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Abstract

This study addresses operational issues in estimation of parsimonious term structure
models. When using price errors, objective function in term structure estimation is a
highly non-linear function of the parameters. This necessary entails using numerical
optimization techniques for estimation, which brings to fore the issue of (sensitivity of

results to) the choice of initialization of the optimization routine.

This study assesses the sensitivity of the final objective function value and the final
parameter vector to the choice of the initial vector for three popular specifications,
namely, Nelson-Siegel (1987), Svensson (1994), and Cox-Ingersoll-Ross (1985). It turns
out that given the nature of the objective function, the choice of the starting vector is far
from obvious in all three cases. There exist regions in the shape of the objective function
in all three where a slight change in (seemingly reasonable) initial vector takes one far
from optimum. Choice of the (range of) ‘best’ starting vector turns out to be an empirical
matter. Grid search is recommended. One must first get to a subset of initial values which
results in the objective function value near the minimum and then assess the sensitivity of
the final parameter vector to those (subset of) initial values. The study illustrates the

process using a typical trading day’s data.

[Preliminary Draft. Please Don’t Quote]
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1. Introduction

Both single factor equilibrium models (e.g. Vasicek, 1977, Brennan and Schwartz 1979,
Cox-Ingersoll-Ross, 1985 etc.) and models of the Nelson-Siegel (1987; NS) family are
quite popular in the term structure literature for modelling interest rates. Their
attractiveness lies not only in their parsimony but also in their ability to give

economically sensible estimates of the term structure.

Despite their popularity (or perhaps because of it), operational issues are rarely, if ever,
discussed while reporting the results'. For anyone familiar with the functional form of
these models, it is easy to see that the objective function (when using price errors) is a
highly non-linear function of the parameters. This necessary entails using numerical
optimization techniques for estimation. Though, depending on the exact nature of the
objective function, estimability may or may not be an issue, unless there is some idea
about the behaviour of the objective function and sensitivity of the final parameter vector

to initialization, a priori, well, we just don’t know.

This study is an experiment to see how the objective function value (fval hereafter) and
the final parameter vector (l; hereafter) vary as the initial parameter vector (b, hereafter)
is changed around its neighbourhood for a typical trading day’s data. Three popular

parsimonious models of the term structure, namely, NS, Svensson (1994; SV), and Cox-

Ingersoll-Ross (1985; CIR) are selected for the purpose.

Since the literature is replete with the description/applications of term structure methods
studied here (see Bliss, 1997, loannides, 2003 and others for a survey and original papers
for the details), after briefly describing the methodology of estimation we move to study

the behaviour of the objective function

II. The Objective Function

Estimating a term structure, Bliss (1997) notes, requires decision on the following three

aspects:

! A notable exception is Bolder and Streliski (1999)
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1. A Pricing Function
2. A Discount/Rate Function

3. Estimation Technique (the objective function)

2.1 The Pricing Function

In the literature (see, for example, Bolder and Streliski, 1999, Bliss, 1997, Darbha, Roy
and Pawaskar, 2003 etc.) it is standard to specify the price of a default-risk free bond, in

absence of arbitrage, as:
P= Z c,0, 1]

where M is the time to maturity of the bond, ¢, is the cash flow received at time m, and
0, 1s what is called the ‘discount function’ in the term structure literature. The above

equation relates the discounted cash flows from the bond in discrete time periods to the
price of the bond. It is a rather straight forward matter to convert ‘discount function’ to a

‘rate function’ using the following equation:

rim) = %) 21

Since, conditions for perfect markets don’t exist in reality, and cash flows are received
only at discrete times, in practice one needs to give a stochastic form to equation [1], such

as:

P=fle,r(m]+e 3]

where ¢ is the ‘error’ term and accounts for whatever is not captured in the function f

about how bonds are priced. Bliss (1997) uses the term “omitted pricing factors” for

T
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“...factors which have been omitted from the bond pricing equation which

nonetheless impact the pricing of bonds’”

2.2 The Discount / Rate Function

The next decision in the exercise of term structure estimation involves the selection of a

form for the discount rate function. As stated already, the forms studied here are:

1. Nelson-Siegel (1987)
2. Svensson (1994)
3. Cox-Ingersoll-Ross (1985)

While the first two in the above list are empirical curve fitting exercise, the last belongs to
a set of models arising from intertemporal general equilibrium description of a
competitive economy with utility maximizing agents. A brief description of the three

models follows. Details can be found in the references cited earlier.

2.2.1 NS

NS assume that the instantaneous forward rate is the solution to a second order

differential equation with two equal roots. The forward rate function used by NS is:

fw;w=m+ﬂ&mGWnH¢%?memh) [4]

1

where b=(B,, B,, [, . ) is the vector of parameters to be estimated. The spot rate

function can in turn be derived by integrating the above equation. This gives:

1 —exp(-m/t,)
mjz,

- ﬂz exp(— m/Tl) [5]

s(mib) =B, + (B, + B,)

2 R. R. Bliss (1997), “Testing Term Structure Estimation Methods”, Advances in Futures and Options
Research, 9

T
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The spot rate function has four parameters. While £, and £, + S, are implied long-rate

and short-rate respectively, S, gives the medium term component of the yield curve, and

along with 7 defines the shape of the curve. The possible shapes of the term structure
that result as parameters vary can be found in NS, SV and Bolder and Streliski (1999) and

won’t be discussed here.

222 SV

SV adds a fourth term to the forward rate function given by NS, with two additional

parameters, ( f3,,7,), thereby adding to the flexibility of the shape of the term structure

(possibility of a second ‘hump’ — or what is often referred to as an S-shaped curve in the

literature — with f, and the other time decay parameter, 7,). The corresponding

functions are then given as:
m m
f(m;b)=pB,+ B exp(-m/z7,)) + B, — exp(—m/rl)+ﬂ3r—exp(—m/rz)
1 2

[6]

1 - exp(—m/z )

m/T,

S(m;b):ﬂo+(ﬂ1+ﬂ2) - ﬂzexp(_m/TJ

7]
1~ exp(-m/7 )

mjz,

- Byexp(-m/t,)

3

2.2.3  Empirical Implications of the Cox-Ingersoll-Ross Model

The dynamics of the interest rate process in CIR is given as™:

3 K is the mean reversion coefficient, & is the mean of the process, 7 is the instantaneous short rate, 0 is
the scale factor for variance of r, and A is the price of risk associated with 7.

T
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dr=x (0 —r)dt + o \Jr dz 8]

CIR, just like other affine models, in absence of arbitrage, results in the following pricing

equation:
Plr,t,T]=A[t, T]e """V 9]

wherefor =7 — ¢

95
A e @20 o
#,(exp (4,7) — 1) + 4,
exp(¢,7) -1
B[1,T]= [11]
¢2(6Xp(¢1 T) - 1) + ¢1

where

b= ((k+2)° +20%)" [12)

b=(x+1+4,)/2 [13]

¢, =2x0 | o* [14]
Value of a coupon bond can then be written as:

V[tced=YcPrtd) [15]

where d is the vector of coupon payment dates.

Then, given the prices of the traded bonds, one can estimate the parameters ¢,, ¢,, ¢,

and r (though for actual dynamics it is not possible® to separately identify the parameters,

* for risk-neutral dynamics with 1 = 0, the parameters of the process can be uniquely identified from
equations 12 — 14

T
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6, xk and A). The long-rate and volatility of the short-rate are given as a function of the

parameters ¢, ¢,, ¢, as follows:

r, = ¢, (¢1 _¢2) [16]
o’ = 2¢2(¢1 _¢2) [17]

Before moving further, it must be acknowledged that the theoretical CIR model describes
the process for real rates, as opposed to nominal rates. However, that said, it is still
attractive for modelling nominal rates because the structure of the model precludes

negative interest rates.

It is also intuitive because, like NS and SV, the model implies that the long rate (m — o)

converges to a constant. Now, although, volatility of the yield of the longest maturity
bond traded in the money market is clearly not zero, the fact that it converges to a

constant makes it appealing.

2.3 The Objective Function and the Estimation Strategy

The optimization problem is to minimize the weighted sum of square of (price) errors, i.e.

the objective function is:
N 2
min Z(a)l.gl.) (18]

subject to non-negativity constraints imposed on the short-rate, the long rate (m — )

and on ther s; where ¢, = P, — P, and

i N
Dl/d,
j

T
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where d, is the Macaulay duration of the i” bond”.

The loss function above has been specified as a function of price errors. An alternative
exists in taking the yield errors. However, since it is the bond prices that are traded in the
market, and not the yields, it makes sense to specify a loss function in terms of the
variable which is directly observed / traded in the market. Further, the weighting scheme
used — other than taking care of heteroskedasticity — also takes care of minimizing yield
errors indirectly. Recall that duration is a function of first derivative of price w.r.t yield,
and the weighting scheme is inverse of duration.

The basic process of determining the minimum involves selecting initial vector of
parameters, finding pricing errors based on starting vector and using a suitable routine for

selecting the optimum.

II1. Sensitivity of fval and b to b,: The Methodology

Before discussing the methodology used to assess the sensitivity of fval and b to b,,itis

must be clarified that the experiment is not an evaluation of the optimization routine used
(Sequential Quadratic Programming; SQP; as implemented in Optimization Toolbox of
MATLABV6.5 R13; procedure: fimincon) to estimate the parameters. To the extent that
the same technique is used to estimate the parameters across a range of initial values,
loosely speaking, it does provide evidence on the routine too, but experiment is not
designed for that purpose. The results, then, should be taken to be conditional on the

routine used to estimate the parameters.

SQP methods are standard general purpose algorithms for solving not too big, smooth
nonlinear optimization problems. It uses the popular BFGS (Broyden-Fletcher-Goldfarb-
Shanno, 1970) solver in optimization literature to estimate the parameters. Quoting from

MATLAB’s manual for the Optimization Toolbox,

° This weighing scheme corrects for the heteroskedasticity problem in the error terms which occurs if the
price errors are used instead of yield error. See Coleman, Fisher and Ibbotson (1995), Bliss (1997) and
Bolder and Streliski (1999) for a discussion. Using duration weighted loss function is also a proxy to
minimize yield errors when price errors are used in the loss function. Subramanian (2001) uses a liquidity
(instead of duration) weighted loss function

T
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“SOP methods represent the state of the art in nonlinear programming methods.
Schittkowski (1985), for example, has implemented and tested a version that outperforms
every other tested method in terms of efficiency, accuracy, and percentage of successful

6

solutions, over a large number of test problems.

The problem dealt with here is clearly not big (4 parameters in two of them and 6
parameters in one, with trivial linear constraints). Given the nature of the functional forms
used here, calculation of the objective function and its derivative are also uncomplicated.
The fact that the spot rate (and in turn, bond price) in NS and SV (in CIR, it is one of the
parameters) is a function of exponentials, in the least the objective function would be
continuous. Weighted by inverse of duration (a function of the bond price itself), the

objective function is suitably scaled too.

3.1 Data

To illustrate the behaviour of the objective function, trades data for first day of Jun, 2003
has been used. Though, to an extent arbitrary, the choice of the day was dictated by the
number of bonds traded and the value of trades during the day. As it happens, in the
history of the Wholesale Debt Market (WDM) segment of the National Stock Exchange
(NSE), trading activity in WDM was highest around the middle of 2003.

Roughly 15% of bonds selected at random were kept as out-of-sample bonds’. Only
bonds with 7 + 0 and T + [ settlement dates have been taken for the purpose of
estimation®. Value weighted prices are used while calculating pricing errors, and, as

mentioned earlier, errors have been weighted by inverse of duration.

 T. Coleman, M.A. Branch, and A. Grace , “Optimization Toolbox for use with MATLAB”, MATLAB
Optimization Toolbox User’s Guide Version 2, Section 2-24, Math Works Inc, 1999

7 This being a companion paper to a detailed time series analysis of the three term structure models, the out-
of-sample portion was ‘retained’ here too. Otherwise, this is not necessarily required.

¥ accounting for more than 90% of the number of trades on most days; dates where none of the bonds
settled on 7+ 0 or T + I dates, bonds settling on /T + 2/ date is also included

T
W.P. No. 2006-06-01 Page No 10



P

> 3

e INDIAN INSTITUTE OF MANAGEMENT
LIV AMEDABAD ¢ INDIA

Research and Publications

3.2 The Methodology

We proceed in three steps. First each model is estimated using a ‘reasonable’ first choice

b, and fval is noted. Choice of software apart, assuming that the choice of initial vector is

not too off mark, this is, of course, how one goes about getting to b. Only this is not

known if that is the best/safest thing to do.

Next, we change b, around its neighbourhood and study the sensitivity of fval and b to
b, . Choice of neighbourhood is to a large extent arbitrary, and depending on the model
varies. So, while b, + 0.02 may be too small a step in case of NS and SV, for the fourth

parameter (7, the short rate) in CIR, this amounts to a step size of 2% interest rate, clearly
quite large. The neighbourhood was selected after some trial and error, and the choice, to

a degree, is subjective. But since this study is only illustrative in nature, it is alright.

Clearly, sensitivity of both fval and b can be best appreciated in a partial derivative

sense. At the same time, changing only one parameter at a time is not enough. One has to

see how fval (and then b) varies as different combinations of initial values vary. Given
the limitation on three dimensions that we can deal with (graphically) at a time, we judge

the sensitivity of fval to changes in b taken two at a time. Reporting such results in the

form of tables would not only take up a lot of space, but would also make it mighty hard

to interpret. So, in the last step, this is how we proceed.

We change two initial values (say, f,and £, in the case of NS) at a time and plot the
variation in fval as both g, and f, vary. This is we do for all combinations of

parameters taken two at a time (*C, = 6 in the case of NS and CIR, and °C, = 15 in case of

SV). Once it is known around which (sub) set of b, (say, b, ) fval reaches minimum (or

minima, as the case may be), we study the behaviour of b (only) around b Z . The idea is

that once it is known how fval behaves as b, is changed locally, for final parameter

estimation we select only that subset of b (i.e. bZ), for which fval is the lower. This

W.P. No. 2006-06-01 Page No 11
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takes care of the problem of ending up with initial values for which fval is highly

sensitive to slight changes around it.

IV. Results

Next we report results for each specification separately.

4.1 Nelson Siegel

For NS, zero coupon yield curve estimates provided by NSE helped guess parameters for

first day of Jun, 2003. For NS, b is given in Table 1.

With these values, roughly the short-rate for the day becomes 4.58 % and the long-rate
6.72 %. For the chosen b, fval is 0.00305. For sake of readability, in what follows we

report 1000 times fval, i.e. the optimum value then is 3.05. Taking the short-rate and the
long-rate as the cue, the range for initial values chosen for the four parameters has been

taken to be as given in Table 1b.

Table la

Initial Parameter Vector (b ) for NS

NS Parameter Initial Value
B, 6.7147
B, -2.1333
B, -0.0735
T 4.0370

This implies a range (in initialization) for short-rate to be roughly 0.6 % to 8.6 %, and that
for long rate to be 4.7 % to 8.7 %. This is the sense in which the term ‘reasonable set of
initial starting values’ was used in the beginning of the study. Short-rate in money

market’ as on 2™ Jun, 2003 was 4.91 %.

? Corresponding to then mean Mumbai Inter-bank Offer Bid/Offer Rate (MIBID/MIBOR) as on 2™ Jun,
2003

T
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Table 1b
Selected Neighbourhood of b for NS

NS Parameter  Initial Value Minimum  Initial Value Maximum  Step Size / No. of Steps

B, 47147 8.7147 0.2/20
B, -4.1333 -0.1333 0.2/20
B, 2.0735 1.9265 0.2/20
T 2.0370 6.0370 0.2/20

During estimation, as required by construction, 7 was constrained to be positive. Further,
the long rate was constrained to lie between 0 and 20%, short-rate to be greater than -
4%'". No other constraints were imposed a priori during estimation. During the
experiment it was found that the upper bound for 7 could be reduced from infinity to a
large finite value (taken to be 100 here). This helped increase the estimation time. At no

point, did 7 come near the (imposed) upper bound.

In what follows shape of the objective function is shown as contour plots taking two

parameters at a time, this implies in all *C, (= 6) contour plots for fval.

4.1.1 Contour Plots
Figures 1a — 1f represent contour plots for fval - NS taking two parameters at a time.

For illustration/explanation sake, let’s first look at Figure 1a. The center of the plot is the

region where fval < 3.1 (with 2 ‘packets’ representing the region where fval = 3.1). As

we move outward towards the ends, fval is generally seen to increase, i.e. we go further
away from the minimum. Note that the region between the isolines fval = 3.1 and fval =

3.2 represents the set of initial values for which fval € /3.1, 3.2] . Similarly, region
between the isolines of fval = 3.1 represents the region for which fval < 3.1. Note that,

accordingly the region represented by isolines fval = 3.5 represents the region for which

1% exactly = initial estimate of long rate for 2™ Jun, 2003 - 10% ~ - 4%

T
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fval > 3.5 (in particular note the ‘thombi’ near g, € /-2.25, -2] and g, < 5.1, where

fval shifts from a very low to a very high value with a only a slight change in £,).

Although Figure 1a in itself says little about the shape of the objective function, it tells us

that there exists a set of initial values for which we fval is the least/lower. Now, if in this
range/subset of b, (using our earlier used notation, say, b ), b changes only marginally
we can safely say that (in a limited sense) fval is well-behaved and that we can rely on our

software to give reasonable estimates of b once b is chosen judiciously (i.e. whenever

b, =b)).

Figure la

fval -M3
(rrt Bgandp )

Figure 1a alone, however, gives only a partial picture. Let’s look at other plots. Here we
can pick either of Figures 1b to 1f, as they are all quite revealing about the characteristics

of the (sensitivity) of fval to b,. While, like in Figure 1a, in all plots there is a ‘central’
region for which fval is seen to be minimum, unlike Figure 1a, there appears to be a
region even in the periphery where fval reaches a minimum, and that too in the vicinity of
the points for which it is far away from the optimum. For example, in Figure 1b, around
region represented by g, € /5.3, 8/ and g, € [-1, 0.2], fval varies from as low as 3.05

D
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to as high as 3.5. Even, within that region there are ‘packets’ where fval shifts from a very
low to very high value. Note the presence of ‘rhombi’ as pointed out in Figure 1a in all

the plots.

Figure 1b

fval -NS
(wrtpyandp )

It must be reminded at this stage, that these plots do not represent the shape of the

objective function. They represent sensitivity of fval to change in b,. They show that
there exists a set of b, for which fval is highly sensitive to even slight changes in b,. 4
priori, thus, one can’t be sure if any given b, will result in minimum fva/, or even a near

value near the optimum.
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Figure Ic

fval - N3
{w.r.t fjand)

_§2

Figure 1d

fval - NS
(wrtp andf g

]
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Figure le

vl -NS
(w.rt Byandt
T

Figure If

fual -N3S
(wrip, andy
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Finally, look at Figure 1f. It is in this plot we see a region with fval < 3 [the region
p,< -1and r < 3]. Thus, given our choice of b, ‘space’ there does seem to exist a

unique minimum, though not identifiable very easily.

Given the initial value that we selected in Table la, optimization routine stopped when
fval reached 3.05. This says as much about the shape of the objective function, as it does

about the SQP method.

Our choice of b, for NS was based on actual estimates for the day provided by NSE.

Even though NSE’s exact objective function/estimation strategy is not known, this is the
best one could have done in terms of the selection of the starting vector. However, as the
contour plots here show, a priori, we just can’t know which set of initial values results in

a minimum fval. Thus, selection of a ‘good’ b, is strictly an empirical matter and is not

only far from obvious, one cannot realise it unless one studies the sensitivity of fval to a

range of values around the first choice b, .

This study, being illustrative in nature, focused only on the local neighbourhood of b, .

However, given the time (< 30 seconds) it takes to estimate the parameters for a day on a
PC and the cheap availability of computing resources, unless one must provide real time
estimates of the term structure, such sensitivity analysis for an even larger
neighbourhood, before narrowing down on the ‘best’ set of starting values, is very much
do-able.

For example, then, given the six contour plots for NS above, the best 5, can be roughly
identified as g, e [4.7,74], B, < -1, v < 2.25. As it happens, in the selected
neighbourhood, the choice of B, doesn’t seem to matter. Here, in the specific case of NS,

however, a useful starting point is available can be obtained using the money market
short-rate. Another alternative exists in constraining the short-rate to the money-market

rate.

T
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4.1.2  Sensitivity of b to change in b, (b,: fral < 3.05)

If for the region in which fval < 3.05, variation in b turns out to be only marginal or
economically insignificant, we needn’t worry much. If, however, there is a large variation
in b for b, for which fval < 3.05, it is a sign that the objective function is flat for a
range of b . If, that is indeed the case, then for a given set of b, not only the region of

minimum not known, it is also unidentifiable for the problem at hand''. This would be

bad news.

In what follows we report results on variation in b for which fval < 3.05. For each
combination of initial values (as in 6 contour plots above), variation in each component of

b is reported as density plots and summary statistics. To preserve space, density plots and

summary statistics tables are shown only for those parameters that have direct economic

interpretation, i.e. S, (=r,) and B, + B, (=r,) for NS. Density plots and summary

statistics for sensitivity of other parameters are available on request.

» B, =r, (the Long Rate)

Table 2a

Min Max Mean Median Std. Dev.

1-2 6.55 6.87 6.73 6.76 0.09
1-3 6.69 6.77 6.73 6.73 0.01
1-4 6.65 6.77 6.71 6.71 0.02
2-3 6.69 6.77 6.73 6.73 0.01
2-4 6.68 6.76 6.71 6.71 0.02
3-4 6.54 6.77 6.71 6.72 0.04

' Note that this is not conditional on the optimization routine used. A contour plot is just a plot of variation
in fval as b changes

T
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Figure 2a
Variation in B = r_(NS)
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Variationin f + B, =r, (NS)
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» B, + B, =r, (the Short Rate)
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Table 2b

Min Max Mean Median Std. Dev.

1-2 443 4.64 4.58 4.60 0.05
1-3 4.58  4.60 4.59 4.59 0.00
1-4 458  4.62 4.60 4.60 0.01
2-3 458  4.60 4.59 4.59 0.00
2-4 4.58  4.62 4.60 4.61 0.01
3-4 458 476 4.61 4.59 0.03

Clearly, in the sub-set of starting values considered here there is little variation in the final
parameter values. The range of long rate comes out to be 6.5 % to 6.9 %, and that for
short rate 4.4 % to 4.8 %, with most density plots centered around 6.7 % for long rate and
4.6 % for short rate. The summary statistics in 7ables 2a and 2b confirm that.

In the subsequent sub-sections, for CIR and SV we use the same strategy as followed in

the case of NS. That is, after selecting a first choice b, we narrow down on a ‘best’ b

and report the sensitivity of final parameter values to b5 ,. To preserve space, however,

contour plots (in all 4C2 + 6C2 = 21) for these would are not shown here. They are

available on request from the author.

4.2 CIR

For CIR, while selection of a range of values for » (the fourth parameter) was easy, trial
and error had to used to come to a minimum and maximum values for ¢, ¢, and ¢,.
Short rate () was constrained to be greater than 1% and less than 20%. Further, the initial
values were chosen to be such that ¢ was always greater than ¢,. All parameter values
were constrained to be greater than zero during estimation.

The selected initial parameter vector and the neighbourhood then are given in Tables 3a

and 3b respectively.

T
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Table 3a

Initial Parameter Vector for NS

NS Parameter Initial Value
¢ 0.2683
2 0.2332
?s 1.8952
r 0.0436
Table 3b

Initial Parameter Vector Range for CIR

NS Parameter  Initial Value Minimum  Initial Value Maximum  Step Size / No. of Steps

P, 0.1933 0.2933 0.005 /20
9, 0.0332 0.1732 0.007 /20
Py 1.1452 2.1452 0.05 /20
r 0.0436 0.0636 0.001 /20

The process of identifying the ‘best’ b, was same as followed in the case of NS. (1000

times) fval corresponding to the first choice b,(as in Table 3a) was 3.048. Then we

proceeded to assess the sensitivity of b to changein b : fval < 3.048.

Now we report the sensitivity of b tob »; again only for those variables/values which

have a direct economic interpretation, i.e. the short and the long rate. As in the case of
NS, results are reported as summary statistics (7ables 4a and 4b) and density plots
(Figures 3a and 3b). Density plots and summary statistics for sensitivity of other

parameters are available on request.
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Table 4a

Min Max Mean Median Std. Dev.

1-2 4.57  4.65 4.60 4.60 0.02
1-3 457  4.64 4.60 4.60 0.02
1-4 456  4.65 4.61 4.61 0.02
2-3 4.57  4.64 4.61 4.61 0.02
2-4 457  4.65 4.61 4.60 0.02
3-4 457  4.65 4.60 4.60 0.02

> 9@ - 9) =T,

Table 4b

Min Max Mean Median Std. Dev.

1-2 6.26 6.79 6.60 6.64 0.15
1-3 6.27 6.78 6.65 6.68 0.11
1-4 6.28 6.79 6.63 6.70 0.14
2-3 6.25 6.78 6.54 6.52 0.14
2-4 624  6.77 6.60 6.68 0.17
3-4 624  6.76 6.58 6.62 0.15

For CIR also, in the subset of starting values considered here (b ), variation in the short-

rate is limited to 4.55 % to 4.65 %, though in the long-rate is much higher with the range
approximately 6.2 % to 6.8 %, though not too different from that obtained in NS, standard

deviation in case of CIR is higher.

Following the same procedure as above, finally, we report results for SV.

T
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Figure 3a

Variation in r = r, (CIR)
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Same starting values as NS were used for SV with S, being initialized (approx.) same as
f, and 7, initialized as (approx.) 1 more than 7, (some degree of trial and error was
involved in the process). To enable identification, difference between 7, and 7, was
constrained to be least 0.25. As in NS, both 7, and 7, were constrained to be greater than

zero. Same constraints as in the case of NS were imposed as in SV for the short and the
long rate. The selected initial parameter vector and the neighbourhood in the case of SV

are given in Tables 5a and 5b respectively.

Table 5a

Initial Parameter Vector for SV

NS Parameter Initial Value
B, 6.6578
B -2.0255
B, -0.7043
B, -0.7133
o 2.1088
T2 2.9280
Table 5b

Initial Parameter Vector Range for SV

NS Parameter  Initial Value Minimum  Initial Value Maximum  Step Size / No. of Steps

B, 4.6578 8.6578 0.2/20
B, -4.0225 -0.0225 0.2/20
B, -2.7043 1.2957 0.2/20
B, -2.7133 1.2867 0.2/20
T, 0.1088 4.1088 0.2/20
7, 0.9280 4.9280 0.2/20
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Min

Max

Mean

Median

Std. Dev.

1-2
1-3
1-4
1-5
1-6
2-3
2-4
2-5
2-6
3-4
3-5
3-6
4-5
4-6
5-6

6.60
6.52
6.64
6.62
6.51
6.56
6.62
6.57
6.48
6.51
6.57
6.49
6.49
6.49
6.50

6.73
6.73
6.71
6.76
6.73
6.73
6.73
6.73
6.74
6.83
6.72
6.81
6.83
6.94
6.80

6.68
6.63
6.67
6.68
6.64
6.63
6.66
6.67
6.62
6.66
6.64
6.63
6.66
6.65
6.65

6.68
6.63
6.67
6.67
6.63
6.62
6.66

0.02
0.04
0.01
0.02
0.05
0.04
0.02

6.67 0.04
6.61 0.06
6.65 0.07

6.64
6.63
6.66
6.65
6.66

0.04
0.06
0.04
0.06
0.08
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Figure 4a

Variation in 8 = r_(SV)
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» B, + B, =r, (the short rate)

Table 6b

Min Max Mean Median Std. Dev.

1-2 4.62 4.71 4.65 4.65 0.01
1-3 4.63 4.86 4.72 4.70 0.06
1-4 4.62 4.66 4.64 4.64 0.01
1-5 4.60 4.71 4.66 4.66 0.02
1-6 4.60 4.75 4.68 4.68 0.04
2-3 4.62 4.96 4.74 4.72 0.07
2-4 4.62 4.71 4.65 4.65 0.01

2-5 4.61 4.81 4.68 4.67 0.04
2-6 4.60 4.83 4.67 4.66 0.04
3-4 4.62 4.86 4.72 4.72 0.06

3-5 4.62 5.00 4.74 4.70 0.10
3-6 4.60 5.01 4.74 4.72 0.08
4-5 4.61 5.01 4.67 4.66 0.06
4-6 4.60 5.02 4.70 4.67 0.09
5-6 4.60 4.81 4.68 4.66 0.06

Figure 4b
Variationin B+ p, =1, (SV)
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The process of identifying the ‘best’ b, was again the same described above. (1000

times) fval corresponding to the first choice b, (as in Table 4a) was 2.98. We assessed the

sensitivity of b to change in b : fval < 2.98.

Tables 6a and 6b and density plots Figures 4a and 4b respectively report the sensitivity of

b to by,; again only for those variables/values which have a direct economic

interpretation, i.e. the short and the long rate. Density plots and summary statistics for

sensitivity of other parameters are available on request.

The variation in long-rate in SV is around 6.4 % to 7 % and that in the short-rate is 4.6%

to 7 %. The standard deviation in variation is of the same order as that in the case of NS.

V. Conclusion

As it turns out, given the nature of the objective function in term structure estimation
using parsimonious models considered here, the selection of the starting vector during
optimization is a highly non-trivial matter. There exist regions in the shape of the
objective function in all three cases where a slight change in (seemingly reasonable)

initial vector takes one far from optimum.

Thus, for each day for which the term structure has to be estimated, a grid of reasonable

starting values must be chosen and shape of fval assessed as b, is varied before
narrowing down on a subset for which fval turns out to be minimum. It is for this subset

of b, that b must be analysed.
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