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Unit Root Tests: Results from some recent tests applied to select Indian 
macroeconomic variables 

 
 
Results from newly developed unit roots tests of ERS (1996), PN (1996), NP (2001) and LM (1994) are compared 
against their traditional counterparts (ADF, PP and KPSS) on select Indian macroeconomic data. Results from 
ERS, PN and NP are broadly in agreement.  However, using the general to specific criterion of Hall (1994) and 
the Modified Information Criterion (MIC) of NP for lag length selection, it is found that different lag length can 
lead to different results. Furthermore, results from using these criteria are also sensitive to the 'maximum' lag 
length. Both KPSS and its modified version, LM, are found to be prohibitively sensitive to the lag length used. 
Since as of now no theoretical criterion exists for lag length selection for tests which test the null of stationarity, 
their use should be avoided, even for the purpose of so-called ‘confirmation’. Another important finding is that 
frequency of the data and span covered by the sample size plays an important role and whenever feasible, tests 
must be conducted with as many different frequencies as the availability of data permits. It is not only a large 
sample size that is important, but also the span covered, an issue raised long ago by Campbell and Perron (1991).  
 
 
I. Introduction  
 
Since Schwert (1989) demonstrated poor power properties of the Dickey Fuller (Dickey and 
Fuller (1979), Said and Dickey (1984); henceforth ADF) test and the poor size properties of 
the Phillip-Perron (Phillip and Perron (1988), Perron (1988); henceforth PP) tests, there have 
been a barrage of studies attempting to construct more efficient tests for unit roots (Campbell 
and Perron (1991), Maddala and Kim (1998); henceforth MK and Phillips and Xiao (1998)). 
Even though there is still no consensus on any one particular test as ‘the most powerful’ test, 
Ng and Perron (2001; henceforth NP) developed M-tests strike out as having the best size 
adjusted power properties. As described later NP is an extension of the DF-GLS test of 
Elliott, Rothenberg and Stock (1996; henceforth ERS) and the modified Z tests of Perron and 
Ng (1996; henceforth PN).1  
 
All the tests mentioned above test the null of a unit root against the alternative of stationarity. 
One test which does otherwise, i.e. which has the null of stationarity, is the test of 
Kwaitkowski et al (1992; henceforth KPSS). Although in literature KPSS has often been used 
to ‘confirm’ results from the ADF and PP tests, MK find in their survey that KPSS test is also 
plagued by the same poor power and size properties as the traditional ADF and PP tests. 
Leybourne and McCabe (1994; henceforth LM) modified KPSS test takes account of the 
possible MA terms in the original data generating process (DGP) and is reported to have 
better size adjusted power properties than its predecessor. 
 
In this study I compare results from all the aforementioned tests on some select Indian 
macroeconomic variables. I find that results are highly sensitive to the issues of lag length 
selection and sampling frequency. Since we have only but a realization of the time series and 
since a uniformly powerful test do not exist for unit root tests (Dufour and King (1991)) it is 
suggested that point optimal tests2 of (the parametric) ERS and (the non-parametric) PN and 
NP must be used employing alternative lag length selection criteria of Hall (1994) and the 
Modified Information Criterion (MIC) of NP.  
 

                                                 
1 While ERS itself was a modification to the traditional ADF test, the modified Z tests of PN were improvement 
upon the original PP test. 
2 i.e. optimal under the alternative (in this case with a power of 50% ) 



Most of the theoretical description that follows has been adapted from the surveys of 
Campbell and Perron (1991) and MK (1998), and the works of Perron (1988), Schwert 
(1989), LM (1994), ERS (1996), PN (1996) and NP (2001). Throughout the 
study T

ty 1}{ represents the realization of the time series, T denotes the sample size, L stands 

for the lag operator such that 1== tt yLy , AR (p) denotes a standard autoregressive process of 
order p and MA (q) denotes a standard moving average process of order q. 
 
The plan of the study is as follows. In section II, to develop a backdrop, I briefly describe the 
traditional ADF, the PP and the KPSS tests and delineate the issues raised in literature related 
to their use in checking for nonstationarity. In section III I describe how their modified 
versions tackle some of the problems of the traditional tests and what problems still remain. 
Section IV describes the data. In section V I compare results from both the old and the new 
tests on the Indian data sampled at various frequencies. For reasons described later data on 
money, income and inflation at monthly and quarterly frequency have been seasonally 
adjusted prior to testing. Section VI concludes.  
 
 
II. Traditional Unit Root Tests 
 
 
1. Augmented Dickey-Fuller (ADF) Test  
 
If any of the roots of the polynomial )...1( 2

21
p

p LLL φφφ −−−− of an AR (p) stochastic 
process lie outside the unit circle, the process is said to non-stationary. The traditional ADF 
way of testing for non-stationarity of an AR (p) process involves testing for the null of one 
unit root )0:( *

0 =γH in: 
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ut IIDu σ by construction. 
 
 
Depending on whether the underlying data generating process (DGP) is assumed to have drift 
and time trend the specification of deterministic polynomial ( tβα + ) in the above equation 
changes3. However, as discussed below, using the ADF tests is plagued with both theoretical 
and practical problems. A detailed treatment on size and power properties of ADF tests can be 
found in Schwert (1989) and Campbell and Perron (1991). MK (1998) provide a 
comprehensive survey.  
 
 
 
 
 

                                                 
3 Critical values for tests with higher order terms in time trend are provided by see Ouliaris, Park and Phillips 
(1990)  



• DGP vs. the Estimating Equation 
 
The original DGP for a macroeconomic time series is hardly, if ever, known. A plausible 
DGP is assumed and presence of unit root is tested using an estimable form of the DGP.  
 
However, if, for example, we assume  
 

ttt uyy ++= −1ρα         [2] 
 
as the DGP and use the same as the estimating equation, both null and alternative are not 
nested, because under null, estimating equation reduces to a DGP with a trend, whereas under 
the alternative it has no time trend, only a drift α (as in equation [2] with ρ < 1). To see this, 
note that if the null of 1=ρ holds the above equation can be recursively expanded to: 
 

tt yty εα ++= 0         [3] 
; tε is now a MA on tu ; i.e. [3] has a time trend as opposed where [2] has none if ρ < 1.  
 
To take account of this ‘problem’ Campbell and Perron (1991) argue it is necessary “…to 
have as many deterministic components in the trend function of the data generating 
process.4” The situation does not arise, however, if Bhargava (1986) model is used which 
nests both the null and the alternative in a two-equation state space framework as: 
 

tt uty ++= 10 γγ          [4a] 

ttt uu ερ += −1          [4b] 
 
Bhargava’s test, a Lagrange Multiplier statistic test, is a modification to the Sargana and 
Bhargava (1983) unit root test. Modified Sargana Bhargava (MSB) test enters the discussion 
later in the context of PP and M-tests.  
 
 
• Lag Length Selection Problem and Presence of Negative MA Terms 
 
A practical problem in using ADF is the selection of lag length in [1]. Said and Dickey 
(1984) suggested modification to the DF test because they noticed that most macroeconomic 
time series have significant MA terms and, they argued, if unaccounted for, make the DF 
distributions inapplicable even asymptotically.  
 
To take account of the presence of significant MA terms they suggested using a ‘large 
enough’ lag length (they found that the order of 3/1T  was sufficient). Schwert (1989) also 
discussed the same issue in his Monte Carlo experiment when the true ARMA order is 
unknown. He suggested a rule of thumb to account for the unknown MA terms. Selection 
based on Schwert’s formula results in a relatively large lag length in small samples (~ 100) 
and a modest one when the sample size is large (~ 10, 000), which is reasonable, because one 
would want to include as large number of a lag terms as feasible in finite samples and not too 
large when ∞→T .  
                                                 
4 J.C. Campbell and P. Perron (1991), “Pitfall and Opportunities: What Macroeconomists should know about Unit 
Roots,” NBER Technical Working Paper # 100, p. 11 



Other suggestions in the literature include using the Akaike’s Information Criterion (AIC) and 
the Schwarz’s Bayesian Information Criterion (BIC) to ensure that residual in [1] is white 
noise. The problems with using AIC and BIC to select the lag length, MK note, is that they 
tend to select too small a length (NP also report similar results) and if there are errors with 
MA root close to -1, a high order AR process is needed to ensure that unit root tests have 
good size. But while selecting a large lag length circumvents the problem of MA effect in the 
residual, increasing the number of regressors reduces the power of the test substantially.  
 
An approach, based on the so called LSE methodology, which has found considerable 
support, is that of Hall (1994). His general to specific rule is to start with a large value of p 
(pmax) and reduce p until a significant t value is encountered. A recent development is the 
Modified Information Criterion (MIC) suggested by NP, which is a modification to AIC and 
BIC with a sample dependent penalty factor. 
 
 
2. Phillip-Perron Test 
 
PP test is a non-parametric modification to the standard Dickey-Fuller t-statistic to account 
for the autocorrelation that may be present if the underlying DGP is not AR (1). Instead of 
adding AR terms in the DGP to account for (possible) MA terms, they modify the test 
statistic. However, Schwert (1989) showed that PP test suffers from poor size properties if the 
MA term is large negative. Thus, ADF and PP tests suffer from quite opposite problems. 
While the ADF test does not suffer from as severe size distortions, it is not as powerful as the 
PP test. 
 
The other ‘problem’ with the PP test is that of consistent estimation of the so called long-run 
variance or the variance of the sum of the errors: 
 

2

1

212 ])[(lim ∑
=

−=
T

j
jETp εσ        [5] 

 
 which is different from the variance of errors: 
 

∑
=

−=
T

j
jETp

1

212 )(lim εσ ε        [6] 

PP involves consistent estimation of both 2σ and 2
εσ . Now while consistent estimate of 2
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simple,  
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consistent estimation of 2σ is problematic. The following heteroskedasticity and 
autocorrelation consistent (HAC) Newey and West (1987) estimator is normally used, but the 
‘window’/lag length used for autocovariances is essentially arbitrary. A suggested approach is 
to check for the sample autocorrelation function of tε and select a lag length large enough to 
take care of residual autocorrelation in the error term. The Newey-West HAC estimator is 
given as: 
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Although PP test is most popular in its non-parametric modification to the DF t-statistic, they 
proposed three tests, ρZ , tZ  and MSB whose properties they found both numerically and 
theoretically similar. Expressions for non-parametric test statistics for the null of unit root for 
the three standard cases using above estimators of variances are as given (from Perron (1988)) 

below. Throughout, 
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• AR (1) without drift 
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• AR (1) with only a drift  
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• AR (1) with a drift and a linear trend 
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; XD is the determinant of the matrix [1 t  yt-1] ; 1 denotes the column vector forming the 
intercept (the drift term), t the time trend, and yt-1 the vector of lagged yt. Also, in above 
equations ρZ and tZ are related as ρZMSBZt ×= . To facilitate comparisons with the ADF 

and its modified versions tZ is used. 
 
 
3. KPSS Test5 
 
KPSS is the only popularly used test in which the null of stationarity is tested against a non-
stationary alternative.  In particular, the KPSS specification is: 
 

ttt ty εςδ ++=         [12a] 

ttt u+= −1ςς          [12b] 
 
and the null hypothesis is 0: 2

0 =uH σ   
 
The above specification is special case of the model discussed by Nabeya and Tanaka (1988) 
with the null of parameter constancy against the alternative that the parameters follow a 
random walk: 
 

ttttt zxy εγβ ++= '           

utt u+= −1ββ        
 
; ),0(~ 2

ut IIDu σ with the test statistic given as: 
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KPSS modified the above test statistic, because as they argued, the above test statistic is valid 
only if the errors )( tε are IID. KPSS consider the general case and suggest a modification to 
(denominator of) the above LM statistic. Instead of using the error variance, they suggest 
using the Newey-West HAC estimator of long run variance (discussed in the context of PP 
earlier). The KPSS test statistic, then, is: 
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It is often suggested that KPSS, in which the null is that of stationarity, can be used to 
‘confirm’ results from the ADF and PP. But, as MK discuss at length, not only the inference 
from KPSS test very sensitive to the lag length (l) used in estimation of the HAC variance, it 
also has the same poor power properties of the ADF.  

                                                 
5 Most of this section has been adapted from MK (1998) 



Thus, not only are all of the above three traditional tests sensitive to the issue of lag length 
and presence of (large) negative MA terms, they are also characterized by problems of poor 
power and size. Since the study of Schwert (1989) literature on unit root tests has been 
abounding. Throughout the ‘90s there have been many developments in the area. Here we 
restrict ourselves to the discussion of modification of the above tests, because despite the 
problems they are the ones that are still used most often and communicating modifications to 
these tests may be far easier than moving on to completely new tests. Except the modified 
version of the KPSS test that we discuss next, modifications to ADF and PP have now been 
accepted in the literature as primary tests for unit roots, and further theoretical developments 
are being centered on them (see Phillips and Xiao (1998), Xiao and Phillips (1997), MK 
(1998), NP (2001) etc.).  
 
 
III. Modified ADF, PP and KPSS tests 
 
 
• Elliott, Rothenberg and Stock (1996) DF-GLS test 
 
Exploiting the Dufour and King (1991) result that uniformly powerful test do not exist for 
unit root tests, ERS modify the ADF test and show that their DF-GLS test has the limiting 
power function close to the point optimal test. Note that when we test for non-stationarity the 
alternative hypothesis is 1<ρ  and we are not testing against any value of ρ . Under these 
circumstances we have a power envelope covering the continuous set of each possible value 
of ρ  under the alternative. ERS propose a family of tests whose power functions, they show, 
is tangent to the power envelope at one point and never below. They call these tests PT (0.5), 
signifying that the tests are optimal at the 50% power. They then go on to show that their DF-
GLS has the limiting power function close to PT (0.5). 
 
DF-GLS proceeds by first detrending the series as 
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; ty  is the original time series and tz  is 
'

],1[ t , )/(1 Tc
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+=α  and 
−

c  takes the value -7 or -
13.5 depending upon whether the original DGP is assumed to have a drift or drift and trend 

both. ERS determine the values of 
−

c  using simulations so as to result in power close to point 

optimal tests. NP confirm that other values of 
−

c do not lead to any improvement, and they 
also stick to the same values.  
 



After the series has been suitably detrended the DF-GLS proceeds on similar lines as the 
traditional ADF test i.e. the null of a unit root )0:( *

0 =γH  can be tested in: 
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Critical values for both 
−

c  = -7 and 
−

c  = -13.5 have been provided by ERS. Note that although 
DF-GLS has much better power properties the issue of lag length selection still remains. NP 
find that ERS has poor size properties when the underlying DGP has large negative MA 
terms. They augment their test by using MIC and they show it overcomes this problem, if 
indeed there are large negative MA terms in the underlying DGP.  
 
 
• Perron and Ng (1996) Modified Z tests  
 
As mentioned earlier, PP is characterized by poor size properties. PN modify the Z statistics 
proposed by PP to correct for this problem. Their modified Z statistics are: 
 

ρMZMSBMZt ×=         [18] 
 
where MSB follows from equations [9c] to [11c], and  
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where ρZ  for the three cases follow from the equations [9a] to [11a] 
 
Unlike in PP test, however, PN do not propose the Newey-West HAC estimator for the long 
run variance (autoregressive spectral density estimator at frequency zero). Instead, they 
suggest using 
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ε for the drift/drift and trend case to be obtained from the following 

autoregression6: 
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6 The intercept α  does not occur when there is neither drift nor trend; also, data is not detrended in that case 



Here, d
ty refers to de-meaned data in the only drift case and detrended data if the underlying 

DGP is assumed to contain both drift and trend terms. Although the above modification may 
seem rather complicated, it is essentially the long variance estimator which PN show to be 
inefficient in the context of PP. They show that the modified Z statistic when used with any 
other estimator of long variance yields no improvement in the size properties. PN further 
show that the modified Z statistic is able to maintain good power while correcting for the size 
problems of PP.  
 
The lag length problem, however, still comes to fore in the form of estimating equation [22]. 
However, since the test is not really based on the above autoregressive equation, the issue is 
less serious. The PN test remains essentially a non-parametric modification to the DF test 
statistic. However, this practical problem still needs to be addressed. NP show that using MIC 
to select k in [22] results in better size adjusted power properties. 
  
 
• Ng and Perron (2001) M-tests and the Modified Information Criterion 
 
M-tests of NP are an extension of the ERS to the modified Z tests ( ρMZ , tMZ  and MSB 
discussed above) developed in PN. By detrending data using GLS and using MIC for lag 
length selection, NP show that size adjusted power properties of the MZ tests increase 
significantly. They show using Monte Carlo experiments that even in the case of DF-GLS 
developed by ERS, if lag length is selected using MIC, the power improvements are 
significant especially when there are MA terms in the underlying DGP.  
 
For long run variance to be used in MZ statistic of PN, NP suggest using GLS detrended data 
in the autoregression [22]. They find that the long run variance estimation using GLS 
detrended data results in higher power (than MZ). They find using simulation studies that for 
most ‘practical’ ARMA cases while DF-GLSMIC outscores MZMIC on power, on the size 
criterion it is the other way round. 
 
Without going into the details, MIC is basically a modification of AIC7 which depends upon 
the sample value of the parameter (b0) tested under null and the sample size. For lag k and 
sample size T and the value of the coefficient on yt-1 (b0), MIC is given as: 
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t

^
ε are to be obtained from the autoregression as in [22]. Note that the yt here denotes the 
appropriately GLS de-meaned/detrended data and not the original time series. NP find that the 
theoretical and numerical properties of the three M-tests ( ρMZ , tMZ  and MSB) are quite 

similar and they illustrate using ρMZ . In this study to facilitate comparison with the 
traditional PP test, MZt has been used after appropriately detrending the data.  

                                                 
7 They also modify the BIC but show that AIC has superior theoretical properties 



• Leybourne and McCabe (1994) Modified KPSS test 
 
LM modification to KPSS is analogue of ADF to DF (although KPSS per se is closer to PP in 
spirit). Their modification to KPSS was an answer to the sensitivity of the KPSS to the value 
of the lag l used in the estimation of the Newey-West HAC estimator of long run variance.  
 
LM modify equations [12a] and [12b] used by KPSS to: 
 

ttt tyL εςδφ ++=)(        [24a] 

ttt u+= −1ςς          [24b] 
 
It can be shown that [23a] and [23b] can be reduced to the following reduced-form model: 
 

)()1)(( 1 tttt uyLL +−+=− −εεδφ       [25] 
 
They write )( 1 ttt u+− −εε  as tL ηθ )1( −  and derive relations between the second moments of 

tη , tε  and tu . Then they test for the null of stationarity as: 
 

1:0 =θH   (or equivalently 0: 2
0 =uH σ ) 

 
The procedure for implementing their test starts by estimating by Maximum Likelihood (ML) 
ARIMA (p, 1, 1) yt as: 
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;W is a T X T matrix where Wij = min (i, j) and the residuals,
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on an intercept and a time trend, and 
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LM go on to show that the asymptotic distribution of δ

^
s  is the same as that corresponding 

distribution derived by KPSS and thus the same critical values can be used for testing for the 
null of stationarity.  
 
 

                                                 
8 Note the equivalence between [24] and [25]. Also, note that the error term in [24] is by construction an MA, thus 
mimicking the fact that most economic time series exhibit significant (negative) MA terms 



Summary and Notation 
 
To wrap up the discussion I summarize the tests used in the study in the following table along 
with the notation used and the criteria of lag length selection. 
 

Table 1 
 

Test 
 

Notation 
 

Long Run Variance Estimator 
 

Lag Length Criteria 
ADF  ADF - Hall’s , MIC  and SACF9 
PP Z Newey West HAC MIC and SACF 
KPSS KPSS Newey West HAC MIC and SACF 
DF-GLS of ERS DF-GLS - Hall’s, MIC and SACF 
Modified PP of PN MZ-OLSD SAR   based on OLS detrending Hall’s, MIC and SACF 
Modified PP GLSD of MZ-GLSD SAR based on GLS detrending MIC and SACF 
LM MKPSS SAR based on ARIMA (p, 1, 1) Schwert (1989) and SACF 
 SAR is the long run variance (autoregressive spectral density estimator at frequency zero) as calculated in equations [20] - [22]  
 - For both Hall and MIC kmax has been alternatively chosen as T/4 and Schwert’s l12 

 
Thus, in all, I conduct 27 tests for each variable sampled at various frequencies as discussed 
in the next section on data. 
 
 
IV. Data  
 
The series tested for nonstationarity are: 
 

 GDP at factor cost (Y): Sampled at annual (1951/52 – 2001/02), quarterly (1983/84Q1 – 
2001/02Q4) and monthly (1983/84M4 – 1998/99M3) frequency. For details on estimation 
of quarterly and monthly GDP-FC see author’s earlier paper (IIMA WP # 2003-10-03). 
Natural logarithm (y) of the variable is tested. Also, monthly and quarterly data are 
seasonally adjusted (using TRAMO/SEATS of EUROSTAT10). Plot in Figure 1. 

 
 Money Supply (M): Definitions M1 and B, sampled at annual (1971 – 2003), quarterly 

(1983Q1 – 2001Q4) and monthly (1983M4 – 2001M3) frequency. Natural logarithm (m, 
b) of the variable is tested. Also, monthly and quarterly data are seasonally adjusted 
(using TRAMO/SEATS of EUROSTAT). Plot in Figure 2 for M1. 

 
 Call Rate (R): Sampled at quarterly (1992Q1 – 2001Q4) and monthly (1992M4 – 

2002M3) frequency. Variable is tested both in levels (R) and in natural logarithm (r).  Plot 
in Figure3. 

 
 Inflation based on the Wholesale Price Index All Commodities Index ( wπ ): Sampled at 

quarterly (1982/83Q1 – 2001/02Q4) and monthly (1982/83M4 – 2001/02M3) frequency 
at 1993-94 prices (and seasonally adjusted using TRAMO/SEATS of EUROSTAT). A 
note on the generation of the series at the new base (1993-94 = 100) is provided in 
Appendix 1. 
 

                                                 
9 SACF used as criterion here refers to starting from lag zero till all lags till T/4 shows zero autocorrelation in 
residuals in [1] at 5% significance 
10 Adjustment was also performed using the popular X-11-ARIMA of US Census Bureau; results were similar 



 Inflation based on the 49/50% Optimal Trimmed Mean ( cπ ): Sampled at quarterly 
(1982/83Q1 – 2001/02Q4) and monthly (1982/83M4 – 2001/02M3) frequency at (1993-
94 = 100) prices. For selection of optimal trimmed mean see author’s earlier paper (IIMA 
WP # 2003-12-02).  Plot for both inflation series in Figure 4 
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Following Schwert (1989) and others, seasonally adjusted data has been used to preclude the 
presence of a seasonal unit root. Also, it was noticed that the autocorrelation in residuals from 
[1] for unadjusted data did not die for as large a lag length as T/4.  
 
The idea of using the same data with different frequency is motivated by the suggestion of 
Campbell and Perron (1991) who note that power of unit root tests “…depends very little on 
the number of observations per se but is rather influenced…by the span of the data.11” 
Testing on the same data sampled at different frequency helps in validation. 
 
                                                 
11 Campbell and Perron (1991), ibid, p. 13 



V. Results and Discussion 
 
Results are presented in Tables 2 to 9. To emphasize the importance of using alternative 
testing procedures and using data spanning different time period but identical sample size, 
results for output (Table 2) are discussed in some detail.  
 
Using data sampled at annual frequency while all but two combinations point towards a non 
stationary output series, test using monthly data tells that the series is stationary. Also, using 
quarterly data, agreement is more in favour of non-stationarity than stationarity, with four 
combinations pointing towards a stationary series. Now what do we conclude from such 
results? Campbell and Perron (1991) argue that tests on data spanning a larger time period 
have more power. Intuitively, data spanning larger time period gives us a chance to look at the 
data for much longer than using monthly realizations. Also, not much can be read on the 
evidence of stationarity based on the KPSS test given its sensitivity to the lag length and poor 
size adjusted power properties. All in all, evidence is more in favour of output being a non-
stationary series. Clearly, there is aplenty in here to satisfy any critique’s vanity. Degree of 
confidence in inference from the tests must depend on the problem at hand, but results here 
are a strong indication that looking at high frequency data to check for unit roots may give 
misleading results. Campbell and Perron (1991) argue in their survey that to enhance our trust 
in unit root test results, we must check using data with different sampling frequency but 
identical sample size  

 
Similar patterns are found for monetary base, B and M1, albeit the evidence is more 
conclusive regarding its non-stationarity. As would be intuitively expected inflation and 
interest rate series (how often interest rate and inflation move beyond the range of 2-10%, 
barring the times of hyperinflation, which  can be treated as a jump shift – a significant jump 
up for a finite time and a jump down back to normalcy) both point towards a stationary series. 
Again, we need to be cautious in our inferences. This suggests a further area of research for 
Indian data; checking if there has been a structural break around early ‘90s, c.f. Perron (1990). 
 
Before moving ahead, note that results from ADF and PP here are provided only for 
comparison. As has been argued rather forcefully, they should not be used to test for unit 
roots. Better alternatives exist in their modified versions, which are less plagued by size and 
power problems. Regarding the specific tests, as seen from the tables, results from the three 
more powerful tests of ERS, PN and NP are more or less in agreement, with lag length 
selected using MIC with kmax selected as T/4 finding stationarity’ more often than Hall (1994).  
 
Also, more often than not, KPSS and LM tests ‘do not confirm’ results, not that they are 

supposed to do so. Even LM is sensitive to the lag p in ARIMA (p, 1, 1) used to retrieve j

^
φ . 

As can be seen in the last row of all tables for various frequencies, MA (1) term is highly 
sensitive to changes in p, resulting in drastically different values of the test statistic. The use 
of both KPSS and LM is not recommended. Note that in practice a suitable ARMA (p, 1) 

formulation for the first difference can be identified and that can be used to retrieve j

^
φ , but 

as is well known, since there is no unique ARMA (p, q) for a time series, different ARMA 
specifications may lead to different conclusions. Monte Carlo exercise can be conducted to 
further investigate the sensitivity of the LM test to the value of p and ascertain the size and 
power dependence to the chosen p. 
 



 
 
 
 
 

Table 2 
 

y FREQUENCY: ANNUAL (T = 52) 
HALL 1  HALL 2 MIC  SACF TEST tCR t k t k k1 = 11 k2 = 10 t k 

ADF -3.50 0.698 4 0.698 4 -1.14 -0.49 -1.85 0 
Z -3.50 NA NA -0.72 -0.70 -1.25 0 
DF-GLS  -3.19 -1.66 2 -1.66 2 -1.34 -0.95 -2.99 1 
MZ-OLSD -3.50 -1.16 0 -1.16 0 0.47 -0.89 -1..16 0 
MZ-GLSD -3.19 -2.84 2 -2.84 2 -4.07  -6.42  -3.25  1 
KPSS  0.145 NA NA 0.15 0.16 1.11 0 
MKPSS 0.145 l12 = 10; MA(1)   = -0.958; t =  0.9433 l4 = 3; MA(1)  = 0.841; t =0.07  

y FREQUENCY: MONTHLY (T = 204) 
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 1 k2 = 1 t k 

ADF -3.45 -2.49 24 -3.27 1 -3.27 -3.27 -3.04 23 
Z -3.45 NA NA -5.62  -5.62  -6.82 23  

DF-GLS -2.93 -18.77  0  -18.77  0  -11.14  -11.14  -1.46 27  

MZ-OLSD -3.45 -21.02 24 -3.28 1 -4.17  -4.17  -17.34 23  

MZ-GLSD -2.93 -4.38 0 -4.38 0 -4.39  -4.39  -1.32 27 
KPSS 0.146 NA NA 0.91 0.91 0.129  23  

MKPSS 0.146 l12 = 14; MA(1) = -0.946; t = 1.9365 l4 = 4 ; MA(1) =0.651;  t =1.397 

y FREQUENCY: QUARTRELY (T = 76)  
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 7 k2 = 7 t k 

ADF -3.50 -2.08 4 -2.08 4 -3.22 -3.22 -2.08 4 
Z -3.50 NA NA -4.39 -4.39 -4.28 5 
DF-GLS -3.19 -2.76 4 -2.76 4 -2.02 -2.02 -2.76 4 
MZ-OLSD -3.50 -3.39 0 -3.39 0 -9.21  -9.21  -3.02 4 
MZ-GLSD -3.19 -2.74 4 -2.74 4 -2.51 -2.51 -2.74 4 
KPSS 0.145 NA NA 0.114  0.114  0.136  5  

MKPSS 0.145 l12 = 11; MA(1) = -0.729; t = 0.4885 l4 = 3; MA(1) = -0.818; t =0.5403 

 Denotes rejection at 5% level; c.f. critical values tCR in column 2; for KPSS and LM tests denotes acceptance  
 Denotes the coefficient of the MA term in ARIMA (p, 1, 1) yt. Note the sensitivity of the coefficient to p 

 Denotes that the tests are conducted taking both drift and the trend in the estimating equation (c = -13.5).  
For M1 and B also trend has been taken in the estimating equation. For inflation and interest rate data, however,  
only a drift term (c = -7) has been assumed.  

Finite sample critical values for KPSS provided by Hornok and Larsson (2000) used for both KPSS & MKPSS 
 Hall 1 uses kmax as T/4 and Hall 2 uses kmax as l12 = int{12(T/100)1/4} 
 MIC k1 uses kmax as T/4 and MIC k2 uses kmax as l12 = int{12(T/100)1/4} 



 
 
 
 
 
 

Table 3 [Variable: M1] 
 

m FREQUENCY: ANNUAL (T = 32 ) 
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 5 k2 = 5 t k 

ADF -3.60 -2.05 0 -2.05 0 -2.78 -2.78 -2.05 0 
Z -3.60 NA NA -2.96 -2.96 -3.05 0 
DF-GLS -3.19 -4.56  0  -4.56  0  -1.50 -1.50 -4.56  0  

MZ-OLSD -3.60 -2.42 0 -2.42 0 -5.64  -5.64  -2.42 0 
MZ-GLSD -3.19 -2.91 0 -2.91 -2.95 -2.95 -2.91 -2.91 0 
KPSS 0.145 NA NA 0.143 0.143 0.572  0  

MKPSS 0.145 l12 = 9; MA(1) = 0.09; t = 0.2824 l4 = 3; MA(1) = 0.532; t =0.172  

m FREQUENCY: MONTHLY (T = 228 ) 
HALL 1 HALL 2 MIC  SACF  TEST tCR t k t  k k1 = 10 k2 = 10 t k 

ADF -3.43 0.15 24 -0.01 14 0.31 -1.27 -0.26 18 
Z -3.43 NA NA -0.86 -1.14 -0.92 42 
DF-GLS -2.93 -0.62 56 -2.70 14 -0.69 -2.63 -1.99 17 
MZ-OLSD -3.43 -0.44 14 -0.44 14 0.39 -2.97 -0.62 18 
MZ-GLSD -2.93 -0.87 56 -3.54  14  -1.21 -2.54 -2.04 17 
KPSS 0.146 NA NA 0.125 0.347  0.137  42  

MKPSS 0.146 l12 = 14; MA(1) = -0.33; t = 3.5812 l4 = 4 ; MA(1) = -0.37; t =3.383 

m FREQUENCY: QUARTRELY (T = 76) 
HALL 1 HALL 2 MIC SACF TEST tCR t k t k k1 = 19 k2 = 11 t k 

ADF -3.50 -0.52 0 -0.52 0 -0.36 -0.53 -0.97 2 
Z -3.50 NA NA -0.76 -0.86 -0.76 0 
DF-GLS -3.19 -5.46  0  -5.46  0  -0.80 -0.92 -5.46  0  

MZ-OLSD -3.50 -0.72 0 -0.72 0 0.36 -12.19  -1.74 2 
MZ-GLSD -3.19 -3.54  0  -3.54  0  -3.51  -1.76 -3.43  1  

KPSS 0.145 NA NA 0.122  0.144  1.04 0 
MKPSS 0.145 l12 = 11; MA(1) = 0.99; t = 0.0756  l4 = 3; MA(1) = -0.83; t =1.043 

 - Notes for the table same as Table 2 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 4 [Variable: B] 
 

b FREQUENCY: ANNUAL (T = 32)
HALL 1 HALL 2 MIC  SACF TEST tCR t k t k k1 = 6 k2 = 6 t k 

ADF -3.60 -1.64 0 -1.64 0 -0.48 -0.48 -1.64 0 
Z -3.60 NA NA -2.75 -2.75 -2.44 0 
DF-GLS -3.19 -3.86  0  -3.86  0  -1.58 -1.58 -3.86  0 

MZ-OLSD -3.60 -1.36 0 -1.36 0 -123.7  -123.7  -1.36 0 
MZ-GLSD -3.19 -2.01 0 -2.01 0 -3.23  -3.23  -2.01 0 
KPSS 0.145 NA NA 0.104  0.104  0.259 0 
MKPSS 0.145 l12 = 9; MA(1) = 0.99; t = 0.0818  l4 = 3; MA(1) = -0.0478; t =0.306 

b FREQUENCY: MONTHLY (T = 228) 
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 53 k2 = 13 t k 

ADF -3.43 -0.52 0 -0.52 0 -0.36 -0.53 -0.61 8 
Z -3.43 NA NA -2.58 -1.89 -1.85 12 
DF-GLS -2.93 -0.47 27 -1.04 12 -0.52 -1.25 -1.48 8 
MZ-OLSD -3.43 -0.77 3 -0.77 3 -3.22 -2.18 -1.95 8 
MZ-GLSD -2.93 -3.63  27  -2.64 12 -5.86  -2.48 -2.41 7 
KPSS 0.146 NA NA 0.156 0.397 0.424 12 
MKPSS 0.146 l12 = 14; MA(1) = -0.27; t = 4.411 l4 = 3; MA(1) = 0.95; t =0.1695 

b FREQUENCY: QUARTERLY (T = 76) 
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 17 k2 = 11 t k 

ADF -3.50 -1.09 0 -1.09 0 0.14 -1.09 -1.09 0 
Z -3.50 NA NA -1.01 -1.10 -1.57 0 
DF-GLS -3.19 -1.04 4 -1.04 4 -0.48 -0.76 -3.57 1 
MZ-OLSD -3.50 -1.52 0 -1.52 0 -7.66  -4.59  -1.52 0 
MZ-GLSD -3.19 -4.29  4  -4.29  4  -7.38  -4.23  -4.48 1 
KPSS 0.145 NA NA 0.154 0.187 1.51 0 
MKPSS 0.145 l12 = 11; MA(1) = -0.5; t = 1.2671 l4 = 3; MA(1) = -0.11; t =1.48 

 - Notes for the table same as Table 2 
 
 
 
 
 
 
 
 
 
 



Table 5 [Variable: R] 
 

R FREQUENCY: MONTHLY (T =132)
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 3 k2 = 3 t k 

ADF -2.93 -3.48  3  -3.48  3  -3.48  3  -3.48  3  

Z -2.93 NA NA -781.1  -781.1  -791.5  1  

DF-GLS -1.95 -14.83  0  -14.83  0  -6.34  -6.34  -9.16  2  

MZ-OLSD -2.93 -430.5  3  -430.5  3  -430.5  -430.5  -430.5  3  

MZ-GLSD -1.95 -337.5  0  -337.5  0  -305.2  -305.2  -307.4  1  

KPSS 0.463 NA NA 0.615 0.615 0.926 1  

MKPSS 0.463 l12 = 12; MA(1) = 0.99; t = 0.032  l4 = 4; MA(1) = 0.99; t =0.009  

R FREQUENCY: QUARTRELY (T = 44) 
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 2 k2 = 2 t k 

ADF -3.00 -4.93  0  -4.93  0  -2.73 -2.73 -4.93  0  

Z -3.00 NA NA -216.5  -216.5  -217.1  0  

DF-GLS -1.95 -8.00  0  -8.00  0  -3.15  -3.15  -8.00  0  

MZ-OLSD -3.00 -153.1  0  -153.1  0  -152.2  -152.2  -153.1  0  

MZ-GLSD -1.95 -118.9  0  -118.9  0  --119.5  -119.5  -118.9  0  

KPSS 0..396 NA NA 0.37  0.37  0.65 0 
MKPSS 0.396 l12 = 9; MA(1) = 0.99; t = 0.113  l4 = 3; MA(1) = 0.253; t =0.403 

 - Notes for the table same as in Table 2 
 

Table 6 [Variable: r] 
 

r FREQUENCY: MONTHLY (T = 132)
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 2 k2 = 2 t k 

ADF -2.93 -4.52  1  -4.52  1  -3.43  -3.43  -5.19  0  

Z -2.93 NA NA -646.9  -646.9  -657.3  1  

DF-GLS -1.95 -15.19  0  -15.19  0  -7.82  -7.82  -11.34  1  

MZ-OLSD -2.93 -419.2  1  -419.2  1  -386.9  -386.9  -462.5  0  

MZ-GLSD -1.95 -328.9  0  -328.9  0  -311.9  -311.6  -306.6  1  

KPSS 0.463 NA NA 0.555  0.555  0.745  0  

MKPSS 0.463 l12 = 12; MA(1) = -0.32; t = 0.799 l4 = 4; MA(1) = 0.99; t =0.043  

r FREQUENCY: QUARTRELY (T = 44) 
HALL 1 HALL 2 MIC SACF TEST tCR 
T k t k k1 = 1 k2 = 1 t k 

ADF -3.00 -3.81  0  -3.81  0  -2.87 -2.87 -3..81  0 

Z -3.00 NA NA -169.2 -169.2  -167.7  0 

DF-GLS -1.95 -7.54  0  -7.54  0  -4.59 -4.59  -7.54  0 

MZ-OLSD -3.00 -114.5  0  -114.5  0  -116.2 -116.2  -114.5  0 

MZ-GLSD -1.95 -101.9  0  -101.9  0  -102.1 -102.1  -101.9  0 

KPSS 0.396 NA NA 0.366  0.366  0.569 0 

MKPSS 0.396 l12 = 9; MA(1) = 0.99; t = 0.274  l4 = 3; MA(1) = -0.273; t =0.411 

 - Notes for the table same as in Table 2 

Table 7 [Variable: πw] 
 
πw FREQUENCY: MONTHLY (T = 228)

HALL 1 HALL 2 MIC  SACF TEST tCR t k t k k1 = 8  k2 = 8  t k 
ADF -2.89 -1.67 31 -12.25  0  -3.65  -3.65  -1.67 4 
Z -2.89 NA NA -2869.7  -2869.7  -2787.6  1  

DF-GLS -1.95 -24.29  0  -24.29  0  -7.48  -7.48  -10.94  4  

MZ-OLSD -2.89 -271.0  31  -931.5  0  -606.9  -606.9  -866.9  4  

MZ-GLSD -1.95 -620.1  0  -620.1  0  -477.1  -477.1  -1113.4  4  

KPSS 0.463 NA NA 0.329  0.329  0.494 1 
MKPSS 0.463 l12 = 14; MA(1) =-0.90;  t = 2.855 l4 = 4; MA(1) = 0.99; t =0.3283 

πw FREQUENCY: QUARTERLY (T = 76) 
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 5 k2 = 5 t k 

ADF -2.93 -6.24  0  -6.24  0  -2.91 -2.91 -6.24  0  

Z -2.93 NA NA -478.5  -478.5  -473.6  0  

DF-GLS -1.95 -12.95  0  -12.95  0  -4.89  -4.89  -9.31  1  

MZ-OLSD -2.93 -174.1  0  -174.1  0  -187.5  -187.2  -174.1  0  

MZ-GLSD -1.95 -124.9  0  -124.9  0  -413.8  -413.8  -115.7  1 

KPSS 0.396 NA NA 0.291  0.291  0.493 0 
MKPSS 0.396 l12 = 11; MA(1) = 0.789; t = 1.301 l4 = 3; MA(1) = 0.99; t =0.0642 

 - Notes for the table same as in Table 2 
 

Table 8 [Variable: πc] 
 

πc FREQUENCY: MONTHLY (T = 228)
HALL 1 HALL 2 MIC SACF TEST tCR 
t k t k k1 = 6 k2 = 6 t k 

ADF -2.89 -2.16 6 -2.16 6 -2.16 -2.16 -3.14  4  

Z -2.89 NA NA -2641.9  -2641.9  -2833.8  9  

DF-GLS -1.95 -2.71  28  -26.68  0  -8.31  -8.31  -11.34  4  

MZ-OLSD -2.89 -378.2  6  -378.2  6  -378.2  -378.2  -535.2  4  

MZ-GLSD -1.95 267.6  28  -517.3  0  -9056.6  -9056.6  -1152.1  4  

KPSS 0.463 NA NA 1.358 1.358 1.038 9 
MKPSS 0.463 l12 = 14; MA(1) = 0.955; t = 1.956; l4 = 4; MA(1) = 0.673; t =6.58 

πc FREQUENCY: QUARTERLY (T = 76) 
HALL 1 HALL 2 MIC  SACF TEST tCR 
t k t k k1 = 1 k2 = 1 t k 

ADF -2.93 -2..31 1 -2.31 1 -2.31 -2.31 -2.31 1 
Z -2.93 NA NA -294.6  -294.6  -294.6  1  

DF-GLS -1.95 -1.78 12 -14.74  0  -7.84  -7.84  -7.84  1  

MZ-OLSD -2.93 -135.9  1  -135.9  1  -135.9  -135.9  -135.9  1  

MZ-GLSD -1.95 -49.33  12  -113.0  0  -111.9  -111.9  -111.9  1  

KPSS 0.396 NA NA 1.539 1.539 1.539 1 
MKPSS 0.396 l12 = 11; MA(1) = 0.17; t = 4.364 l4 = 3; MA(1) = 0.904; t =1.329 

 - Notes for the table same as in Table 2



VI. Conclusion 
 
As Hamilton (1994) noted, “…although it might be very interesting to know whether a time series 
has a unit root…the question is inherently unanswerable on the basis of a finite sample of 
observations.12” 
 
The main problem is the near observational equivalence of a unit root and a covariance stationary 
process. Given a sample size, for any unit root process, there exists a covariance stationary 
process with identical features (see Hamilton (1994) for details) and vice versa. Notwithstanding 
this difficulty, the hypothesis that {yt} is an AR (1) process with a unit root is certainly testable. 
The new unit root tests explored in the study are better in doing just that. They have better size 
adjusted power to local alternatives in parsimonious autoregressive models.  
 
But as seen from survey of the literature and the results in this study, it is hard to conclude which 
test is the best. Monte Carlo studies in ERS (1996), PN (1996) and NP (2001) show that their 
traditional counterparts must now be discarded. Results in this study on Indian data show that 
although conclusions from three tests are roughly the same, they too are sensitive to the lag length 
selected. The sensitivity stems from the requirement to select/specify the ‘maximum’ lag length 
in all of these tests.  
 
Also, of no less importance is the problem of sampling frequency of the data. Note that if abscissa 
in Figures 1 to 4 were hidden, it would be virtually impossible to identify between monthly, 
quarterly and annual data, especially if sample size for each sampling frequency were the same. 
But that said, the plots do indicate that income and money supply are more likely candidates to 
follow a random walk than either inflation or the interest rate. The ideal thing when checking for 
unit roots would be to use data sampled at different frequency covering different time periods, but 
having the same sample size. Since that luxury is not available with most Indian macroeconomic 
data, following Campbell and Perron (1991), results from tests that use data sampled at a lower 
frequency, annually or quarterly, should be considered more reliable than from data sampled at a 
higher frequency, say monthly or weekly. An area of future work on Indian data spanning pre-
liberalization period would be to test for unit root tests accounting for structural breaks, c.f. 
Perron (1990). 
 
As Dufour and King (1991) showed, a uniformly powerful test does not exist for identifying the 
unit root. Point-optimal tests of ERS, PN and NP offer a second-best solution; their tests have 
power close to point optimal tests with power 50%. Thus, when checking for unit roots these tests 
should be used with data sampled at as many different sampling frequency as feasible. After all 
what we have is just a snapshot of the temporal evolution of data, and to draw conclusions about 
it following a random walk with/without drift/trend one must look at the 'walk' not only as closely 
as possible but also for as long as possible.  
 
Eighteenth century British writer, Samuel Johnson said, prudence keeps life safe, but does not 
often make it happy. When testing for unit roots, prudence is certainly a more desirable virtue. 
Who said conservatism is dead? 

                                                 
12 J. D. Hamilton (1994) Time Series Analysis, Princeton University Press, Princeton, New Jersey, pp. 444-445. 
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Appendix 1 

 
Note on creating WPI Series at 1993-94 prices 

 
 
The data on WPI in India is compiled and published on a weekly basis by the Office of Economic 
Advisor (OEA), Ministry of Commerce and Industry. In the year 2000, in keeping with the 
changes in the structure of the economy, the base year was shifted from 1981-82 to 1993-94. 
However, a long back series of the WPI at the new base year is still not available from any of the 
official sources (publications of the Center for Monitoring Indian Economy (CMIE), the Central 
Statistical Organisation (CSO), OEA and the Reserve Bank of India (RBI)). Farthest back the 
monthly disaggregate series is available from any official source is starting April 1990 from the 
Business Beacon Electronic Database of the CMIE. The series with the old base is available till 
the end of 1996 from the Monthly Abstract of Statistics, published by the CSO. This enables 
splicing of the index to arrive at a series with a common base. As far as level of disaggregation 
goes, we are constrained by the level till which the data is available at 1993-94 prices, which is 
‘Level 1’ comprising 38 sub-components (see Table A). 
 
 
Splicing  
 

Splicing Factor (SFM) can be defined as the ratio  
MOLD

MNEW

I
I

−

−  where INEW-M is the index value at the 

new base for the common month M for which the data is available at the old base. Clearly, the 
selection of the month would have a bearing on the ‘accuracy’ of the splicing factor. To be as 
‘correct’ in our splicing method, we use a different splicing factor for each month, and use the 
average of the splicing factors for the years 1990, 1991 and 1992 to arrive at the final splicing 
factor, i.e. our Splicing Factor for month M is derived as  
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Further, an issue often ignored is the treatment of the monthly index values for the base year. If 
we leave the value of the index numbers to 100 for all months for the base year, it creates a kind 
of ‘degeneracy’ in the sample, as in it creates distortion in the month-to-month changes in the 
price index for that year. We use the information available from the 1981-82 base to get around 
that problem. We ‘re-base’ the monthly values to ensure consistency with the month-to-month 
inflation from the old-base data, while leaving the ‘year’ base value at 100. The sample period is 
April 1982 - April 2003 (253 observations) and the weights in our study correspond to the base 
year of 1993-94. 
 
 
 



 
Table A 

 
 

Sr. No. Category 
1 Potatoes 
2 Other Vegetables 
3 Other Fibres 
4 Tea and Coffee 
5 Cotton 
6 Metallic Minerals 
7 Raw Cotton 
8 Fruits 
9 Other Oil Minerals 

10 Other Cereals 
11 Kerosene 
12 Groundnut 
13 Other Sugar Items 
14 Other Minerals 
15 Wheat 
16 Sugar Group 
17 Spices 
18 Pulses 
19 Wood 
20 Edible Oils 
21 Eggs 
22 Leather 
23 Sugarcane 
24 Coal 
25 Textile 
26 Other Mineral Oils 
27 Rice 
28 Milk 
29 Non Metallic Minerals 
30 Other Food Group Items 
31 Electrical Machinery 
32 Rubber 
33 Machines 
34 Paper and Pulp 
35 Beverages 
36 Transport 
37 Chemicals 
38 Basic Metals 

 


