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Abstract

Situations abound in the real world, where aggregate demand
for a commodity exceeds aggregate supply. When such situations of
excess demand occur, what is required is some kind of rationing.
The literature on rationing problems has an interesting origin in

the Babylonian Talmud.

The purpose of this paper is to characterize axiomatically and
analyze the constrained equal award solution for rationing

problems.
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Introduction:- Situations abound in the real world, where
aggregate demand for a commodity exceeds total supply. In
economics, the most common way in which such situations are
seen to occur is when government intervenes by pegging the
price of a commodity at a level below the market equilibrium
price (i.e. the price at which quantity demanded is equal to
quantity supplied). In management, the usual way in which such
anomalies occur is in the context of supply chain management:
there is a distributor of a commodity who is made available
the total supplies by a producer; the distributor supplies the
commodity to a finite number of retailers; if the orders
placed by the retailers add up to a quantity greater than the
supply available with the distributor, we are essentially
facing a situation of excess demand once again. The excess
demand problem in economics has been highlighted and surveyed
lucidly, by Silvestre (1986). The excess demand problem in
management is a part of a well established lore on frequent
stock outs arising in distribution networks. In fact, the
problem has such urgency, that computer games have been
devised to highlight the merits of the problem.

When such situation of excess demand occur, what is
required is some kind of rationing. The 1literature on
rationing problems has an interesting origin in the Babylonian
Talmud (: 2000 year old document, which forms the basis of

Jewish civil, criminal and religious laws). There,



considerable attention has been devoted to the study of a
bankruptcy problem: a man dies leaving behind an estate, which
is insufficient to meet all hie debts. How should the estate
be divided among the claimants? The obvious requirement is

that the method of division be perceived as being fair.

Recent attempts at giving solutions to this o014
bankruptcy problem a game theoretic interpretation, can be
traced to the paper by O'Neill [1982]. The s8tudy of a
particular solution known as the contested garment solution
received fresh analytical impetus in the work of Aumann and

Maschler ([1985].

In Moulin ({1985, 1988] and Young {1987a, 1987b,
1988, 1993], the mathematical framework of bankruptcy or
rationing problems is given the opposite interpretation
of costssharing or taxation problems. Whereas in
rationing problems we are interested in some measure of
individual loss i.e. unsatisfied demands, in cost sharing
the relevant index is net income that remains after
taxation. Both these vdriables have identical
mathematical form. However, in cost sharing if we are
interested in maximizing the minimum net income, in
rationing we would be interested in minimizing the
maximum loss. We obtain a simple algorithm in Lahiri

[1997], which gives an explicit solution for the relevant



min-max problem.

One of the most popular methods of allocating resources
under rationing is the constrained equal awards method, also
called the uniform rule by Benassy [1982]. This rule, gives
each low demander what he/she demands; all high demanders are
given an equal amount, which nevertheless exceeds what any low
demander gets. Dagan [1996a] has a useful analysis of this
rule. We provide an axiomatic characterization of the
constrained equal awards solution using a kind of strategy
proofness assumption and show that this rule is the only one
to satisfy °‘the desired axiom (along with another mild
property). Results along similar lines for this and other

solutions can be found in Dagan and Volij [1993, 1997].

The above mentioned analysis takes place in a fixed
population framework i.e. the agent set or the set of
demanders is considered fixed. We subsequently move over to a
variable population framework and invoke properties 1like
population monotonicity and Consistency Population
monotonicity says that with the arrival of a new agent, no
existing agent can get more. Consistency says that if some
agents leave with their share of the allocation, then the rule
should give the earlier shares to the remaining agents, when
what has to be allocated now is what remains after the

departing agents have been given their shares. Our results are



adaptations of results in Dagan [1996a] and Thomson [1995].
Their results were obtained for games of fair division with
single peaked preferences. The basic difference between our
framework and the literature on fair division with single
peaked preferences are that our preferences have the
diagrammatic representation of an isosceles triangle above the
horizontal axis. Further, we restrict ourselves to only excess
demand situations. With these restrictions, the proofs used by
Dagan and Thomson fail to work, since they avail of the larger

domain on which their solutions are defined.

In a related paper [(Lahiri (forthcoming), we take up the
case of the proportional solution and provide an axiomatic
characterization of the same using a reduced game property and
a property called restricted scale invariance for two agents.
In the bargaining games context, reduced games properties have
been discussed in Peters, Tijs and Zarzuelo [1994] and Lahiri

[1998] .



The Fixed Population Model:- Consider a set of agents indexed

by isl, 2,...,n where n is a natural number greater than or
equal to two. Let N = {1, 2, ..., n} denote the set of agents.

A rationing (bankruptcy) problem is an ordered pair

(d,S)eR°. xR such that S<I d.

i1=1

Let B" denote the set of all rationing problems (for N).

[ 4
An allocation for (d,S) e B is a vector xe¢ R such

xsdVieNand L x=S.
iem

A golution is a function F:B"-> R* such that F(4,S) in

an allocation for (d,S) whenever (d,S) € B".

Given (d,S) € B®, the effective demand vector (for
(d,S)) denoted d* is the vector whose i'®* component

d =min{d, s}

Obviously, since S is what all there is for distribution any
claim greater that S is as good as demanding the entire
supply. Hence our definition of effective demand.

Given (d,S) € B", the point of minimal expectation



v'¢®  (denoted merely by v whenever there is no scope for

confugion) is the vector whose i** coordinate v, is equal

e

to max{o,s-}: d)} i.e. what every one else willingly

concedes to 1i.

Observation 1: v, < d VieN
Proof of observation: Suppose Vv, >d for some ieN

Cl =S -
early d >0-»>v, =8 ,qu

.'.S-Ed’>q

Jei
-S> L d which is a contradiction. Hence the observation.
je1

O.E.D.

)

Observation 2:- Given (d,S) € B* if x is any allocation for

(d,8), then x =2v, Vie€N.

-

Proof of observation: Suppose 0 < x < v, for some ieN.

Then clearly v, =S- I d,.

3ot

LX< 8- j};‘ cij



nx +ELd<S

Ivd

But x, sd VjeN

£dc<S which is a contradiction.
3ed

. 8=L +
s 0% %

This proves the observation.
Q.E.D.,

a

Observations 3:

For all (d,S) e B*, VieN

i
jed

v=max{o,s—zd;}.
ieN, k# 1, keN.

Proof:- Let

If d >SthenS- - d <S5-d <0.
bA L]

v, =0.
Si = - - = - = ] OIS—E ; = 0.
ince ¢ = Sand S-Ed <S5~ = 5-§ =0 max { j”d,}
LY =max{0,.5'—j§id;}. )

On the other hand if d s SVke N, k+* 1, then

d =d VkeN k= i, so that



v] ¥}

This proves the observation in either case.

Obgservation 4:- Given (d,S) e B", L v, s S
1am

Proof of observation:- Let x ¢ R with x = ,:d‘dJ S.

Jex

It is easy to check that x is an allocation for (4,S).
Thus the set of allocations for (d4,S) is nonempty. Since

vV, < x VieN by observation 3, we have, I Vv, < S.
: lam

The Constrained Egual Awards solution CEA : BY - R}

is defined as follows: CEA(d,S)=x where x,=minii,d;, ieN
P

and Xx;=5.
i=1

It is well known that for each (d,S)eB¥, a unique
A20 exists which defines CEA(4,S).

We now state two properties which the constrained equal
award solution satisfies.

PHIRAR SARABNAI LISRAN
«n AN INSTITUTE OF SARABRRR.
Al RAPEN. ANNEDARAS-SORT~



Equal Treatment (ET):- Given
(d, S)eB¥,d;=d,~F,(d, S) =F,(d, S) .

Equal Treatment is standard and simple. It says, if two
people make the same demands then they get identical awards.
As .a postulate of impartiality, nothing could be more
meaningful.

Independence of Irrelevant Inflations (I'):- Given
(d,s), (d',S)eB¥ if d;=diVivrk,d,sdy and

F (d,S) < @, then F, (d,5) = F,(d',3)

Insensitivity to Irrelevant Inflations is a veiled
strategy proofness type of condition which Bsays that
unilateral upward deviations do not affect the outcome, of the
deviating agent provided one's demand is not met originally.
It is not as mild a property as equal treatment; yet it
provides the required force to characterize the CEA solution.
It should be noted, that the solution for a deviating
individual is insensitive to inflation of demand by the
individual, if the award for the individual was originally
less than what was originally demanded. This is the gist of
the I’ property.' (I') along with (ET) does not appear to
characterize the CEA solution uniquely. If we strengthen (ET)
slightly to a Weak Monotonicity (WM) property, then (I') along
with (WM) uniquely characterizes the CEA solution.

Weak Mopotonicity (WM):- Given (d,S)eB if d,<d; then
F,(d, S)sF,(d, 5) .

This property says that higher demanders do not get
lesser amounts. It is easy to see that Weak Monotonicity
implies Equal Treatment, though not conversely.

10



Theorem 1:- The only solution to satisfy WM and I’ is CEA.

Pxoof : - It is easy to see that CEA satisfies these two
properties. Hence suppose F is a solution which satisfies
these two properties and towards a contradiction assume

FsCEA. Thus there exists (d, S)eB® gsuch that
F(d,S)*CEA(d,S) Without loss of generality and in order to
facilitate the proof assume d,sd,,, Vk=1,...,n-1. Clearly

there exists 1i,jeN,i<j such that F,(d,S)<d;, F;(d,S)sd; and
F;(d,s)+F;(d, s) . By WM,F;(d,S)<F;(d,S). By WMonce again
we may assume, j = n and i=min {k/F,(d,S)<d/} By

WM, F,(d, S) <F_(d, S) .

Define d’eR” as follows:
dy=d, Vk#i
di=d,

By I’,F,(d’,8)=F,(d,5)
By ET (which is implied by WM), F,(d’,8)=F;(d,S).
Thus F,(d/,s)=F;(d, S) <F,(d,S) .

Clearly there exists k such that i<k<n and
F(d,8)>F,(d,8).

But k>i implies by WM, F, (d,S)2F;(d, 8) =F (d',5) .
Thus  F(d’,8)>F,(d’,S)  which contradicts WM since k<n.
O.E.D.

However for n = 2, (I’) and (ET) uniquely characterizes the
constrained equal award solution, as the following (which is

a strengthening of the previous theorem) reveals.

11



Theorem 2: For n = 2, the only solution to satisfy (I’) and ET

is CEA.

Proof:- Suppose towards a contradiction, that there exists a
rationing problem (d,, 4,; S) and a solution F satisfying (I°)

and (ET) such that F(d,,d,;S)*CEA(d ,d,;S). Let

(x,,x,)=F(d,,d,;S). Thus x,+x,. There are two possible cases:

Case 1:- x,<d,

Cagse 2:- x,<x,=d,

Case 1:- If x,<d, where we have assumed without loss of

generality dsd,, then by BT, we must have d«<d,. Let d =d,.
By (I’'),F,(d,d,;S) =x,.
By ET, F,(d,d,;S)=x,.

~ 2x%=S=x+x,, contradicting x*x,. .

Case 2:- x,¢<x,=d,

“ 5 =3 + x, <2d,.

12
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—
-
et

By ET, F (4,, d,; S)

2 2
By BT, once again d, < d,.
) S . S
By I’, F, (4, d,; S) = = . Thus F, (d, 4, ; S) = B Thus
X, = X, = 8§ contradicting x, < X,.
This proves the theorem.
Q.E.D.

The Variable Population Model: -

There is a population of "potential agents", indexed by

elements in a set I. Let P denote the set of all non-empty

\

finite subsets of I. Given MeP, 1letRY (respectively RY,)

denote the set of all functions from M toR,

(respectively R) . Here R, is the set of all non-negative

real numbers and R, =R; {0}.

Given MeP, a rationing problem for M is an ordered pair

(d, S)eRY.xR, such that X¥dp>S..

ieM

i3



Let B denote the set of all rationing problems for M and

B=|JB™. Let x=|JRY.
MeP P

Given (d,S)eBM¥,MeP, an allocation for (d,8) is a vector

xeR! such that 12 x;=S and x;<d;VieM.
eM

A solutjon is a function F:B-X such that F(4,S) is an

allocation for (d4,S) whenever (d,S)eB.

The constrained egual awards golution CEA:B-X is defined

as follows: V(d,S)eB¥ Mep,VieM, CEA,;(d,S)=min{d,d;} withax0

satisfying X miniA,d}=S.
ieM

No-envy, properxty:- A solution F is said to satisfy the no-
envy, property if VMeP,V(d, S)eB™i,jeM,d;-F;(d,S)<|d;-F;(d,S) |

The no-envy property is Qquite simple: between any two
agents there should not arise a situation where any one's
unfulfilled demands exceed the deviation of the other's from
the first agent's claim i.e. no one's excess demand should be

greater than either the excess supply or excess demand of the

14



other from the one's point of view. If the situation were
otherwise, then there would be an agent who would want someone
else's allotment, since that would lead to a lower loss for
him/her, where loss is measured in terms of deviation from

announced demands.

Individual Rationality from equal division:- A solution F is

said to satisfy individual rationality from equal division if

Once again the meaning is clear: for every agent the
excess demand should not exceed his deviation from equal

division of resources.
The following theorem is immediate.

Theorxem 3: (a) CEA satisfies the no-envy property
(b) CEA satisfies individual rationality from

equal division.

Proof: Let  CEA(d,S)=xeRY for some MeP, (d,S)eB ™.

(a) Suppose towards a contradiction that there exists i, jeM

With di*x‘i>‘di_x]"
Clearly d;#x;

15



0 € x; =A< d

where Z mint{A,d.}=38S.
keM

Since X;*X;, we have x;#1.

Thus Xy = dy

~dy-A > d; -4
N WY d; which is a contradiction.

This proves (a).

(b) Suppose towards a contradiction that there exists ieM with

Thus x;=A where A is as in (a) and A

ad - A>| d-5/ |

Case 1: A < S/, .

~8=%8x,= 38 A+ L d, < -
keM Asd, dp<A

which is a contradiction. Thus Case 1 cannot occur and we have

16



~d; - A <d; - —I% =|d; - Tbsﬂ | which is again a contradiction.

This proves (b).

We now invoke the following property:

Resource Monotonicity:- A solution F is said to satisfy

resource monotonicity if VMeP,
(d,S)e BM, (d,5"YeB™,8' > S implies F(d,S’) 2 F(d,85).

The meaning of resource monotonicity is simple and needs no

further explanation.

17



{omatic Cl e - the CEA Soluti
Consistency:

Lemma 1:- Let (d4,, d,; S) be a two agent rationing problem.
Suppose that solution F satisfies either no-envy or individual

rationality from equal division. Suppose d;, < d; and

(x;,x;} = F (d;,dy;S) # CEA(d;,d;; S). Then

x;, <dj, x; * Xx;.

Proof:- Suppose not. Then the only other possibility is

x; < x; =d; < dj.

Since dy - x;3d; -x;,=1|d; -x, [, F violates no-envy

(:indeed j envies i).

X X; + X;
Since Xx; < ——-—12 <x; =d; <dj,

X, +x X, + X,
d;-%; > dj—% = | dj_lf |. Thus F violates individual

18



rationality from equal divis

Lemma 2:- If a solution F satisfies no-envy and resource
monotonicity, then it coincides with CEA solution for all two

agent problems.

Proof:- Towards a contradiction assume that there exists

{i,j}e Pand (d;,d;.5) e B!.7' guch that
F(d;,d;,S) * CEA (d;,d;,S) where we have that F satisfies no-

envy and resource monotonicity. Without loss of generality

assume d; < d;. Then if (x;,x;) = F(d;, d;;S) we must have

x;<d;, andx; # x;. If x; < x; then |d; - x; |> | d; - x; |

Contradicting no-envy. Thus x>Xx.

If x<x<d, then |d,-x|>|d-%x| contradicting no-envy.

Thus x; < d; < X;, In fact we must have x;<d;<2d;-x;<x; so that

no-envy is satisfied. Thus 2d;<x;+x;.-

Hence if S<2d,, F(d,, dy; S)=CEA(d,, dy; S). By resource
monotonicity, F(d,,d;;S)=CEA(d;,d;;S) if Ss2d;.
Thus for S=2d,, F(d;, d;;5)=(d,;.d,).

19



For S>2d;, by monotonicity, F;(d;,d;;S)=d,. This contradicts
x:<d;.

P} 1

QE.D.

Lemma 3:- If a solution F satisfies individual rationality
from équal division and resource monotonicity, then it must
coincide with the Constrained Equal Awards Solution for all

two agent problems.

Proof:- As in Lemma 1, let us assume that (4,, 4, ; S) is a
claims problem and F satisfies the properties listed in Lemma

2. Suppose F(d;,d;;S) = (x;,x;) * CEA(d;,d;;5).
Assuming without 1loss of generality d,;<d;, we must have

x;<d;, x; * X;.
Suppose x; < x; < d; < d;.

X +X; . P . .
Then d;- ‘2 1 <d;-x; contradicting individual rationality from

equal division. Thus x;<x;

20



X, +X . : .
If x,<x;sd,;<d,, then di—‘—21<di—xi, once again contradicting

individual rationality from equal division. Thus d;<x

) X.+X.
Suppose ’2 1<d;.

X.+X.
Then di - X_‘- < di- 12 J

. X +X; . s
implies sz—‘z-l contradicting x;>Xx;.

Thus x; + x; 2 2d,

Hence for S<2d,,F(d,,d,:S) = CEA(d,,d,;5)

By resource monotonicity, S > 2d;. impliesF;(d;,d;;S) = qg;

which contradicts x; < d;. Thus F(d,;,d;;S) = CEA(d,,d,;5).

Q.E.D.

Consistency: A solution P is said to satisfy consistency if

VMeP, (d, S)eB ™, x=F(d, S) .¢=-Ncu,( dy, Z x; )eB N, implies
ieN -
X oHd. Ex)

Here d,=(d,) and xy = (X;) jen-

ieN

21



Bilateral Consistency is simply the same property as above

requiring in addition that N should be a set consisting of

exactly two members.

Converge-Copnsistency: A solution F is said to satisfy

converse-consistency if V MeP, (d,S)eBY, x is an allocation for

(4,s8) and V ¢#NcM, N has exactly two members,

xN=F(dN, Enxi), then x=F(d,S).

The following lemma is easy to prove:

Lemma 4:- CEA satisfies consistency and converse-consistency.

We need one more lemma, before we can state the results that

we promised in the introduction.

Lemma S5:- If P is a solution which satisfies bilateral
consistency and agrees with CEA for all two agent problems,

then F = CEA. \
Proof:- Essentially the proof of Lemma 4 in Dagan (1996b).

We now have the following two major characterization theorems,

by using the results obtained so far.

Theorem 3:- The unique solution on B to satisfy bilateral

consistency, no-envy and resource monotonicity is CEA.

22



Theorem 4:- The unique solution on B to satisfy bilateral
consistency, individual rationality from egual division and

resource monotonicity is CEA.

AKX ic ¢} . ; ¢ the CEA Solution In T c
lation M ity -

Let N be the set of natural numbers and let I = N .

Resource Continuity: F is said to satisfy resource continuity

if given M ¢ P, (4,S) €BY and € > 0, there exists § > 0

such that |[S/-5|<8, (d,S') e B¥ ~||F(d,8) -F(d,S’) ||<e where the

norm is simply the Euclidean norm.

v

Resource Continuity is really a mwmind regularity

assumption.

»

Population Monotonicity: F is said to satisfy population

monotonicity if V Qe P and

ke N-Q, (d,5) e B%, (d',S) e BeY™W, if di=d VieQ, then

23



F;(d’,8) <F,(d, S)VieQ.

Population monotonicity says that the arrival of a new agent,
should not increase the wards for existing agents. This

assumption seems quite reasonable.

Replication-Invariance: F is said to satisfy replication

invariance if V Qe P and keN, if O'e Pwith |0/| = k |0]

and for

ieQ@ (i, 1),..., (i, k) € Q' then for (d,S5) eB? and

(d’,ks)eB?, with d =d;,j=1,...,k,ieQ0, x = F (4, S)

(L, 73)

implies y; 4 =x;VieQ, j=1,...,k, where y = F (d', kS)

€ R?’.

The meaning of replication invariance is quite simple: if
a rationing problem is replicated k times (i.e.) the available

supply is multiplied k times and corresponding to each

24



original agent there are now k agents with the same demand) then
each replica in the replicated problem gets what the original agent

in the original problem got. This assumption seems harmless.

We now prove the main theorem of this section, which
states that the only solution to satisfy no-envy, population
monotonicity, resource continuity and replication invariance

is the CEA solution.

The only solution to satisfy no-envy, population
monotonicity, replication invariance and resource continuity

is CEA.
Proof:

That CEA satisfies the above properties has been
discussed earlier. Hence, let us establish the converse. Thus,
suppose F is a solution which satisfies the desired properties

and towards a contradiction assume that there exists L ¢ P,

(d, S) € BY such that FI(d,S) » CEA (d,8). Thus there

exists i, j € L such that

25



x, < d;, X5 # Xy

where x = F (d, S).

By no-envy, we must have

If we keep the available supply fixed at S, and simply
replicate each agent 'k' times, then by no-envy, each agent of
the same type gets the same amount. By population monotonicity

and no-envy, we must have

either xf < x; < d, < 2d,-x; < 2d;-x5 < xf < xy < d,

or Xj; = Xj

where xf is the common amount that a type i agent gets in

the replicated problem (where the supply remains) fixed.

If (1) holds Vk, then

26



kxf > k (2d, - x,) > S

for k ¢ N sufficiently large.

Hence for a sufficiently large replication, (2) holds.

Since i and j € L were arbitrarily chosen, we get that

there exists k ¢ N, such that if each agent is replicated

k’ times and the supply is held fixed at S, then F(d', S) =
CBA (d', S') were d' is as defined in the statement of the
replication invariance property.

However, by replication invariance,

Fyn (d,k’S) =F; (d,8) VieL, 1=1,...k" where (i,1) is the

1** agent of type i (i.e. the 1*® replica of agent i in the

original problem) .

Thus, there exists i, j € L such that

and x{ = x}‘. < d,

27



As the total resources are increased form S to k'S, the

individual awards of type i and type j agents change from

xX to x, and xJ’-‘ to x, respectively. By resource

continuity, there exists S’> 3, S/ < k'S such that if y, is

what a type i agent gets at S’ and y,, is what a type j agent

gets as S/, then y; < y;<d;

Thus no-envy is easily seen to be violated; infact, i envies

.

This contradiction establishes the theorem.

28
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