innovation will help prepare drug discovery for smart 
screening era. Drug Discov. 18, 17. 

Grimaldi, M., Quinto, I., Rippa, P., 2013. Enabling open innovation in small and medium 
enterprises: a dynamic capabilities approach. Knowl. Process. Manag. 20 (4), 
199–210. 

Haefner, N., Wincent, J., Parida, V., Gassmann, O., 2021. Artificial intelligence and 
innovation management: a review, framework, and research agenda. Technol. 
Forecast. Soc. Chang. 162, 120392. 

Hammadou, H., Paty, S., Savona, M., 2014. Strategic interactions in public R&D across 
European countries: a spatial econometric analysis. Res. Policy 43 (7), 1217–1226. 

Iacus, S.M., King, G., Porro, G., 2012. Causal inference without balance checking: 
coarsened exact matching. Polit. Anal. 1–24. 

Igna, I., Venturini, F., 2023. The determinants of AI innovation across European firms. 
Res. Policy 52 (2), 104661. 

Irving, W.B., 2020. What history tells us about the accelerating AI revolution. Wall Street 
J. https://www.wsj.com/articles/what-history-tellsus-about-the-accelerating-ai-r 
evolution-01590169213?reflink=desktopwebshare_permalink. 

S. Rathi et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0005
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0005
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0005
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0010
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0010
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0015
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0015
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0020
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0020
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0025
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0025
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0030
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0030
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0035
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0035
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0035
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0035
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0040
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0040
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0045
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0045
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0050
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0050
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0050
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0055
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0055
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0060
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0060
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0065
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0065
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0070
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0070
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0075
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0075
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0075
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0080
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0080
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0085
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0085
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0090
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0090
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0090
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0095
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0095
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0100
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0100
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0105
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0105
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0110
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0110
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0110
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0115
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0115
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0115
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0120
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0120
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0120
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0125
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0125
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0130
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0130
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0135
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0135
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0140
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0140
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0145
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0145
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0145
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0150
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0150
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0150
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0155
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0155
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0155
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0160
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0160
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0165
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0165
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0170
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0170
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0175
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0175
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0175
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0180
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0180
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0180
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0185
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0185
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0190
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0190
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0195
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0195
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0200
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0200
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0205
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0205
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0210
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0210
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0210
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0215
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0215
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0215
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0220
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0220
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0225
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0225
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0230
http://refhub.elsevier.com/S0040-1625(23)00625-X/rf0230
https://www.wsj.com/articles/what-history-tellsus-about-the-accelerating-ai-revolution-01590169213?reflink=desktopwebshare_permalink
https://www.wsj.com/articles/what-history-tellsus-about-the-accelerating-ai-revolution-01590169213?reflink=desktopwebshare_permalink


Technological Forecasting & Social Change 198 (2024) 122940

15

Jacobides, M.G., Brusoni, S., Candelon, F., 2021. The evolutionary dynamics of the 
artificial intelligence ecosystem. Strat. Sci. 6 (4), 412–435. 

Kim, Y.K., Oh, J.B., 2017. Examination workloads, grant decision bias and examination 
quality of patent office. Res. Policy 46 (5), 1005–1019. 

Kostic, E.J., Pavlovi’c, D.A., Zivkovic, M.D., 2019. Applications of artificial intelligencé
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