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Abstract 

 

Various volatility estimators and models have been proposed in the literature to measure volatility of 

asset returns. In this paper, we compare empirical performance of various unconditional volatility 

estimators and conditional volatility models (GARCH and EGARCH) using time-series data of 

S&PCNX Nifty, a value-weighted index of 50 stocks traded on the National Stock Exchange (NSE), 

Mumbai. The estimates computed by various estimators and conditional volatility models over non-

overlapping one-day, five-day and one-month periods are compared with the “realized volatility” 

measured over the same period. We use three years’ (1999-2001) high-frequency data set of five-

minute returns to construct measures of realized volatility. In order to test the ability of the 

estimators and models to forecast volatility, we compare the estimates of unconditional estimators 

with the realized volatility measured in the next period of same length. For conditional volatility 

models, the forecasts for the same periods are obtained by estimating models from the time-series 

prior to the forecast period. Our results indicate that while conditional volatility models provide less 

biased estimates, extreme-value estimators are more efficient estimators of realized volatility. As far 

as forecasting ability of models and estimators is concerned, conditional volatility models fare 

extremely poorly in forecasting five-day (weekly) or monthly realized volatility. In contrast, extreme-

value estimators, other than the Parkinson estimator, perform relatively well in forecasting volatility 

over these horizons.  

 



 

1. Introduction 

Modeling and forecasting stock market volatility is of considerable interest to the 

practitioners and researchers alike. This has led to considerable research in this area in the past 

decade or so. The ARCH model, introduced by Engle (1982) and later generalized by Bollerslev 

(1986) spawned numerous empirical studies modeling volatility in developed markets1. Later, there 

have been quite a few studies focussed on emerging stock markets2 as well. Researchers have 

increasingly used conditional volatility models such as ARCH, GARCH and their extensions, as these 

models have helped them to model some of the empirical regularities. Starting with the pioneering 

work of Mandelbrot (1963) and Fama (1965), the following features of stock returns have been 

extensively documented3 in the literature- 

 

1. Positive serial correlation in volatility or Volatility clustering. Mandelbrot (1963) noticed that 

“large changes in stock prices tend to be followed by large changes of either sign, whereas small 

changes tend to be followed by small changes of either sign”. This implies that volatility of 

returns changes with time and that the changes in volatility are non-random.  

2. Thick-tailed marginal distribution of returns. Mandelbrot (1963) and Fama (1965) found that the 

asset returns tend to be leptokurtic.  

3. Leverage effect, first noted by Black (1976). The changes in stock prices tend to be negatively 

correlated with changes in stock volatility. Black (1976) argued that the changes in stock volatility 

are too large in response to changes in return direction, to be explained by the leverage effect 

alone. The works of Christie (1982) and Schwert (1989) later supported this conclusion.  

                                                           
1  For a review of empirical applications of ARCH models on low frequency data, see Bollerslev et al. (1992,1994) 

2  For example, Varma (1999) evaluates the performance of GARCH-GED and EWMA models, in term of goodness of fit, in the context 

of Indian capital markets. 

3 See Bollerslev et al. (1994). 



4. Low volatility during non-trading periods. Fama (1965) and French and Roll (1986) noted that 

the volatility of returns during trading periods tend to be considerably higher than during non-

trading periods. 

5. Predictability of volatility. As noted by Cornell (1978) and Patell and Wolfson (1981), the 

volatility of individual firms’ stock returns is high during earning announcement. Predictable 

changes in volatility have also been found within the trading period. Volatility is typically much 

higher at the beginning and close of trading period than the rest of the trading period (Harris 

1986, Baillie and Bollerslev 1991) 

6. Co-movements in volatility. Black (1976) observed that volatility seems to change across stocks. 

Later, Diebold and Nerlove (1989) and Harvey et al. (1992) in the context of exchange rate 

volatility movements and Engle et al. (1990) in the context of US bond markets for volatilities 

across maturities found similar results. Engle and Susmel (1993) and Hamao et al. (1990) and 

other later studies have also found close links in volatility movements across countries. 

 

The autoregressive conditional heteroskedasticity (ARCH) model proposed by Engle (1982) 

and its various extensions such as GARCH (Bollerslev 1986), A-GARCH (Engle and Ng 1993), 

EGARCH (Nelson 1991), ARCH-M (Engle et al. 1987), Components ARCH (Engle and Lee 1993) 

etc. have been developed to model some of the above-mentioned characteristics of financial time 

series. In particular, different models have tried to capture time varying second moments of return 

distributions, time varying and mean reverting second moments, leverage effect, varying first 

moment, time varying “baseline” second moment, undefined second moment etc.  

 

Despite the ability of the ARCH/GARCH-type models to capture the stylized facts about 

volatility and return distribution characteristics, their usefulness ultimately depends on their ability to 

forecast volatility as pointed out by Engle and Patton (2001) recently. Moreover, as pointed out by 

Poon and Granger (2003) in a recent article reviewing volatility forecasting findings, there are at least 



three stylized facts in the volatility modeling literature, which have not been captured by ARCH type 

models. They are- 

 

1. The standardized residuals from ARCH/GARCH models tend to be leptokurtic, i.e., conditional 

heteroskedasticity alone is unable to explain the tail thickness of returns distribution (Bollerslev 

1987, Hsieh 1989). 

2. The hypothesis of a unit root in variance has not been rejected by several studies (French et al. 

1987, Chou 1988, Pagan and Schwert 1990). 

3. GARCH effect disappears once large shocks are controlled for (Aggarwal et al. 1999). 

 

As far as volatility forecasting is concerned, Akigray (1989) in an early work found that 

GARCH (1, 1) outperformed models based on historical prices. Later works4 across different 

countries using different data sets have reported different results. Pagan and Schwert (1990) 

compared GARCH, EGARCH, Markov switching regime and three non-parametric models for 

forecasting monthly US stock return volatilities and found that EGARCH followed by GARCH 

performed moderately, while other models had little prediction power. Comparing GARCH, 

QGARCH and GJR model for forecasting various European stock market indices, Franses and van 

Dijk (1996) found that non-linear GARCH models did not perform better than standard GARCH 

model. Brailsford and Faff (1996) find GJR and GARCH models slightly superior to various simpler 

models in predicting Australian stock index volatility. From the literature on forecasting volatility, it 

is clear that it is difficult to forecast volatility. Similarly, the evidence on the performance of various 

models is mixed. In Indian context, there have been not very many studies comparing forecasting 

ability of various volatility models, even though ARCH/GARCH type models have been used in 

various empirical works to model time-varying second moment and serial correlation in volatility. 

                                                           
4 See Poon and Granger (2003) for a detailed review of 93 papers on volatility forecasting. 



Given that the ability of various models to forecast is contingent on the empirical return distribution, 

the choice of an appropriate volatility model for its forecasting ability is essentially an empirical issue.   

 In addition to testing comparative performance of various conditional volatility models, 

another strand has evolved in the literature in the form of research on extreme-value volatility 

estimators, following work of Parkinson (1980). These estimators are historical unconditional 

estimators and are based on the range of prices observed during trading, unlike the classical or 

traditional volatility estimator, which uses closing price. These estimators though not popular, have 

been shown to be theoretically much more efficient compared to the traditional estimator. One 

reason for the lack of interest in these estimators is that they could be downward-biased compared to 

traditional estimator due to discreteness of prices and trading in the stock markets. However, recently 

Li and Weinbaum (2000) argued that the assumed unbiasedness of the traditional estimator is 

contingent on the validity of assumption of return generating process. They contend that both the 

bias and efficiency of extreme value estimators and the traditional estimator is more of an empirical 

issue. In their empirical work, they use the realized volatility measure using high frequency data, 

developed by Andersen et al. (2001a), as the benchmark to evaluate the empirical performance of 

extreme-value estimators vis-à-vis traditional estimators. Besides the issue of bias, extreme-value 

estimators, unlike conditional volatility models, do not explicitly incorporate the empirical features of 

returns’ distribution discussed above, and are therefore, not as attractive as conditional volatility 

models. . 

 

 In this paper, we report the empirical performance of both historical, unconditional volatility 

estimators and of conditional volatility models using realized volatility measure as the benchmark. 

The motivation for comparing two different classes of volatility estimators and models in Indian 

context stems from the fact that ultimately their usefulness can only be determined empirically. In 

some ways, the work is similar to the study by Li and Weinbaum (2000) and its replication and 

extension in Indian capital markets by Pandey (2002). However, these studies did not include 



conditional volatility models for comparison. Besides including estimates from various conditional 

volatility models, we also extend the scope of previous studies by investigating the predictive power 

of the estimators and models. The latter part is similar to studies by Day and Lewis (1992) and Pagan 

and Schwert (1990). In this work however, we have used realized volatility measure, which has been 

shown to be model free by Andersen et al. (2001a, 2001b), as the “true” volatility to be forecasted by 

the estimators and models.  

 

 The paper is organized in five sections. In the next section, we review volatility models and 

estimators proposed in the literature. We also discuss theoretical and empirical issues related to these 

models and estimators. Our emphasis in this review is on extreme-value estimators as numerous 

papers and textbooks5 provide comprehensive review of conditional volatility models. In section 3, 

we describe the methodology and the data used in this work. Section 4 covers our finding. In section 

5, we conclude by summarizing the results and by discussing the directions for future research in 

Indian capital markets. 

 

2. Review of Volatility Models 

 

 There are various classes of models and estimators, which have been proposed in the 

literature for measuring volatility of asset returns. Models and estimators, assuming volatility to be 

constant are the oldest ones among the models which have been used to estimate and forecast 

volatility. These models and estimators measure “unconditional volatility”. With the recognition of 

empirical regularity that the volatility in financial markets is clustered in time and is time varying, 

these models gave way to models measuring “conditional volatility”. In addition, volatility estimated 

from the value of options, in which typically volatility is the only unobservable parameter for 

valuation, allowed researchers and practitioners to use “implied volatility”, i.e., the market forecast of 

                                                           
5 For example, Bollerslev et al. (1992, 1994), Alexander (1998) etc. 



volatility in valuing the traded options. Finally as shown by Andersen et al. (2001a, 2001b), volatility 

becomes observable and does not remain latent, if high-frequency data is available. The “realized 

volatility” estimated using high frequency data is model-free under very weak assumptions. 

 

2.1 “Unconditional Volatility” Estimators and Models 

 2.1.1 Traditional Estimators 

Traditionally, the unconditional volatility of asset returns has been estimated using close-to-

close returns. The traditional close-to-close volatility (or, variance) estimator (σcc) for a driftless 

security is estimated using squared returns and is given by- 

 

 σcc2 = 1/n Σ (c)2      ……. (1) 

 

 where, 

 

 n = Number of days (or, periods) used to estimate the volatility 

 c = ln Ct – ln Ct-1 

 Ct = Closing price of day t 

  The mean-adjusted version of the close-to-close estimator (σacc) is estimated using 

sample standard deviation and is given by- 

 

 σacc2 = 1/(n-1)*[ Σ (c)2- nc2]     ……. (2) 

  

 where,  

  

 c = (ln Cn- ln C0)/n 



 

 While equation (2) provides an unbiased estimate of variance, the square root of the 

estimator is biased estimator of volatility due to Jensen inequality (Fleming 1998). The statistical 

properties of the sample mean make it a very inaccurate estimator, particularly for small samples 

(Figlewski 1997). He suggests taking deviations around zero, i.e., using equation (1), improves the 

volatility forecast accuracy.  

 

2.1.2 Extreme-Value Estimators 

Parkinson (1980), following the work of Feller (1951) on the distribution of the trading 

range of a security following geometric Brownian motion (GBM), was first to propose an extreme-

value volatility estimator for a security following driftless6 GBM, which is theoretically 5 times more 

efficient compared to traditional close-to-close estimator. His estimator (σp) is given by- 

 

σ 2p =  1/(4n ln 2)* Σ (ln Ht/ Lt)2    ……. (3) 

 

 where,  

 

Ht  = Highest price observed on day t 

Lt = Lowest price observed on day t 

 

Extending his work, Garman and Klass (1980) constructed an extreme-value estimator 

incorporating the opening and closing prices in addition to the trading range, which is theoretically 

7.4 times more efficient than its traditional counterpart. Their estimator (σgk) is given by- 

 

                                                           
6 Driftless means that log price process is driftless, i.e., µ = σ2 /2. The process is specified as dSt = µ St dt + σ St dWt, where Wt is a 

standard Brownian motion and St is the price of asset at time t. 



σ 2gk =  1/ n * Σ [0.511(ln Ht/ Lt)2- 0.019(ln (Ct/ Ot )*ln (Ht Lt/ Ot2) 

    - 2 ln (Ht/ Ot)* ln (Lt/ Ot)) –0.383(ln Ct/ Ot)2]  ……. (4) 

 where, 

 

 Ot  = Opening price of day t 

 

 Both the Parkinson and Garman-Klass estimators despite being theoretically more efficient 

are based on assumption of driftless GBM process. Rogers and Satchell (1991) relaxed this 

assumption and proposed an estimator (σrs), which is given by- 

 

σ 2rs =  1/ n * Σ [ln (Ht/Ct) ln (Ht/Ot) + ln (Lt/ Ct) ln (Lt/ Ot)]  ……. (5) 

 

Kunitomo (1992) also proposed an extreme-value estimator based on the range of a 

Brownian Bridge process constructed from price process, which is 2 times more efficient than 

Parkinson estimator. His estimator however, cannot be computed directly from the daily data. Later, 

Spurgin and Schneeweis (1999) proposed an estimator based on the distribution of the range of 

Binomial Random walk.  Their estimator (σss) is given by- 

 

σ 2ss =  1/n2 * 0.3927*Σ (ln Ht/ Lt)2- 0.4986 S   ……. (6) 

 

where, 

 

S = The tick-size of the trades 

 

Recently, Yang and Zhang (2000) proposed an estimator independent of drift, which also 

takes into account an estimate of closed market variance. The estimators proposed earlier, including 



the Rogers-Satchell estimator, do not take in to account the closed market variance. This means that 

the prices at the opening of the market are implicitly considered same as that of closing price on the 

previous day. The Yang-Zhiang estimator is based on the sum of estimated overnight variance and 

estimated open market variance. The estimated open-market variance in turn is based on weighted 

average sum of the open-market returns’ sample variance and the Rogers-Satchell estimator with the 

weights chosen to minimize the variance of estimator. The Yang-Zhiang estimator (σyz) is given by- 

 

σ 2yz =  1/(n-1) *Σ (ln Ot/ Ct-1- o)2 +  

k/(n-1) *Σ (ln Ct/ Ot- c)2+ (1-k)* σ 2rs   ……. (7) 

 

where,  

 

 o  = 1/n*Σ (ln Ot/ Ct-1) 

 c  = (ln Cn- ln C0)/n or, 1/n*Σ (ln Ct/ Ot) 

 k  = 0.34/ [1.34 + (n+1)/ (n-1)] 

 

The extreme-value estimators proposed in the literature have been usually derived under 

strong assumptions. As pointed out earlier, attempts have been made to relax the assumption of 

driftless price process and closed market variance by Rogers and Satchell (1991) and Yang and Zhang 

(2000) respectively. Besides these, it is argued that the observed extreme values may reflect certain 

liquidity-motivated trades (Li and Weinbaum 2000). This could make them less representative of 

“true” prices as compared to the closing prices.  

 Besides extreme values being potentially less representative of true prices, extreme values 

observed are in markets, where the trading is discrete, whereas, extreme-value estimators are derived 

under assumption of continuous trading. This can induce downward “discrete trading” bias in 

extreme-value estimators, as the observed highest prices are lower than the “true” highest price and 



the observed lowest price is higher than the “true” lowest price (Rogers and Satchell 1991, Li and 

Weinbaum 2000). Rogers and Satchell (1991) addressed this issue by proposing adjustment in their 

extreme-value estimator by taking into account the number of steps (trades) explicitly. The adjusted 

Rogers-Satchell estimator (σars) is positive root of the following equation- 

 

 σ2ars = (0.5594/Nobs)* σ2ars + (0.9072/ N1/2obs)* ln (Ht/ Lt)* σars + σ2rs 

       ……. (8) 

where, 

 

 Nobs = Number of observations/ transactions 

 σrs   = Unadjusted Rogers-Satchell Estimator 

  

 Rogers and Satchell also proposed similar correction to the Garman and Klass (1980) 

estimator. The adjusted Garman-Klass estimator (σagk) is positive root of the following equation- 

 

 σ2agk = 0.511*[(ln Ht/Lt)2 + (0.9079/ Nobs)* σ2agk + (1.8144/ N1/2obs)*ln Ht/Lt*σagk] 

+ 0.038*[ln Ht/Ot* ln Lt/Ot –(0.2058/ Nobs)* σ2agk- (0.4536/ N1/2obs)* ln 

(Ht/Lt)*σagk] –0.019* ln (Ct/ Ot)*ln (Ht Lt/ Ot2)- 0.383*(ln Ct/ Ot)2 

          ……. (9) 

 

While theoretically extreme value estimators are shown to be more efficient (5 to 14 times), 

yet they have not been very popular. This is mainly because these estimators are derived under strong 

assumptions about underlying returns generating process in the asset markets. It is assumed that the 

asset prices follow geometric Brownian motion (GBM) and are observable in a market trading 

continuously. While extreme-value estimators of volatility could be biased if the returns generating 



process is mis-specified, Li and Weinbaum (2000) point out that the assumed “unbiasedness” of the 

traditional estimator itself, is contingent on the validity of assumed return generating process. In 

particular, they show that the traditional estimator based on the sample standard deviation/variance 

of returns is not an unbiased estimator of the true instantaneous volatility/ variance for the trending 

Ornstein-Uhlenbeck process having predictable returns and constant volatility. They argue that the 

bias in the traditional or extreme-value estimators is more of an empirical issue, more so, when it is 

possible to assess the efficiency and/or bias of the traditional and extreme-value estimators of 

volatility using realized volatility measured from high frequency data.  

 

Extreme-value estimators proposed in the literature have been tested using simulated stock 

prices, actual stock prices and recently, using realized volatility measures. Garman and Klass (1980) 

using simulated data with discrete price changes, show that extreme-value estimators are downward 

biased. Beckers (1983) using actual data also found downward bias in extreme-value estimators. 

Studies by Wiggins (1991, 1992) also reached similar conclusions. However, Spurgin and Schneeweis 

(1999) found that the binomial estimator developed by them outperformed traditional and other 

extreme-value estimators on daily and intra-day day data of two futures - CME SP500 and CBT 

Treasury Bonds contracts. Li and Weinbaum (2000) using intra-day high frequency data to measure 

realized volatility, found overwhelming support for extreme-value estimators for stock indices (S&P 

500 and S&P 100) data set, but confirmed the bias of extreme-value estimators for currencies and 

S&P 500 futures data set despite efficiency gains. Li and Weinbaum investigated the performance of 

extreme value estimators for two stock indices (S&P 500 and S&P 100), a stock index futures (on 

S&P 500) and three exchange rates (Deutsche Mark: US$, Yen: US$ and UK Pound: US$). 

Though a plausible reason for relatively less research on and application of extreme value 

estimators could be the time varying characteristic of volatility, yet the use of extreme-value 

estimators may still be preferred if they are as efficient empirically as implied by the theory. In that 

case, conditional volatility models, efficient extreme value volatility estimators and high frequency 



data based realized volatility model could possibly compete for modeling and forecasting volatility for 

various applications. 

 

2.2 Conditional Volatility Models 

  Conditional volatility models, unlike the traditional or extreme-value estimators, 

incorporate time varying characteristics of second moment/volatility explicitly. Following the 

pioneering work of Engle (1982), various models have been proposed in the literature. The 

specification of an ARCH (q) model (Engle 1982) is given by- 

 

           q 

 σt2 = ω + Σ αi  ε2t-i     ……… (10) 

          i=1 

 where, 

 ω, α1,..., αq = parameters to be estimated  

 σt2  = conditional variance at period t  

 q  = number of lags included in the model 

 εt  = innovation in return at time t 

 

 In the ARCH (q) model, the volatility at time t is a function of q past squared returns. For 

the ARCH model to be well-defined, the parameters should satisfy ω>0 and α1≥0,...,αq≥0. Equation 

(10) gives the conditional variance equation. In the ARCH/GARCH type models, standard 

conditional mean equation is usually modeled as rt = constant + εt.  Since empirical application of 

ARCH(q) model required long lag length and a large number of parameters to be estimated, 

Bollerslev (1986) proposed GARCH (p,q) model in which volatility at time t is also affected by p lags 

of past estimated volatility. The specification of a GARCH (p,q) is given by- 

  

           q  p  



 σt2 = ω + Σ αi  ε2t-i+ Σ βj  σ2t-j     ……… (11) 

          i=1  j=1 

 where, 

 ω, α1,..., αq,β1,.., βp = parameters to be estimated 

 q  = number of return innovation lags included in the model 

 p  = number of past volatility lags included in the model 

  

 The coefficients of the model should satisfy certain conditions for the conditional variance 

in the GARCH (p,q) model to be well-defined. βj’s in the model capture GARCH coefficients, 

whereas αi’s capture ARCH coefficients. For the GARCH (1,1) model, these conditions are- ω>0, 

0≤α≤0, 0≤β≤0, and α+β≤1. As pointed out elsewhere in the paper, the basic ARCH/GARCH 

models have been extended and new models proposed to model returns distribution better. 

EGARCH is one such model. In this work, we have used only GARCH and EGARCH models to 

model volatility in Indian stock market. In Exponential GARCH (EGARCH) model, proposed by 

Nelson (1991), the conditional variance depends upon both the size and the sign of lagged residuals. 

EGARCH as well as other asymmetric volatility models have been developed to incorporate the 

“leverage effect” and observed “asymmetric volatility changes with the change in return sign”. The 

specification of EGARCH (1,1) model are given by- 

           

 Log σt2 = ω + β  σ2t-1 + γ εt-1 /σt-1 + α [ | εt-1 |/ σt-1 – ( 2/Π )1/2 ] ……. (12) 

 

In equation (12), ω, α, β, γ are the parameters to be estimated, while other symbols are same 

as in equation (10) and (11). Besides EGARCH, there have quite a few extensions of basic 

ARCH/GARCH model proposed in the literature for modeling volatility. In addition, there is a 

separate class of conditional volatility model called stochastic volatility models, in which the 



conditional variance specification contains two error terms. In case of ARCH/GARCH models, the 

conditional variance equation is determined by the information available at that time, with only one 

error term associated with the past return. Because of computation difficulties, stochastic volatility 

models are not as popular as ARCH/GARCH type models. 

 

2.3 Realized Volatility  

 If high-frequency data is available, the volatility becomes observable and does not remain 

latent. The realized volatility measure developed by Andersen et al. (2001a) therefore, can be used to 

directly compare performance various volatility models and estimators7. The realized volatility 

measure for day t is given by- 

 

σ2 t  =  Σ r2j,t        ……. (13) 

 

where, 

 

r2j,t = Squared return series of intra-day data  

j     = Intra-day interval over which returns are being measured 

 

It is possible to annualize the realized volatility so measured, by scaling it up with an 

annualizing factor. The annualizing factor is simply square root of number of trading days in a year. 

Measuring realized volatility requires choosing appropriate interval over which the squared returns 

are used to measure the realized volatility. While shorter time intervals reduce the measurement error, 

they are also likely to be biased by the microstructure effects (Andersen and Bollerslev 1998, 

                                                           
7 Li and Weinbaum (2000) use the realized volatility measure to evaluate empirical performance of extreme-value estimators. In a similar 

vein, the study by Day and Lewis (1992) use variance of daily returns multiplied by the number of trading days to compute weekly variance 

for evaluating out-of-sample predictive power of various volatility models. 



Andersen et al. 1999). Andersen et al. (2001a, 2001b) and Li and Weinbaum (2000) found that 

sampling the returns over 5-minute interval is optimal. Without investigating the desirability of using 

5-minute returns series on our data set, we have used 5-minute returns to compute the realized 

volatility.  

 

3. Characteristics of Nifty Daily Returns Time-series and Methodological Issues 

 In this study, our objective is to empirically investigate the performance of some of the 

popular volatility models and estimators proposed in the literature. With the availability of high-

frequency data being compiled by the National Stock Exchange, a direct comparison of estimates 

with the model-free realized volatility estimates is possible and hence the realized volatility estimates 

have been used in the study to assess the bias and efficiency of various volatility models estimators. 

Traditional close-to-close estimators, various extreme-value estimators and two popular conditional 

volatility models are estimated and compared with the realized volatility estimates. We also test the 

ability of these estimators and models to forecast one-day, five-day (approx. weekly) and monthly 

volatility. In this section, we describe the data set used, the characteristics of daily returns of the 

index chosen to represent Indian stock market and discuss the performance criteria used to assess 

the performance of various models and estimators. 

 

3.1 Nifty daily returns characteristics 

 We use high-frequency data on S&P CNX Nifty, a value-weighted stock index of National 

Stock Exchange, Mumbai, derived from prices of 50 large capitalization stocks. As the National 

Stock Exchange started compiling the high-frequency data for research purposes since 1999, our data 

set covers the period of January 1999- December 2001, i.e., three years. NSE records the data on the 

index for each day separately. Since forecasting out-of-the-sample volatility required estimating 

conditional volatility models before the period for which we have high frequency data available, we 

use daily data on S&P CNX Nifty for the period 1st January 1996 to 31st December 2001 for 



forecasting volatility on a rolling basis, as well as on the basis of model fitted using data from 1st 

January 1996 to 31st December 1998. For estimation of conditional volatility similarly, we estimate 

models using daily data on S&P CNX Nifty for the period 1st January 1996 to 31st December 2002, 

some part of which falls outside the period for which realized volatility has been measured and 

compared. We also use daily data for period 1st January 1999 to 31st December 2001 to estimate 

conditional volatility models, the period which coincides with the period for which the realized 

volatility estimates are computed. The descriptive statistics of the entire returns series used, i.e., 1st 

Jan 1996-31st Dec 2002, and its parts, 1st Jan 1996- 31st Dec 1998, 1st Jan 1999- 31st Dec 2001, are 

given in Table 1a. 

 

    Insert Table 1a about here. 

 

 As Table 1a shows, the index had a small negative average return in the first sub-period and 

a small positive average return during the second period. The standard deviation of daily return is of 

the order of 1.7% in both the sub-periods, implying average annualized volatility of around 27%. The 

kurtosis of daily returns in each of the period is higher than 3, the kurtosis of Gaussian distribution. 

It is however, closer to normal in the second sub-period. The Jarque-Bera test for normality of 

returns distribution yield statistics much greater than any critical value at conventional confidence 

levels in both the sub-periods.  

 

3.2 Time Dependence in Daily Index Returns and Volatility 

 

Presence of serial correlation in the returns time-series is inconsistent with weak form of 

market efficiency and also poses issues in modeling volatility directly from daily returns. In Table 1a, 

we also report autocorrelation coefficients for five lags for each of the three series and associated 

Ljung-Box Q* statistic. Except for autocorrelation coefficient associated with first lag for the entire 



data set, all others are insignificant at conventional confidence levels. The first-order correlation 

coefficient too is significant at 5% but not at 1% significance level (in terms of Ljung-Box and Box-

Pierce tests). As pointed out earlier, we use the entire data set only for one set of estimates of 

conditional volatility models, the other sets are based on the period for which the high-frequency 

data was available, i.e., between Jan’1999 to Dec’2001.  

 

 A more general test for time-based dependence in the returns series, due to Brock et al. 

(1996), viz. BDSL test statistics is also reported for epsilon ranging from 0.5 to 2 times of standard 

deviation and embedding dimensions up to 10, as suggested by Hsieh (1991,1993). This test can 

detect a variety of departures from randomness including non-linear dependence and deterministic 

chaos. The BDS test statistic follows standard normal distribution under the null hypothesis. The 

associated z-statistics on the daily Nifty returns on each of the sub-periods and the entire data set are 

reported in Table 1b. As can be seen from the table, BDS test strongly rejects the null hypothesis of 

randomness in the Nifty return series in each of the data set. One possible reason for the non 

randomness in the returns series is attributed to predictability of volatility, or autocorrelation in 

volatility. 

  

Insert Table 1b about here. 

 

In order to check the presence of volatility clustering, we report the autocorrelation of 

squared returns in Table 1c. As can be seen from the table, the Ljung-Box Q* statistic is significant at 

1% level for up to five lags in each of the sub-periods and the entire data set. This confirms volatility 

clustering in the Indian markets, just as it has been found and reported in case of other markets. In 

the first sub-period of Jan’1996-Dec’1998, the first order autocorrelation of squared returns though 

significant at 5%, is not as high as in the remaining data set.  

 



Insert Table 1c about here. 

 

 The use of ARCH/GARCH-type conditional volatility models is motivated by the presence 

of volatility clustering and time-varying characteristics of volatility. In order to test the presence of 

“ARCH effect”, we compute and report the F-statistics and the LM-statistics associated with ARCH-

LM test on each data set of Nifty daily returns in Table 1d. While computing these, we use the 

residuals of OLS residuals of the daily returns regressed on a constant. The number of lags included 

is five. The results in Table 1d indicate presence of “ARCH effect” in the Nifty daily returns series in 

each of the data set. 

 

Insert Table 1d about here. 

 

 To sum up, our analysis indicates that the daily return series of the index is non-normal and 

exhibits “ARCH effect”. 

 

3.3 Realized Volatility: Descriptive Statistics 

 

 In computing volatility measures for the chosen index (S&P CNX Nifty), we faced 

measurement problems due to trading breaks. On quite a few days during the period, trading was 

stopped (and later resumed) at NSE because of communication and operational reasons. Since the 

extreme-value estimators and the traditional estimator are based on extreme values and closing prices 

are reported for the entire day, we use the squared return series even if there are breaks. In other 

words, the returns between the breaks are treated as if they are 5-minute returns. This is likely to 

introduce measurement errors in the realized volatility measure and make them slightly downward 

biased.  

 



Insert Table 2 about here. 

 

 The descriptive statistics of daily realized volatility during the period Jan’1999-Dec’2001 is 

given in Table 2. For making comparisons with Table 1c easy, the descriptive statistics in Table 2 is 

reported for the variance rather than volatility.  As is clear from the comparison, the mean of realized 

daily variance is slightly higher than squared returns. On the other hand, the standard deviation of 

realized daily variance is lower. The auto-correlation at first lag are somewhat similar in magnitude in 

both the cases, but for lags between 2 to 5, the autocorrelation coefficients drop considerably in case 

of squared returns, whereas, they drop extremely gradually in case of realized daily variance series 

indicating greater “volatility clustering or persistence”.  On closer examination, we find that partial 

autocorrelation for lags 2 to 5 are considerable lower in case of squared return series. The mean daily 

realized variance implies annualized volatility of around 31%. The volatility during this period was 

slightly higher than the average long run volatility, as the capital markets in India were volatile during 

this period (driven by boom in technology, telecom and media stocks), as is evident from Table 1c. 

 

3.4 Conditional Volatility Models 

 

3.4.1 Symmetric Conditional Volatility Model: GARCH 

 

As pointed out earlier, the return series of the index exhibits ARCH effect in all the periods 

studied. We use therefore, GARCH (p, q) model, the most popular member of the ARCH class of 

models, to model volatility of Nifty returns. We use EViews software for model estimation. EViews 

uses maximum likelihood procedure to estimate the model under the assumption that the errors are 

conditionally normally distributed. For initialization8 of variance, by default, EViews first uses the 

                                                           
8 Different initial variances for maximum likelihood procedure in conditional volatility models could lead to different estimates affecting 

model performance. 



coefficient values to compute the residual of mean equation and then computes an exponential 

smoothing estimator of the initial values with smoothing parameter, λ=0.7. Even though the 

software provides for options for initialization, we have used the default initialization procedure in 

this work throughout. Using the Schwarz Information Criterion, we find that the best model in the 

GARCH (p, q) class for p∈ [1, 5] and q∈ [1, 5] is GARCH (1, 1). The results from the model 

estimated for different periods are reported in Table 3a. The sum of ARCH and GARCH 

coefficients (α and β respectively) estimated by the model is close to 0.9 in both the sub-periods as 

well for the entire data set. However during the 1999-2001 period, the volatility in Indian Capital 

markets was spikier (higher α) and less persistent (lower β) than the 1996-1998 period and the entire 

data set. The sum of coefficients being significantly less than one indicates that volatility is mean 

reverting. The coefficients of the estimated GARCH (1, 1) models are significant as can be seen from 

the z-statistic reported in Table 3a. This inference from the z-statistics as reported in the table is valid 

only if errors are conditionally normally distributed. Table 3a also reports the descriptive statistics of 

residuals from the estimated models. Standardized residuals from estimated GARCH models in each 

of the period are not normally distributed as indicated by the Jarque-Bera statistic. The standard 

errors (and therefore associated z-statistics) computed under the assumption of conditionally 

normally distributed error terms, are not consistent if the errors are not normally distributed. 

However, Bollerslev and Wooldridge (1992) provided a method for obtaining consistent and robust 

estimates of the standard errors. The robust standard errors and associated z-statistics computed 

following Bollerslev and Wooldridge procedure (not reported here), for each of these models are 

significant, though lower compared to the ones reported in Table 3a. 

 

Insert Table 3a about here. 

  

In order to test whether the GARCH (1, 1) model has adequately captured the persistence in 

volatility and there is no ARCH effect left in the residuals from the models, ARCH LM test was 



conducted for lags up to five. The tests (not reported here) indicate that the standardized residuals do 

not exhibit any ARCH effects.  

 

3.4.2 Asymmetric Conditional Volatility Model: EGARCH 

 Conditional volatility of returns may not only be dependent on the magnitude of error terms 

or innovations, but also on its sign. In order to test for asymmetries in volatility, we compute cross-

correlation between the squared residuals of the GARCH (1, 1) model and the lagged residuals. In 

the presence of the asymmetry of conditional volatility, these correlations should be negative. As 

shown in Table 3b, the cross-correlation for the entire data set as well as for the period 1999-2001 

are significant for up to lags of three.  

 

Insert Table 3b about here. 

 

 Since there is asymmetry in volatility in the period used for comparing performance of 

various estimators and models with the realized volatility, i.e., Jan’1999 to Dec’2001, we estimate 

EGARCH (1,1) models for each of the three periods. The results for estimated EGARCH (1,1) 

model are reported in Table 3c. The results are consistent with the test for asymmetry in conditional 

volatility as reported In Table 3b. The asymmetry term, γ, is insignificant in the period Jan’1996 to 

Dec’1998, but is significant in the other sub-period as well as for the entire data set. The other 

coefficients are significant at conventional significance levels. The Bollerslev-Wooldridge robust 

standard errors (not reported here) are higher and z-statistic lower than under the assumption of 

conditionally normally distributed error terms. Like in case of GARCH model, the standardized 

residuals from the estimated models are not normally distributed. The ARCH-LM test on residual 

(not reported here) indicates that there is no ARCH effect left after estimating the model. While the 

insignificance of asymmetry term, γ, for the period 1996-1998 does not affect the evaluation of 

EGARCH model for estimation, it does affect its evaluation for its forecasting ability as the period 



between 1999-2001 over which the forecasts are made, this term is large and significant. For 

evaluation of models for their forecasting ability, we have used the period of 1996-1998 for 

estimation of the model, which then has been used to predict out-of-sample (1999-2001) volatility. 

This constraint was due to availability of high frequency data only after 1999. 

  

Insert Table 3c about here. 

  

In this paper, we use only these two commonly used conditional volatility models from the 

class of ARCH/GARCH type models to test their performance vis-à-vis traditional and extreme-

value unconditional volatility estimators.  

   

3.5 Performance Criteria for Evaluation of Estimators and Models 

 

  In order to compare bias and efficiency of various estimators and models for estimation, we 

use following finite sample criteria- 

 

1. Bias of the Estimator 

2. Mean Square Error of the Estimator 

3. Relative Bias of the Estimator 

4. Mean Absolute Error of the Estimator 

 

The first and the second criterion measure bias and efficiency respectively and are standard 

measures. The third criterion is to assess the magnitude of bias with respect to the true parameter 

(realized volatility measure, in this case) as the first criterion gives only absolute amount. The fourth 

criterion is another measure of efficiency like the second one but is less likely to be affected by the 

presence of outliers in the data set.  



If true volatility (realized volatility) on day t is σt and the estimated volatility given by an 

estimator or model is σest, then the five performance criteria are computed as under- 

 

 Bias = E (σ est - σ t) 

 Mean Square Error (MSE) = E [(σ est- σ t)2 ] 

 Relative Bias = E [(σest - σ t)/ σ t] 

 Mean Absolute Error (MAE) = E [Abs (σ est - σ t)] 

 For forecasting, we use h-period volatility estimates of “unconditional volatility” estimators for 

forecasting volatility h-period ahead. In case of conditional models, we forecast based on model parameters 

estimated from the period out side the period of study, i.e., of 1st January 1996 to 31st December 1998. In 

case of GARCH model, we also report result based on estimation of model on a rolling basis. For example, 

for forecasting volatility on 1st January 1999, we use model estimated on daily data from 1st January 1996 

to 31st December 1998. In case of forecast for 2nd January 1999, we re-estimate the model parameters from 

data of period- 1st January 1996 to 1st January 1999, and so on. For evaluating the forecasts given by the 

models, we use the same criteria, as we do for estimation. We use term “forecast error” in place of “bias” in 

the context of evaluating predictive power of estimators and models. In addition to forecast error, mean 

square forecast error, relative forecast error and mean absolute forecast error, we also report the results of 

OLS regressions of the realized volatility on a constant and forecast value given by the various models and 

estimators following one of the approach used by Day and Lewis (1992) to test out-of-sample predictive 

power of volatility models. We also report the results of the other approach followed by them, i.e., forecast 

encompassing regressions based on a procedure due to Fair and Shiller (1990). Following this approach, we 

regress realized volatility on a constant and the forecast values obtained from different models and 

estimators. 

  

3.6 Close-to-close Market Variance Estimates and Extreme-Value Estimators 

 While using conditional volatility models and traditional volatility estimators, using closing 

daily prices does not pose any problems. However, as pointed out elsewhere in the paper, extreme-



value estimators prior to Yang and Zhiang (2000) did not take the closed-market variance (between 

the closing prices of the previous day and opening prices) into account. Similarly, the realized 

volatility measure, in the absence of continuous trading markets, is essentially a measure of open-

market variance of volatility. In order to compare therefore, some of the extreme-value estimators 

and realized volatility measure need to be modified for estimating close-to-close market variance. In 

the absence of any observation during the period during which market is closed, treatment of the 

closed-market variance however, has to be alike for all the estimators. For incorporating the closed-

market variance in such estimators, we use traditional unadjusted estimator, as given in equation (1), 

for one-day period and traditional mean-adjusted estimator, as given in equation (2), for longer 

periods. The closed-market variance is computed using close-to-open returns. 

 

4. Empirical Results 

 In this work, we analyzed empirical performance of the volatility models and estimators vis-

à-vis the realized volatility measure for the S&P CNX Nifty stock index, in terms of- (a) estimation, 

and (b) predictive power. Accordingly, we report the results separately on bias and efficiency of these 

models and estimators for estimation and for their out-of-sample predictive power. 

 

4.1 Volatility Models and Estimation 

 Estimation of volatility from data over a given horizon is important for researchers and 

practitioners alike. In order to test empirical performance for estimation, we compute volatility 

estimates from unconditional estimators and conditional volatility models and compare them with 

the realized volatility in Table 4. For comparisons, we use three time periods of one-day, non-

overlapping five-days and calendar months. We chose these horizons partly because we had only 

three years’ high frequency data and partly because shorter horizons are more likely to be used in 

case of time-varying volatility, particularly in case of unconditional estimators. While estimating 

conditional volatility estimates using GARCH and EGARCH models, we report the results based on 



the estimates from the sub-period (in sample) of Jan’1999-Dec’2001 as well as from the estimates 

from the entire data set (complete data set from Jan’1996-Dec’2002 including the sample period). In 

case of traditional estimators, two estimates are reported. The first one is based on separate 

adjustment for the closed market variance, while the second one is more commonly used one and is 

based on close-to-close daily returns.  

 

 In panel A of table 4, we report the result for one-day period. While volatility estimates given 

by the GARCH/EGARCH models exhibit lower bias than traditional and extreme-value estimators, 

the extreme-value estimators given by Garman-Klass and Rogers-Satchell exhibit lower relative bias 

and higher efficiency in terms of both MSE and MAE criteria. In case of five-day period as reported 

in panel B, the results are similar. Garman-Klass, Rogers-Satchell and Yang-Zhiang extreme-value 

estimators perform well compared to the GARCH/EGARCH estimates on Relative Bias, MSE and 

MAE criteria despite exhibiting higher bias. For results on one-month (calendar month) period, as 

reported in panel C, these three estimators perform well on both efficiency criteria but exhibit higher 

absolute and relative bias than conditional volatility models. The extent of bias in case of these three 

extreme-value estimators as well as conditional volatility models increases with the increase in 

horizon. Even then, the bias in terms of annualized volatility is less than 1% for one-day period, 

around 2% for five-day periods and less than 3% for one-month period. In case of conditional 

volatility models, it is about 1% less than extreme-value estimators for all horizons. The bias 

exhibited by Parkinson estimator is exceptionally high. 

  Higher efficiency of extreme-value estimators compared to traditional estimators and conditional 

volatility models in Indian Capital markets is in line with the earlier findings of Pandey (2002), wherein 

extreme-value estimators were compared with traditional estimators. Higher efficiency of extreme-value 

estimators in comparison with conditional volatility models is somewhat surprising though. This could be 

because while conditional volatility models have been estimated using daily closing prices, the extreme-

value estimators take into account intra-day information on prices, similar to realized volatility measure, 



the benchmark used for making comparisons. These results are also similar to some of the recent works 

discussed earlier (Li and Weinbaum 2000, Spurgin and Schneeweis 1999).  

 

4.2 Predictive Power of Volatility Models 

 Besides estimation, the other important application and use of unconditional and conditional 

volatility models is for forecasting volatility. In case of unconditional estimators, generally h-period 

volatility estimates are used to forecast h-period volatility ahead. For evaluating the predictive power, 

we use estimates over a given a horizon, as the forecast for next horizon of equal length and compare 

it with the realized volatility next period. In case of volatility models, the forecasts are based on the 

model estimated on out-of-sample data and forecasts are obtained for different length of periods. We 

use data from the period 1st Jan’1999-31st Dec’1998 to estimate GARCH (1, 1) and EGARCH model 

for forecasting. As pointed out earlier, we also forecast on the basis of rolling estimation of GARCH 

model, by successively estimating model to include the data just prior to the forecast period. 

  

 The results for one-day ahead forecast performance are reported in panel A of Table 5. 

Among the various estimators, conditional volatility models (GARCH and EGARCH) perform well 

for one-day period on all parameters except relative forecast errors. However as can be seen from 

results for five-day and one-month period in panel B and C, extreme-value estimator perform as well 

for these horizons on both efficiency criteria (Mean Square Forecast Error and Mean Absolute 

Forecast Error). The relative forecast error for these estimators is also lower than conditional 

volatility models; even though mean forecast errors are higher.  

 

 In order to test the ability of the estimators and models to forecast volatility, we also regress 

realized volatility on the forecasted value given by each model and a constant, following Day and 

Lewis (1992). The specification of the OLS regression is given by- 

 



  σ2 t+1 = β0 + β1 σ2 ft + ε t+1     ……. (14) 

 

 where, 

 σ2 t+1 = actual value of “realized variance” at time t+1 

 σ2 ft   = value forecasted for the realized variance of time t+1 at time t 

 

 In case the forecasts are accurate, we would expect value of β0 to be 0 and that of β1 to be 

equal to 1. The sign and magnitude of coefficients and R-squared values of these regressions 

therefore, can be interpreted to assess the predictive power of various models and estimators. We 

report the values of coefficients, associated t-statistics and R-squared values of these regressions in 

Table 6. The forecasted values in regressions based on equation (14) are as given by different models 

and estimators. In panel A, B and C of the table, we report regressions for one-day period, five-day 

period and one-month period forecasts respectively. As can be seen from panel A, the values of β0 in 

all the regressions are significantly different from zero. In terms of R-squared values, conditional 

volatility models perform the best, though only slightly better than the traditional estimator. In case 

of five-day and monthly forecasts however, the extreme-value estimators (Garman-Klass, Rogers-

Satchell and Yang-Zhiang) perform well. In contrast, the conditional volatility models perform 

extremely poorly on monthly forecasts. This is expected to some extent, as the forecasts by 

conditional volatility models are extremely sensitive to recent volatility and errors term by 

construction. Volatility forecasts by conditional volatility models far out into the future, are likely to 

result in considerable error if the volatility is not as persistent as estimated by them. Despite 

significant volatility persistence observed in the squared Nifty returns series and in realized volatility 

series, latter being more persistent than the former, the forecasting power of conditional volatility 

models is not vastly greater than the traditional estimator.  

 We also performed forecast encompassing regression, similar to Day and Lewis (1992), 

wherein different set of forecasts given by different models and estimators are used as independent 



variables to test whether they contain different sets of information from each other. The results for 

forecasts of one-day, five-day and one-month periods are given in panel A, B and C of Table7. For 

forecast encompassing regression, we chose forecasts of the best traditional estimator from among 

the traditional estimators, two best performing extreme-value estimators for each horizon from the 

class of extreme-value estimators, and the GARCH and EGARCH forecasts. The specification used 

in the regression is given by- 

 

 σ2 t+1 = β0 + β1 σ2 Tt + β2 σ2 E1t + β3σ2 E2t + β4 σ2 Et + β5 σ2 EGt +ε t+1  ……. (15) 

 

where, 

 σ2 t+1 = actual value of “realized variance” at time t+1 

σ2 Tt   = value forecasted for the realized variance of time t+1 at time t by the best traditional 

estimator 

σ2 E1t   = value forecasted for the realized variance of time t+1 at time t by the best extreme-

value estimator 

σ2 E2t   = value forecasted for the realized variance of time t+1 at time t by the second-best 

extreme-value estimator 

σ2 Gt   = value forecasted for the realized variance of time t+1 at time t by GARCH (1, 1) 

model 

σ2 EGt   = value forecasted for the realized variance of time t+1 at time t by EGARCH model 

 

 As is evident from panel A of Table 7, the results from forecast encompassing regressions 

are in line with the results discussed earlier. In case of one-day period, the GARCH forecasts and 

traditional estimators have significant coefficients and put together, forecast realized volatility better. 

Both the extreme-value estimators (Parkinson and Garman-Klass) for one-day period perform 

poorly. In case of five-day period however, only extreme-value estimators (Yang-Zhiang and Rogers-



Satchell) have significant coefficients and predictive power. In the result of regression using both the 

extreme-value estimators and other forecasts, the coefficients for both are insignificant, as the 

forecasts from both the extreme-value estimators are highly correlated (0.99+). For one-month 

period also, extreme-value estimators (Rogers-Satchell and Garman-Klass) forecast volatility much 

better than others and are the only ones to have significant coefficients. In the regression involving 

all the forecasts, the coefficients are once again insignificant due to high correlation (0.99+) of the 

forecasts given by two extreme-value estimators. Another interesting aspect of one-month period 

results is that, unlike five-day period, traditional and conditional volatility model forecasts add to the 

predictive power somewhat. The poor performance of EGARCH model, in term so incremental 

predictive ability compared to GARCH, can be understood as the model estimated for forecasting 

over 1996-1998 data did not have significant asymmetric term whereas during 1999-2001 period, the 

asymmetric term was found to be significant and large. On examining the forecasts given by 

conditional volatility models closely, it was clear that the variance in their forecasts was much lower 

than other estimators’ forecasts as well as that of realized volatility for each of the three horizons. 

This implies that the realized volatility is not as persistent as forecasted by conditional volatility 

models. 

 

 Besides relatively superior performance of extreme-value estimators in forecasting volatility 

for five-day and one-month period ahead, the other striking aspect of our result is that the R-square 

values are of much higher order than the results of Day and Lewis (1992). Most of the explanatory 

power in volatility prediction comes from extreme-value estimators, which have mostly not been 

used in other studies. To that extent, it would be interesting to replicate the study on different 

samples and contexts. 

 

 

 



4. Summary and Conclusions 

 Modeling and forecasting volatility of capital markets been an important area of inquiry and 

research in financial economics with the recognition of time-varying volatility, volatility clustering 

and asymmetric response of volatility to market movements. This stream of research has been aided 

by various conditional volatility (ARCH/GARCH type) models proposed to handle these empirical 

regularities. Nonetheless, researchers have found that forecasting volatility is difficult. In this paper, 

we model the volatility of S&P CNX Nifty, an index of 50 stocks of the National Stock Exchange, 

Mumbai, using different class of estimators and models.  

Our results indicate that while conditional volatility models perform well in estimating 

volatility for the past in terms of bias, extreme-value estimators based on observed trading range 

perform well on efficiency criteria. As far as forecasting is concerned, the extreme-value estimators 

are able to forecast volatility five-day (approx. a week) and one-month volatility ahead much better 

than conditional volatility models.  

In this paper, we have not used “implied volatility” forecasts, used extensively elsewhere, for 

two reasons. Firstly, the options in Indian Capital Markets have been introduced only recently and 

therefore, long enough time-series is not available. Secondly, as pointed out by Varma (2002), Indian 

market seem to underprice (by implication, underestimate) volatility of index options in its short 

history of pricing options. Nonetheless, comparisons incorporating “implied volatility” forecasts 

remains potentially an area worth investigating at a future date. Similarly, even though we have used 

five-minute returns for computing realized volatility, the optimality of use of lower or higher 

frequency returns needs to be verified empirically. Another interesting area requiring further work in 

Indian context is to model volatility explicitly for non-trading days and for any plausible “day-of-the-

week” effect in returns and volatility. 
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Table 1a: Descriptive Statistics: S&P CNX Nifty Daily Returns 

 

 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001 1st Jan 1996- 31st Dec 2002

Observations 743 753 1747 

Mean   -3.57E-05 0.000240 0.000106 

Median -0.000625 0.000625 0.000207 

Maximum 0.099339 0.075394 0.099339 

Minimum -0.088405 -0.077099 -0.088405 

Std. Dev. 0.017043 0.018416 0.016901 

Skewness 0.154152 -0.134935 0.003877 

Kurtosis   6.902943 4.928598 6.114683 

Jarque-Bera 474.5297 118.9840 706.1745 

Probability 0.000000 0.000000 0.000000 

Autocorr.-(1) 

Ljung-Box Statistic 

0.050 

(1.8996) 

0.059 

(2.6429) 

0.050* 

(4.3963*) 

Autocorr. (2) 

Ljung-Box Statistic 

-0.003 

(1.9083) 

-0.039 

(3.7762) 

-0.023 

(5.3323) 

Autocorr. (3) 

Ljung-Box Statistic 

0.033 

(2.7446) 

-0.014 

(3.9284) 

0.010 

(5.5226) 

Autocorr. (4) 

Ljung-Box Statistic 

0.015 

(2.9056) 

0.035 

(4.8800) 

0.033 

(7.3954) 

Autocorr. (5) 

Ljung-Box Statistic 

0.023 

(3.3157) 

0.015 

(5.0419) 

0.020 

(8.0639) 

 

 * Significant at 5% level. 

 



 

Table 1b: BDS Test’s z-statistics for daily Nifty returns 

 

m 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001  1st Jan 1996- 31st Dec 2002 

2  2.551501*  5.296226**  6.658036** 
3  3.176285**  7.558023**  9.169510** 
4  3.897283**  9.179223**  10.91606** 
5  3.513997**  10.84801**  12.05665** 
6  3.121982**  13.50464**  13.87616** 
7  3.007875**  17.54613**  16.19647** 
8  5.187132**  23.65487**  20.38272** 
9  7.227700**  33.13304**  25.77901** 
10  8.048009**  50.29900**  35.09079** 
2  2.403108*  5.680864**  6.949092** 
3  3.058822**  6.861229**  8.806732** 
4  3.847627**  7.897389**  10.21271** 
5  3.544891**  8.206487**  10.60246** 
6  4.047078**  8.912416**  11.65575** 
7  4.256483**  10.24643**  13.05368** 
8  4.494213**  11.75281**  14.56064** 
9  4.533683**  13.13159**  16.04893** 
10  4.476401**  14.56015**  17.49432** 
2  2.455383*  6.058242**  7.609784** 
3  2.989136*  6.791372**  8.989942** 
4  3.723518**  7.401422**  10.03836** 
5  3.602098  7.563355**  10.26141** 
6  4.171508**  7.935225**  10.94753** 
7  4.525305**  8.598299**  11.77826** 
8  4.777024**  9.248246**  12.53487** 
9  4.742911**  9.758905**  13.20222** 
10  4.767014**  10.23080**  13.70829** 
2  2.776471*  6.237481**  8.080689** 
3  3.419191**  6.589254**  9.223566** 
4  4.106672**  6.939119**  9.965322** 
5  4.036499**  7.136335**  10.14337** 
6  4.568144**  7.367190**  10.59916** 
7  4.849485**  7.803029**  11.10080** 
8  5.008651**  8.184174**  11.51581** 
9  4.828123**  8.462457**  11.81751** 
10  4.807102**  8.660134**  11.96142** 

  
 * Significant at 5% level. 
 ** Significant at 1% level. 



 

Table 1c: Squared S&P Nifty Returns 

 

 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001  1st Jan 1996- 31st Dec 2002 

Mean   0.000290 0.000339 0.000285 

Median 8.56E-05 0.000106 8.37E-05 

Maximum 0.009868 0.005944 0.009868 

Minimum 0.000000 0.000000 0.000000 

Std. Dev. 0.000705 0.000671 0.000646 

Autocorr.-(1) 

Ljung-Box Statistic 

0.088 

(5.7139*) 

0.247 

(46.247**) 

0.174 

(52.718**) 

Autocorr. (2) 

Ljung-Box Statistic 

0.085 

(11.169**) 

0.084 

(51.623**) 

0.097 

(69.218**) 

Autocorr. (3) 

Ljung-Box Statistic 

0.018 

(11.418**) 

0.090 

(57.744**) 

0.064 

(76.471**) 

Autocorr. (4) 

Ljung-Box Statistic 

-0.010 

(11.488*) 

0.046 

(59.330**) 

0.030 

(78.063**) 

Autocorr. (5) 

Ljung-Box Statistic 

0.124 

(23.050**) 

0.085 

(64.869**) 

0.115 

(101.32**) 

 

 * Significant at 5% level. 

 ** Significant at 1% level. 



 

 

 

Table 1d: ARCH-LM Test statistics on Nifty daily returns 

 

 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001  1st Jan 1996- 31st Dec 2002 

F-Statistics 4.491289** 11.34598** 17.10076** 

LM-Statistics 21.96662** 53.12680** 81.77179** 

 

 * Significant at 5% level. 

 ** Significant at 1% level. 

 

 



 

Table 2: Descriptive Statistics: Daily Realized Variance of S&P CNX Nifty 

 

 

 Jan’99- Dec’2001 

Observations 737 

Mean   0.000383 

Median 0.000208 

Maximum 0.007979 

Minimum 1.89E-05 

Std. Dev. 0.000589 

Autocorr.-(1)  

Ljung-Box Statistic 

0.261 

(50.248) 

Autocorr. (2)  

Ljung-Box Statistic 

0.245 

(94.743**) 

Autocorr. (3)  

Ljung-Box Statistic 

0.237 

(136.25**) 

Autocorr. (4) 

 Ljung-Box Statistic 

0.255 

(184.67**) 

Autocorr. (5)  

Ljung-Box Statistic 

0.192 

(211.98**) 

 

   **  Significant at 1% level. 



Table 3a: Results from GARCH (1, 1) model 

 

 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001  1st Jan 1996- 31st Dec 2002 

Constant -9.20E-05 

(-0.139151) 

0.001097 

(1.783237) 

0.000386 

(1.134965) 

ω 2.84E-05 

(4.124338**) 

3.25E-05 

(3.857869**) 

1.55E-05 

(7.086951**) 

α 0.056814 

(4.117929**) 

0.153048 

(5.602553**) 

0.102514 

(9.857610**) 

β 0.846745 

(33.39316**) 

0.756544 

(19.11235**) 

0.847406 

(84.94265**) 

Annualized long-run 

Volatility implied by 

ω,α & β 

27.13% 29.98% 27.82% 

Standardized Residuals: Descriptive Statistics 

Mean 9.43E-05 -0.049790 -0.023647 

Std. Dev. 0.999903 0.999320 0.999791 

Skewness 0.011157 -0.044657 -0.043485 

Kurtosis   7.262294 4.692043 6.204649 

Jarque-Bera 562.4400 90.07721 748.1046 

Probability 0.000000 0.000000 0.000000 

Figures in parenthesis are z-statistics associated with coefficients 

 * Significant at 5% level. 

 ** Significant at 1% level. 

 

 

 

 



Table 3b: Cross-correlation of Squared Residuals from GARCH (1,1) Models with the 

Lagged Residuals 

 

 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001  1st Jan 1996- 31st Dec 2002 

Lag=1 -0.04226 -0.10034** -0.07240** 

Lag=2 -0.06436 -0.07691* -0.06780** 

Lag=3 -0.01743 -0.08322* -0.05107* 

 

 * Significant at 5% level. 

 ** Significant at 1% level. 

 

 



 

Table 3c: Results from EGARCH (1, 1) model 

 

 1st Jan 1996- 31st Dec 1998 1st Jan 1999- 31st Dec 2001  1st Jan 1996- 31st Dec 2002 

Constant -0.000339 

(-0.499085) 

0.000424 

(0.686293) 

4.56E-05 

(0.117468) 

ω -0.943289 

(-2.982314**) 

-1.158396 

(-4.752127**) 

-0.756000 

(-7.896799**) 

α 0.133435 

(5.769960**) 

0.272820 

(6.661729**) 

0.212420 

(13.76127**) 

β 0.896355 

(23.06698**) 

0.882940 

(31.20140**) 

0.927577 

(80.11228**) 

γ -0.030392 

(-1.699621) 

-0.118988 

(-4.542789**) 

-0.064712 

(-5.346620**) 

Standardized Residuals: Descriptive Statistics 

Mean 0.015696 -0.008306 0.003416 

Std. Dev. 0.999373 1.001506 0.999910 

Skewness 0.005987 0.015417 -0.024480 

Kurtosis   7.412521 4.560810 6.420721 

Jarque-Bera 602.7737 76.46337 851.9340 

Probability 0.000000 0.000000 0.000000 

Figures in parenthesis are z-statistics associated with coefficients 

 * Significant at 5% level. 

 ** Significant at 1% level. 

 



Table 4: Performance of Volatility Models (and Estimators) for Estimation 

 

Panel A: One-day Period 

        (Number of Observations- 737) 

 

Model/Estimator Bias Relative 

Bias 

Mean 

Square 

Error 

Mean 

Absolute 

Error 

Traditional Cl-O-Cl♦ -0.003258 -0.193098 0.000103 0.007680 

Traditional Cl-Cl♦ -0.003505 -0.193992 0.000126 0.008435 

Parkinson -0.005915 -0.340108 0.000062 0.006031 

Garman-Klass -0.001502 -0.065399 0.000028 0.003543 

Rogers-Satchell -0.001475 -0.064936 0.000038 0.003962 

GARCH(1,1)- In sample 0.000681 0.228127 0.000071 0.005854 

GARCH (1,1)- Complete 0.001092 0.257060 0.000070 0.005964 

EGARCH-In sample 0.000450 0.213318 0.000069 0.005718 

EGARCH-Complete 0.000903 0.242548 0.000070 0.005840 

 



 

Panel B: Five-day Period∗ 

        (Number of Observations- 147) 

 

 

Model/Estimator Bias Relative 

Bias 

Mean 

Square 

Error 

Mean 

Absolute 

Error 

Traditional Cl-Cl♦ -0.002295 -0.132712 0.000026 0.003847 

Traditional Cl-O-Cl♦ -0.001673 -0.099923 0.000021 0.003443 

Traditional Adj. Cl-Cl♦ -0.002190 -0.132206 0.000032 0.004329 

Trad. Adj. Cl-op-Cl♦ -0.002009 -0.122123 0.000031 0.004104 

Parkinson -0.006173 -0.340889 0.000052 0.006173 

Garman-Klass -0.001582 -0.076001 0.000011 0.002247 

Rogers-Satchell -0.001311 -0.060231 0.000012 0.002349 

Yang-Zhiang -0.001399 -0.067837 0.000010 0.002118 

GARCH(1,1)- In sample -0.000162 0.090241 0.000032 0.004098 

GARCH (1,1)- Complete 0.000280 0.117163 0.000029 0.004028 

EGARCH-In sample -0.000397 0.078539 0.000032 0.004087 

EGARCH-Complete 0.000097 0.106139 0.000028 0.004057 

 

                                                           
∗ The volatility estimates for these comparisons are based on average daily volatility estimated over the relevant period and 

have not been annualized. For converting them in % annualized volatility, the volatility needs to be multiplied with (N)1/2 * 

100 where N is approx. 250. The same factor will also scale up the reported Bias and Mean Absolute Error while Relative 

Bias will remain unaffected. The Mean Square Error needs to be scaled up by multiplying with N instead of its square root. 

 



 

Panel C: Calendar Month∗ 

        (Number of Observations- 36) 

 

Model/Estimator Bias Relative 

Bias 

Mean 

Square 

Error 

Mean 

Absolute 

Error 

Traditional Cl-Cl♦ -0.001371 -0.067712 0.000010 0.002362 

Traditional Cl-O-Cl♦ -0.001328 -0.067828 0.000009 0.002244 

Traditional Adj. Cl-Cl♦ -0.001294 -0.063739 0.000010 0.002282 

Trad. Adj. Cl-op-Cl♦ -0.001205 -0.061844 0.000009 0.002144 

Parkinson -0.006420 -0.343027 0.000049 0.006420 

Garman-Klass -0.001717 -0.085808 0.000005 0.001843 

Rogers-Satchell -0.001440 -0.071387 0.000005 0.001716 

Yang-Zhiang -0.001413 -0.070288 0.000004 0.001553 

GARCH(1,1)- In sample -0.000620 0.023725 0.000015 0.002762 

GARCH (1,1)- Complete -0.000131 0.054742 0.000014 0.002718 

EGARCH-In sample -0.000858 0.014670 0.000016 0.002893 

EGARCH-Complete -0.000300 0.046885 0.000014 0.002933 

 

♦ Traditional Cl-op-cl estimator is based on sum of closed market and open market squared returns, whereas 

traditional Cl-Cl estimator is based on close-to-close squared returns. Similarly, traditional adjusted Cl-Cl 

estimator is estimated using close-to-close returns, whereas in case of traditional adjusted Cl-op-Cl estimator, 

open and closed variances are separately measured and added to arrive at daily variance/volatility. 

 

                                                           
∗ The volatility estimates for these comparisons are based on average daily volatility estimated over the relevant period and 

have not been annualized. For converting them in % annualized volatility, the volatility needs to be multiplied with (N)1/2 * 

100 where N is approx. 250. The same factor will also scale up the reported Bias and Mean Absolute Error while Relative 

Bias will remain unaffected. The Mean Square Error needs to be scaled up by multiplying with N instead of its square root. 

 



 

Table 5: Predictive Power of Volatility Models and Estimators 

 

Panel A: One-day Period 

        (Number of Observations- 736) 

 

Model/Estimator Mean 

Forecast 

Error 

Relative 

Forecast 

Error 

Mean 

Square 

Forecast 

Error 

Mean 

Absolute 

Forecast 

Error 

Traditional Cl-O-Cl♦ -0.003495 -0.158813 0.000157 0.009154 

Traditional Cl-Cl♦ -0.003743 -0.156675 0.000173 0.009755 

Parkinson -0.006151 -0.296215 0.000120 0.007392 

Garman-Klass -0.001739 -0.005943 0.000102 0.006353 

Rogers-Satchell -0.001713 0.004317 0.000121 0.007058 

GARCH(1,1) 0.000274 0.243228 0.000083 0.006269 

GARCH (1,1)- Rolling 0.000634 0.259618 0.000081 0.006297 

EGARCH 0.000253 0.239605 0.000083 0.006196 

 

                                                                                                                                                                             
 



 

Panel B: Five-day Period∗ 

        (Number of Observations- 146) 

 

 

Model/Estimator Mean 

Forecast 

Error 

Relative 

Forecast 

Error 

Mean 

Square 

Forecast 

Error 

Mean 

Absolute 

Forecast 

Error 

Traditional Cl-Cl♦ -0.002295 -0.077617 0.000076 0.006309 

Traditional Cl-O-Cl♦ -0.001669 -0.038811 0.000074 0.006304 

Traditional Adj. Cl-Cl♦ -0.002166 -0.060767 0.000088 0.007045 

Trad. Adj. Cl-op-Cl♦ -0.001985 -0.051693 0.000087 0.006814 

Parkinson -0.006181 -0.302628 0.000084 0.006947 

Garman-Klass -0.001589 -0.028514 0.000050 0.005045 

Rogers-Satchell -0.001320 -0.012849 0.000050 0.005071 

Yang-Zhiang -0.001404 -0.017729 0.000050 0.005076 

GARCH(1,1) -0.000465 0.122342 0.000052 0.005242 

GARCH (1,1)- Rolling -0.000034 0.144828 0.000051 0.005295 

EGARCH -0.000407 0.125388 0.000052 0.005256 

 

                                                           
∗ The volatility estimates for these comparisons are based on average daily volatility estimated over the relevant period and 

have not been annualized. For converting them in % annualized volatility, the volatility needs to be multiplied with (N)1/2 * 

100 where N is approx. 250. The same factor will also scale up the reported Bias and Mean Absolute Error while Relative 

Bias will remain unaffected. The Mean Square Error needs to be scaled up by multiplying with N instead of its square root. 

 



 

Panel C: Calendar Month∗ 

        (Number of Observations- 35) 

 

 

Model/Estimator Mean 

Forecast 

Error 

Relative 

Forecast 

Error 

Mean 

Square 

Forecast 

Error 

Mean 

Absolute 

Forecast 

Error 

Traditional Cl-Cl♦ -0.001225 0.008519 0.000062 0.005938 

Traditional Cl-O-Cl♦ -0.001178 0.004903 0.000057 0.005687 

Traditional Adj. Cl-Cl♦ -0.001156 0.011293 0.000061 0.005915 

Trad. Adj. Cl-op-Cl♦ -0.001062 0.010622 0.000057 0.005711 

Parkinson -0.006333 -0.299390 0.000075 0.006540 

Garman-Klass -0.001608 -0.028542 0.000040 0.004855 

Rogers-Satchell -0.001345 -0.014075 0.000040 0.004831 

Yang-Zhiang -0.001311 -0.010940 0.000041 0.004914 

GARCH(1,1) -0.001126 0.050896 0.000044 0.004854 

GARCH (1,1)- Rolling -0.000534 0.086979 0.000044 0.004940 

EGARCH -0.000949 0.063854 0.000044 0.005043 

 

♦ Traditional Cl-op-cl estimator is based on sum of closed market and open market squared returns, whereas 

traditional Cl-Cl estimator is based on close-to-close squared returns. Similarly, traditional adjusted Cl-Cl 

estimator is estimated using close-to-close returns, whereas in case of traditional adjusted Cl-op-Cl estimator, 

open and closed variances are separately measured and added to arrive at daily variance/volatility. 

                                                           
∗ The volatility estimates for these comparisons are based on average daily volatility estimated over the relevant period and 

have not been annualized. For converting them in % annualized volatility, the volatility needs to be multiplied with (N)1/2 * 

100 where N is approx. 250. The same factor will also scale up the reported Bias and Mean Absolute Error while Relative 

Bias will remain unaffected. The Mean Square Error needs to be scaled up by multiplying with N instead of its square root. 

 



 

 Table 6: Results of OLS Regression on Predictive Power of Volatility Models and 

Estimators 

 

Panel A: One-day Period 

        (Number of Observations- 736) 

 

Model/Estimator β0 β1 R-Squared 

Traditional Cl-O-Cl♦ 0.000284 

(11.76185) 

0.340427 

(10.85265) 

0.138275 

Traditional Cl-Cl♦ 0.000284 

(11.56929) 

0.346103 

(10.26028) 

0.125434 

Parkinson 0.000255 

(9.414865) 

0.864431 

(9.254452) 

0.10449 

Garman-Klass 0.000257 

(9.099892) 

0.448345 

(8.262659) 

0.085098 

Rogers-Satchell 0.000297 

(10.5897) 

0.308335 

(6.183036) 

0.049506 

GARCH(1,1) -0.00037 

(-5.39779) 

2.45939 

(11.77057) 

0.158784 

GARCH (1,1)- Rolling -0.00021 

(-3.64259) 

1.863083 

(11.18503) 

0.145622 

EGARCH -0.00042 

(-5.59641) 

2.631491 

(11.36021) 

0.149532 

Figures in parenthesis are t-statistic associated with the coefficient. 

 

                                                                                                                                                                             
 



Panel B: Five-day Period 

        (Number of Observations- 146) 

 

Model/Estimator β0 β1 R-Squared 

Traditional Cl-O-Cl♦ 0.000262 

(6.727447) 

0.366746 

(4.873579) 

0.141589 

Traditional Cl-Cl♦ 0.000266 

(7.011435) 

0.375357 

(4.937798) 

0.144801 

Traditional Adj. Cl-Cl♦ 0.000277 

(7.053345) 

0.332819 

(4.261833) 

0.112006 

Trad. Adj. Cl-op-Cl♦ 0.000293 

(7.678961) 

0.277347 

(3.980774) 

0.099136 

Parkinson 0.000184 

(4.449891) 

1.219383 

(6.615672) 

0.233093 

Garman-Klass 0.000158 

(3.943864) 

0.720093 

(7.666167) 

0.289836 

Rogers-Satchell 0.00016 

(4.04632) 

0.687434 

(7.741847) 

0.293897 

Yang-Zhiang 0.000153 

(3.818194) 

0.718399 

(7.797907) 

0.296900 

GARCH(1,1) -0.00024 

(-2.05022) 

2.024221 

(5.496624) 

0.173425 

GARCH (1,1)- Rolling -0.00009 

(-0.9534) 

1.469621 

(5.037380) 

0.149816 

EGARCH -0.00031 

(-2.43191) 

2.226531 

(5.630326) 

0.180424 

Figures in parenthesis are t-statistic associated with the coefficient. 



Panel C: Calendar Month 

        (Number of Observations- 35) 

 

Model/Estimator β0 β1 R-Squared 

Traditional Cl-O-Cl♦ 0.000270 

(3.299997) 

0.348629 

(1.844389) 

0.093451 

Traditional Cl-Cl♦ 0.000289 

(3.440199) 

0.294417 

(1.492245) 

0.063213 

Traditional Adj. Cl-Cl♦ 0.000288 

(3.464967) 

0.293773 

(1.525348) 

0.065862 

Trad. Adj. Cl-op-Cl♦ 0.000271 

(3.349638) 

0.338724 

(1.847000) 

0.093691 

Parkinson 0.000171 

(2.16143) 

1.308826 

(3.365789) 

0.255559 

Garman-Klass 0.000140 

(1.87633) 

0.778776 

(4.072741) 

0.334506 

Rogers-Satchell 0.000139 

(1.928762) 

0.756023 

(4.303069) 

0.359427 

Yang-Zhiang 0.000147 

(1.961677) 

0.730613 

(3.974285) 

0.323700 

GARCH(1,1) -0.00010 

(-0.25220) 

1.60115 

(1.26143) 

0.046000 

GARCH (1,1)- Rolling 0.00007 

(0.211446) 

0.972845 

(0.942551) 

0.026216 

EGARCH -0.00030 

(-0.60958) 

2.234786 

(1.397152) 

0.055849 

   Figures in parenthesis are t-statistic associated with the coefficient.  



Table 7: Results of Forecast Encompassing Regression  

 

Panel A: One-day Period 

        (Number of Observations- 736) 

 

Forecast Comparisons β0 β1 β2 β3 β4 β5 R2 

Garch vs. EGARCH -0.0004 

(-5.27) 

- - - 1.935 

(2.96) 

0.610 

(0.85) 

0.1596 

Garch, EGARCH, Trad. 0.000 

(-2.62) 

0.198 

(5.40) 

- - 1.566 

(2.43) 

0.176 

(0.25) 

0.1917 

GARCH vs. Trad. 0.000 

(-2.77) 

0.200 

(5.46) 

- - 1.714 

(6.96) 

- 0.1917 

EGARCH vs. Trad. 0.000 

(-2.74) 

0.208 

(5.67) 

- - - 1.773 

(6.50) 

0.1852 

Garch vs. EV (P) 0.000 

(-3.77) 

- 0.374 

(3.39) 

- 1.961 

(7.72) 

- 0.1718 

EGARCH vs. EV(GK) 0.000 

(-4.25) 

- - 0.151 

(2.33) 

- 2.239 

(7.84) 

0.1558 

Garch, EGARCH, 

EV(P) 

0.000 

(-3.40) 

- 0.371 

(3.28) 

- 1.906 

(2.94) 

0.069 

(0.09) 

0.1718 

All 0.000 

(-1.77) 

0.341 

(5.46) 

-1.041 

(-3.15) 

0.504 

(3.39) 

1.916 

(2.94) 

-0.487 

(-0.65) 

0.2044 

1. Figures in parenthesis are t-statistic associated with the coefficient. 

2. For one-day period, the traditional estimator used for forecasts is traditional close-open-close estimator, 

extreme-value estimators used for forecasts are Parkinson and Garman-Klass Estimators. The choice was based 

on R2 as reported in Table 6.  



 

Panel B: Five-day Period 

        (Number of Observations- 146  

Forecast Comparisons β0 β1 β2 β3 β4 β5 R2 

Garch vs. EGARCH 0.000 

(-2.39) 

- - - 0.710 

(0.65) 

1.506 

(1.29) 

0.1829 

Garch, EGARCH, Trad. 0.000 

(-1.06) 

0.130 

(0.99) 

- - 0.104 

(0.08) 

1.596 

(1.36) 

0.1885 

GARCH vs. Trad. 0.000 

(-0.77) 

0.117 

(0.89) 

- - 1.552 

(2.40) 

- 0.1780 

EGARCH vs. Trad. 0.000 

(-1.09) 

0.136 

(1.19) 

- - - 1.680 

(2.77) 

0.1885 

Garch vs. EV (YZ) 0.000 

(1.26) 

- 0.735 

(5.01) 

- -0.078 

(-0.14) 

- 0.2970 

EGARCH vs. EV(RS) 0.000 

(0.72) 

- - 0.647 

(4.81) 

- 0.223 

(0.40) 

0.2947 

Garch, EGARCH, 

EV(YZ) 

0.000 

(1.09) 

0.020 

(0.18) 

0.729 

(4.69) 

- - -0.144 

(-0.21) 

0.2972 

All 0.000 

(1.00) 

0.087 

(0.47) 

0.046 

(0.03) 

0.597 

(0.43) 

-0.037 

(-0.03) 

-0.080 

(-0.07) 

0.2982 

1. Figures in parenthesis are t-statistic associated with the coefficient. 

2. For five-day period, the traditional estimator used for forecasts is traditional close-close estimator, extreme-

value estimators used for forecasts are Yang-Zhiang and Rogers-Satchell Estimators. The choice was based on R2 

as reported in Table 6.  

 



 

Panel C: Calendar Month 

        (Number of Observations- 35) 

 

Forecast Comparisons β0 β1 β2 β3 β4 β5 R2 

Garch vs. EGARCH 0.000 

(-0.61) 

- - - 0.610 

(0.31) 

1.645 

(0.66) 

0.0586 

Garch, EGARCH, Trad. 0.000 

(0.37) 

0.337 

(1.10) 

- - 0.048 

(0.02) 

-0.037 

(-0.01) 

0.0937 

GARCH vs. Trad. 0.000 

(0.55) 

0.335 

(1.30) 

- - 0.035 

(0.02) 

- 0.0937 

EGARCH vs. Trad. 0.000 

(0.39) 

0.339 

(1.16) 

- - - -0.002 

(0.00) 

0.0937 

Garch vs. EV (RS) 0.000 

(1.10) 

- 0.829 

(4.05) 

- -0.861 

(-0.71) 

- 0.3694 

EGARCH vs. EV(GK) 0.001 

(2.02) 

- - 1.104 

(4.22) 

 -3.237 

(-1.76) 

0.3933 

Garch, EGARCH, 

EV(RS) 

0.001 

(1.76) 

- 0.984 

(4.25) 

- 0.596 

(0.37) 

-3.181 

(-1.37) 

0.4053 

All 0.001 

(1.07) 

-1.780 

(-2.97) 

-5.723 

(-2.10) 

8.828 

(2.55) 

1.216 

(0.80) 

-2.793 

(-1.26) 

0.5441 

1. Figures in parenthesis are t-statistic associated with the coefficient. 

2. For one-month period, the traditional estimator used for forecasts is traditional adj. close-open-close estimator, 

extreme-value estimators used for forecasts are Rogers-Satchell and Garman-Klass Estimators. The choice was 

based on R2 as reported in Table 6. 

 

 


