
Solving Medium to Large Sized Euclidean Generalized

Minimum Spanning Tree Problems

Diptesh Ghosh
P&QM Area, IIM Ahmedabad, Vastrapur, Ahmedabad 380015, India

diptesh@iimahd.ernet.in

WP. No. 2003-08-02, Working Paper Series, IIM Ahmedabad

Abstract

The generalized minimum spanning tree problem is a generalization of the minimum
spanning tree problem. This network design problems finds several practical applica-
tions, especially when one considers the design of a large-capacity backbone network
connecting several individual networks. In this paper we study the performance of six
neighborhood search heuristics based on tabu search and variable neighborhood search
on this problem domain. Our principal finding is that a tabu search heuristic almost
always provides the best quality solution for small to medium sized instances within
short execution times while variable neighborhood decomposition search provides the
best quality solutions for most large instances.

Keywords: Generalized minimum spanning tree problem, neighborhood, tabu search,
variable neighborhood search.

1 Introduction

In this paper we consider the following network design problem:

Consider a weighted complete graph G = (V, E, d), in which the vertex set V

is partitioned into r subsets (called clusters), V1, V2, . . . , Vr, containing k1, k2,

. . . , kr vertices respectively, and the cost function d : E × E → �+. A solution
to the Generalized Minimum Spanning Tree (GMST) Problem defined on G is
a tree containing exactly one vertex from each of the subsets V1, V2, . . . , Vr (see
Figure 1). The cost of a solution is the sum of the costs of the edges that make
up the tree. The objective in the GMST problem is to obtain a minimum cost
solution to an instance.

In this paper we study Euclidean GMST problems, which means that d(i, j) + d(j, k) ≥
d(i, k) for any i, j and k in V .

The GMST problem is one of several generalized network design problems mentioned
in the literature (see Feremans, Labbé, and Laporte [3] for a review of generalized net-
work design problems). It was first proposed in Myung, Lee, and Teha [12] and has been
comprehensively reviewed in Feremans [5]. In the published literature, several alternate
formulations for the GMST problem have been proposed in Faigle, Kern, Pop, and Still [2],
Feremans [5], and Myung, Lee, and Teha [12]. NP-Hardness of this problem has been es-
tablished in Myung Lee and Teha [12]. Exact solution algorithms based on branch and

1

Figure 1: A solution to a GMST problem instance

cut has been proposed in Feremans [5], while approximation algorithms and heuristics have
been proposed in Dror, Hauori, and Chaouachi [1], Myung, Lee, and Teha [12], and Pop,
Kern, and Still [13]. To the best of our knowledge, sophisticated metaheuristic techniques
have not been applied to this problem, although an elementary genetic algorithm was pro-
posed in Dror, Hauori, and Chaouachi [1], and in Feremans [5] an elementary tabu search
technique with short term memory is used to obtain upper bounds to the GMST problem.
Problems closely related to the GMST problem have been dealt with in Dror, Hauori, and
Chaouachi [1], Feremans, Labbé, and Laporte [4], and Ihler, Reich, and Widmayer [10].

In this paper, we study the performance of several tabu search and variable neighborhood
search based metaheuristics on the GMST problem. We describe these metaheuristics in
detail in the next section. Our computational experience with the heuristics described in
Section 2 is presented in detail in Section 3. We conclude the paper with a brief summary
in Section 4.

2 Description of metaheuristics considered

In this work, a solution to a GMST problem instance is represented as a r-vector, e.g.
S = 〈s1, s2, . . . sr〉 where si = j indicates that the jth vertex in the ith cluster is used in the
solution. The solution itself is lowest cost tree connecting the vertices coded in the solution,
and the cost of the solution is the cost of this tree. For instance, if we consider an instance
of the GMST problem having four clusters containing 4, 5, 3, and 7 vertices respectively,
then a solution S1 = 〈3, 1, 2, 4〉 denotes the lowest cost tree connecting the third vertex in
the first cluster, the first vertex in the second cluster, the second vertex in the third cluster,
and the fourth vertex in the fourth cluster. It is important to note here that if there are
more than one minimum cost trees connecting the vertices coded in the vector, the solution
representation here does not specify which tree to choose. However, since all such trees will
have the same cost, this ambiguity does not affect us in this work.

Tabu search (refer for example, to Gendreau [7]) and variable neighborhood search (refer
for example, to Hensen and Mladenović [9]) are both improvement heuristics, which start
out with a user-specified initial solution, and then tries to improve that solution. This
improvement is carried out in steps, by moving from a solution to another solution in its
neighborhood. The neighborhood that we consider is a 1-swap neighborhood common in

2

combinatorial optimization, in which two solutions are neighbors if and only if they differ
in exactly one component. Therefore a solution S2 = 〈3, 3, 2, 4〉 is a neighbor of S1, but
S3 = 〈4, 1, 3, 4〉 is not (since it differs from S1 in two components — the first and the
fourth). An operation that transforms a solution to one of its neighbors is called a move.

In this work, a greedy heuristic is used to generate the starting solution for the heuristics.
The vertices in each cluster are ordered according to the sum of the costs of the edges
connecting them and vertices of other clusters, and the one with minimum sum of edge
costs is chosen to be in the initial solution. Ties are broken arbitrarily.

We implemented and tested two variants of the tabu search heuristic in this work. The
first variant, which we call TS1 incorporates recency based memory and aspiration rules.
A description of this version follows.

First variant of tabu search (TS1)

Instance: A weighted graph G = (V = {V1, . . . , Vr}, E, d), an initial solution S,
a termination condition.

Output: A nearly optimal solution to the GMST problem instance.

Step 1 (Initialization): Define all v ∈ V as non-tabu. Set BestSolution←

S, and set Iteration← 1. Go to Step 1.

Step 2 (Termination): If a pre-defined termination condition is satisfied,
output BestSolution and exit. Else go to Step 3.

Step 3 (Iteration): Consider all neighbors of S. All such neighbors for which
a move to that neighbor requires the use of a vertex marked ‘tabu’ are
tabu neighbors, while all others are ‘non-tabu’ neighbors. If the best tabu
neighbor T of S has a cost lower than the cost of BestSolution, go to Step
4, else replace S by the best non-tabu neighbor of S. Mark the vertices
participating in this move (i.e. the vertex that has left the solution, and
the vertex that has entered the solution to form the neighbor) as tabu
for the next TENURE moves. If S is better than BestSolution, then set
BestSolution← S. Set Iteration← Iteration + 1. Go to Step 2.

Step 4 (Aspiration): Set BestSolution← T , and S← T . Remove the tabu
status for all vertices. Set Iteration← Iteration + 1. Go to Step 2.

The second version of tabu search that we implement here is called TS2. In addition
to recency based memory and aspiration rules, this version incorporates frequency based
memory. Frequency based memory uses an array (called freq) to store the number of times
that a certain move has been executed. It then discourages moves which have been executed
a large number of times in the past. This allows the search to diversify and move into newer
regions of the solution space. A description of this version is provided below.

Second variant of tabu search (TS2)

Instance: A weighted graph G = (V = {V1, . . . , Vr}, E, d), an initial solution S,
a termination condition.

Output: A nearly optimal solution to the GMST problem instance.

Step 1 (Initialization): Define all v ∈ V as non-tabu. Set freq(i, j) for all
moves that replace vertex i with vertex j to 0. Set BestSolution← S, and
set Iteration← 1. Go to Step 1.

3

Step 2 (Termination): If a pre-defined termination condition is satisfied,
output BestSolution and exit. Else go to Step 3.

Step 3 (Iteration): Consider all neighbors of S. All such neighbors for which
a move to that neighbor requires the use of a vertex marked ‘tabu’ are tabu
neighbors, while all others are ‘non-tabu’ neighbors. The costs of all the
neighbors of S are adjusted depending on the freq values of the move from
S to that neighbor. If the best tabu neighbor T of S has a cost lower than
the cost of BestSolution, go to Step 4, else replace S by the best non-tabu
neighbor of S. Mark the vertices participating in this move (i.e. the vertex
that has left the solution, and the vertex that has entered the solution to
form the neighbor) as tabu for the next TENURE moves. Increment the
freq values of these vertices by 1. If S is better than BestSolution, then
set BestSolution← S. Set Iteration← Iteration + 1. Go to Step 2.

Step 4 (Aspiration): Set BestSolution← T , and S← T . Remove the tabu
status for all vertices. Set Iteration← Iteration + 1. Go to Step 2.

For both the variants we set the tabu tenure i.e. the TENURE parameter, to 10. The
adjustment of the costs of the neighbors in TS2 was achieved by multiplying their solution
costs by a penalty factor. Our preliminary experiments showed that a good penalty factor is
a gently increasing linear function of the iteration number and the number of times a move
has been executed in the past. Setting the penalty factor to 1.0 + Iteration × freq(i, j) ×
1 × 10−5 resulted in the best solutions, and we use this penalty factor in our experiments.

We also implemented four variable neighborhood search based heuristics. All of these
require more than one neighborhoods, and in our implementations we use two neighborhood
structures. The first is the 1-swap neighborhood described earlier in this section. The other
is a strict 2-swap neighborhood. In this neighborhood, a move changes vertices in exactly
two of the clusters. Therefore the solution S3 in our earlier example, which was not in the
1-swap neighborhood of S1 is in its strict 2-swap neighborhood. Notice that the 1-swap and
strict 2-swap neighborhoods of any solution are disjoint.

The first heuristic is the basic variable neighborhood descent heuristic. This is described
below.

Variable neighborhood descent search (VND)

Instance: A weighted graph G = (V = {V1, . . . , Vr}, E, d), an initial solution S.

Output: A nearly optimal solution to the GMST problem instance.

Step 1 (Initialization): Set BestSolution← S, and k← 1. Go to Step 2.

Step 2 (Termination): If k > 2, output BestSolution and exit. Else go to
Step 3.

Step 3 (Exploration): Find the best solution T in the k-swap neighborhood
of S. If T is better than S, set S← T , BestSolution← T , and k← 1. Else
set k← k + 1. Go to Step 2.

The second heuristic is a reduced variable neighborhood search heuristic. The main
difference between this heuristic from VND is that the neighborhood of a solution is not
searched exhaustively. Thus, for large problems, this heuristic can provide solutions much
faster than VND. The heuristic is described below.

4

Reduced variable neighborhood search (RVNS)

Instance: A weighted graph G = (V = {V1, . . . , Vr}, E, d), an initial solution S,
a termination condition.

Output: A nearly optimal solution to the GMST problem instance.

Step 1 (Initialization): Set k← 1 and Iteration← 1. Go to Step 2.

Step 2 (Termination): If a termination condition is satisfied, output S and
exit. Else go to Step 3.

Step 3 (Exploration): Generate a solution T at random in the k-swap neigh-
borhood of S. If T is better than S, set S ← T , and k ← 1. Else if k = 1,
set k← 2, and if k = 2 set k← 1. Set Iteration← Iteration + 1. Go to
Step 2.

The termination condition that we use here is a composite one. We stop if a pre-determined
execution time is exceeded, or if more than 50 iterations have elapsed without improving
the best solution at hand, S.

The third heuristic, the basic variable neighborhood search heuristic combines deter-
ministic and stochastic changes of neighborhood. It is formally described below.

Variable neighborhood search (VNS)

Instance: A weighted graph G = (V = {V1, . . . , Vr}, E, d), an initial solution S,
a termination condition.

Output: A nearly optimal solution to the GMST problem instance.

Step 1 (Initialization): Set k← 1 and Iteration← 1. Go to Step 2.

Step 2 (Termination): If a termination condition is satisfied, output S and
exit. Else go to Step 3.

Step 3 (Exploration): Generate a solution T at random in the k-swap neigh-
borhood of S. Apply steepest descent local search starting with T and using
a k-swap neighborhood to obtain a locally optimal solution T ′. If T ′ is bet-
ter than S, set S ← T ′, and k ← 1. Else if k = 1, set k ← 2, and if k = 2

set k← 1. Set Iteration← Iteration + 1. Go to Step 2.

The last among the heuristics that we implement here is the variable neighborhood
decomposition search. It differs from the previous three heuristics in the way it searches
the neighborhood of a solution. It does not look at the whole neighborhood of the problem,
but does an exhaustive search on a subset of clusters. We describe the heuristic below.

Variable neighborhood decomposition search (VNDS)

Instance: A weighted graph G = (V = {V1, . . . , Vr}, E, d), an initial solution S,
an integer kmax < r, and a termination condition.

Output: A nearly optimal solution to the GMST problem instance.

Step 1 (Initialization): Set k← 1 and Iteration← 1. Go to Step 2.

Step 2 (Termination): If a termination condition is satisfied, output S and
exit. Else go to Step 3.

5

Step 3 (Exploration): Generate a solution T at random in the k-swap neigh-
borhood of S. Let I be the set of clusters in which S and T use different ver-
tices. Find the best possible solution T ′ obtainable from S by changing only
vertices in I. If T ′ is better than S, set S← T ′, and k← 1. Else if k < Kmax,
set k← k + 1, and if k = kmax set k← 1. Set Iteration← Iteration + 1.
Go to Step 2.

We set kmax to 5 in our VNDS implementation. The termination condition in both VNS
and VNDS is the same as the termination condition in RVNS.

3 Our computational experience

In this section we report the results of our computations with the heuristics described in
Section 2 on Euclidean GMST problems. The heuristics were coded in C and compiled
and executed on a Intel Pentium 4 personal computer with 1.7 GHz clock speed running a
Linux operating system. Two types of GMST problem instances were used in our tests —
randomly generated instances, and instances based on the TSPLIB (Reinelt [14]).

3.1 Randomly generated instances

For randomly generated GMST problem instances, we define a cluster as a pre-determined
number p of points located in a square of side SPAN. The squares demarcating the clusters
are themselves organized in the form of a rectangular grid, where the number of rows in the
grid is denoted by m and the number of columns by n. Rows and columns are evenly spaced
and the separation between two adjacent rows (or columns) is denoted by SEP. Figure 2
depicts the various parameters pictorially, where m = 2, n = 3 and p = 3, and the filled in
circles correspond to the vertices.

In previous studies (see for example, Myung et al. [12] and Feremans [5]) a slightly
different method is used to generate random instances. In these studies, all the vertices are
generated as points in a square of side 100 units, and are randomly assigned to clusters,
under the restriction that each cluster has the same number of vertices. By ensuring that
SEP < SPAN our generation method can generate similar instances. Refer, for example to
Figure 3. This shows four clusters (depicted by boundaries with different line styles, and
vertices that look different) in an instance with SEP

SPAN = 0.75.
We designed and conducted preliminary experiments using a branch and bound algo-

rithm and the six heuristics on GMST problem instances with 12 clusters to detect any
significant trends in execution times of exact algorithms and quality of solutions output by
the heuristics when the value of p, or the m

n ratio, or the SEP
SPAN ratio was altered. We found

that execution times of the exact algorithm increased when the value of p increased and
in most cases, the exact algorithm took less execution time when the m

n ratio decreased.
However, the performance of the heuristics vis-à-vis the exact algorithm did not show any
significant trends. Therefore, in our experiments with randomly generated instances, we
generated thirty six problem sets containing five instances each, with two different number
of clusters (100 and 400), two different values of p (4 and 5), three different m

n ratios (1.0,
4.0, and 25.0), and three different SEP

SPAN ratios (2.0, 1.0, and 0.5). In eighteen of these sets
(Set 100-01 through 100-18), which consisted of relatively smaller instances, the six heuris-
tics were allowed a maximum of 300 CPU seconds on each instance. In the others (Sets
400-01 through 400-18), which contained larger instances and the heuristics were allowed a

6

SEP

SPAN

Figure 2: Layout of randomly generated instances

Cluster 1

Cluster 2 Cluster 3

Cluster 4

Figure 3: Overlapping clusters

7

maximum of 600 CPU seconds for each instance. Since all the instances were too large to
solve optimally, we present a comparison of their relative performance, using the solution
obtained by VNDS as the base. For each instance in each set, we compute the percentage
by which the solution obtained by a particular heuristic improves over the solution obtained
by the VNDS heuristic. A positive value indicates that the current heuristic output a better
solution than VNDS, while a negative value shows that the current heuristic output a worse
solution. The figure for a particular set is the average of the improvement percentages over
all five instances in the set. Table 1 present our findings.

Table 1: Relative Performance of heuristics on randomly generated instances
Problem Improvement over VNDS

Set m × n p SEP SPAN TS1 TS2 VND RVNS VNS
Set 100-01 10×10 4 10.0 5.0 0.30% 0.88% 0.61% 0.61% 0.61%
Set 100-02 10×10 5 10.0 5.0 0.45% 1.62% 0.80% 0.80% 0.80%
Set 100-03 20×5 4 10.0 5.0 0.13% 0.72% 0.45% 0.45% 0.45%
Set 100-04 20×5 5 10.0 5.0 0.11% 0.97% 0.38% 0.38% 0.38%
Set 100-05 50×2 4 10.0 5.0 0.06% 0.47% 0.34% 0.34% 0.34%
Set 100-06 50×2 5 10.0 5.0 0.11% 0.80% 0.32% 0.32% 0.32%
Set 100-07 10×10 4 10.0 10.0 0.48% 2.27% 1.66% 1.66% 1.66%
Set 100-08 10×10 5 10.0 10.0 0.96% 2.97% 1.77% 1.77% 1.77%
Set 100-09 20×5 4 10.0 10.0 0.94% 2.17% 1.48% 1.48% 1.48%
Set 100-10 20×5 5 10.0 10.0 0.29% 2.18% 0.96% 0.96% 0.96%
Set 100-11 50×2 4 10.0 10.0 0.09% 0.19% 0.15% 0.15% 0.15%
Set 100-12 50×2 5 10.0 10.0 0.01% 0.61% 0.62% 0.62% 0.62%
Set 100-13 10×10 4 5.0 10.0 1.55% 3.55% 2.48% 2.48% 2.48%
Set 100-14 10×10 5 5.0 10.0 0.84% 4.85% 1.86% 1.86% 1.86%
Set 100-15 20×5 4 5.0 10.0 0.25% 3.01% 2.03% 2.03% 2.03%
Set 100-16 20×5 5 5.0 10.0 0.72% 3.89% 2.45% 2.45% 2.45%
Set 100-17 50×2 4 5.0 10.0 0.54% 2.23% 1.90% 1.90% 1.90%
Set 100-18 50×2 5 5.0 10.0 0.34% 1.50% 1.02% 1.02% 1.02%
Average 0.45% 1.94% 1.18% 1.18% 1.18%

Set 400-01 20×20 4 10.0 5.0 -0.08% -0.10% -0.08% -0.08% -0.08%
Set 400-02 20×20 5 10.0 5.0 0.06% 0.09% -0.24% -0.24% -0.24%
Set 400-03 40×10 4 10.0 5.0 0.35% 0.34% -0.24% -0.24% -0.24%
Set 400-04 40×10 5 10.0 5.0 -1.34% -1.37% -0.13% -0.13% -0.13%
Set 400-05 100×4 4 10.0 5.0 0.32% 0.28% 0.02% 0.02% 0.02%
Set 400-06 100×4 5 10.0 5.0 -1.27% -1.53% -0.37% -0.37% -0.37%
Set 400-07 20×20 4 10.0 10.0 -3.34% -2.45% -0.16% -0.16% -0.16%
Set 400-08 20×20 5 10.0 10.0 -0.61% -0.46% -0.26% -0.26% -0.26%
Set 400-09 40×10 4 10.0 10.0 -0.23% -0.25% -0.20% -0.20% -0.20%
Set 400-10 40×10 5 10.0 10.0 -0.27% -0.24% -0.24% -0.24% -0.24%
Set 400-11 100×4 4 10.0 10.0 -0.15% -0.23% -0.17% -0.17% -0.17%
Set 400-12 100×4 5 10.0 10.0 0.00% 0.10% -0.77% -0.77% -0.77%
Set 400-13 20×20 4 5.0 10.0 -4.99% -3.95% -0.70% -0.70% -0.70%
Set 400-14 20×20 5 5.0 10.0 0.26% 0.26% -0.71% -0.71% -0.71%
Set 400-15 40×10 4 5.0 10.0 4.89% 4.79% 0.65% 0.65% 0.65%
Set 400-16 40×10 5 5.0 10.0 3.75% 3.65% 0.59% 0.59% 0.59%
Set 400-17 100×4 4 5.0 10.0 0.34% 0.27% -1.30% -1.30% -1.30%
Set 400-18 100×4 5 5.0 10.0 -0.41% -0.41% -0.41% -0.41% -0.41%
Average -0.15% -0.07% -0.26% -0.26% -0.26%

8

The results show that for instances with 100 clusters, TS2 generated the best solutions
among the six heuristics. On an average, the solutions it generated are 1.94% better than
those generated by VNDS. VND, RVNS, and VNS came next, and the solutions they out-
put were 1.18% better than those output by VNDS. TS1 generated solutions that are only
marginally better than VNDS. The performance of all the heuristics vis-à-vis VNDS im-
proved when the m

n or the SEP
SPAN ratios decreased. However, when the value of p increased,

the superiority of all the heuristics over VNDS decreased, with the exception of TS2.
For instances with 400 clusters, the results were very different. VNDS proved to be

the one that output the best solutions for these problems. TS2 came second, and output
solutions that were, on an average, 0.07% worse than those output by VNDS. TS1 generated
solutions that were 0.15% worse, and VND, RVNS, and VNS generated solutions that were
0.26% worse than those output by VNDS. However, different trends were observed in their
relative performances. At m

n = 4.0, all the five heuristics output solutions which were better
than VNDS. However, when m

n = 1.0 or when m
n = 25.0 all of them output solutions worse

than those output by VNDS. When m
n = 1.0, VND, RVNS, and VNS performed better than

TS1 and TS2 on an average, but when m
n = 25.0, TS1 and TS2 output better solutions than

the other three. At this m
n ratio, TS1 was 0.2% worse than VNDS on an average, and TS2

was 0.25% worse. In this regard, recall that in our preliminary experiments with 12 clusters,
we found that problems with high m

n ratios require more execution times with branch and
bound algorithms, and are prime candidates for the use of metaheuristic techniques. When
the value of p increased, TS1 and TS2 output relatively better solutions. In fact when
p = 5, the solutions they output were, on an average, better than those output by VNDS.
The relative performance of VND, RVNS, and VNS deteriorated when p increased. When

SEP
SPAN = 0.5 TS1 and TS2 output solutions that were better than VNDS on an average.
VND, RVNS, and VNS output solutions which were worse than VNDS for these problems.
However, when SEP

SPAN = 2.0 the solutions output by VND, RVNS, and VNS were better
than those output by TS1 and TS2 on an average. All the five heuristics however output
solutions that were worse than VNDS for these instances.

In summary, we would recommend TS2 for Euclidean GMST problems when dealing
with medium sized instances, or large instances in which the clusters overlap. For other
large instances, we recommend the VNDS heuristic.

3.2 TSBLIB based instances

TSPLIB (Reinelt [14]) is a library that provides a set of test instances for the symmetric
traveling salesman problem. In this work we use an adaptation of a subset of these instances
that form instances of the GMST problem. The instances that we use also form a subset of
the instances used to test the performance of a branch and cut algorithm in Feremans [5].

In the literature, two types of clustering of the vertices in TSPLIB instances render
them GMST problem instances. The first is called geographical clustering (simply called
“clustering” in Fischetti et al. [6]). It fixes the number of clusters k to

⌈ |V|
5

⌉
. Then k centers

are determined by considering k vertices as far away from each other as possible. Clusters
are finally obtained by assigning each vertex to its nearest center. The second clustering
approach is a grid clustering approach (see Feremans [5]) where the grid configuration is
determined by a parameter µ corresponding to the average number of vertices in each cluster.
The grid clustering approach works as follows. The vertices in a particular TSPLIB instance
are plotted on a plane, and the smallest rectangle with sides parallel to the coordinate axes
that encloses all vertices is obtained. This rectangle is divided into NG × NG equal sized

9

rectangles, and each rectangle containing at least one vertex corresponds to a cluster. The
integer NG is determined as follows. Let cluster(H) be the number of non-empty clusters
corresponding to a H×H grid. Then NG is the minimum integer such that cluster(NG) ≥
|V|
µ . In this work we use the cluster data used in Feremans [5].

In Feremans [5], TSPLIB-based instances are broadly divided into two categories, ones
that the branch and cut algorithm developed therein could solve within 2 CPU hours on
a Generic sun4u sparc SUNW, Ultra-5.10 workstation, and ones that could not be solved
within that time. For our experiments, we choose those instances in the first category that
used more than 600 CPU seconds to solve to optimality, and all instances in the second
category.

While solving the instances of the first category, each of the six heuristics was alloted
90 CPU seconds of execution time. Table 2 presents the cost of the solutions output by
each of the heuristics. TS2 was clearly the best among the six, obtaining optimal solutions
in all but six of the thirty six instances solved and returning on an average, solutions that
were 0.02% more expensive than the optimal solution. TS1 came second; although it could
solve only seventeen instances to optimality, its average suboptimality is only 0.34%. VNDS
returned the worst solutions among the six, and the solutions it output were 1.31% more
costly than an optimal solution. The other three variants of variable neighborhood search
heuristics output solutions with an average suboptimality of 0.51%.

Table 3 shows the time in seconds during the execution of each heuristic when it gener-
ated the solution which it finally output. Notice that apart from TS2, the other heuristics
could not improve solutions that they generated very early in the search. Thus allowing
these heuristics more execution time would most likely not appreciably improve the quality
of solutions they output with an execution time of 90 CPU seconds. In a separate experi-
ment, we allowed TS2 600 CPU seconds to solve each of the six kroA200 and kroB200 based
instances that it could not solve to optimality within 90 CPU seconds, but it was not able
to improve on any of the solutions within that time.

For the second category of TSPLIB-based instances, we allowed the six heuristics 600
CPU seconds of execution time, and compared the cost of the solutions output by each of
the heuristics with the global upper bound presented in Feremans [5]. The results are shown
in Table 4. Notice that apart from two of the instances (ts225 with geographical clustering,
and gr202 with grid clustering and a µ value of 7), all the six heuristics improved the value
of the global upper bound. Once again TS2 proved to be the best among the six, achieving
an improvement in every single one of the instances and VNDS proved to be the worst.
The average improvements ranged from 2.41% for TS2 to 1.11% for VNDS. A study of the
execution time required by the heuristics to achieve the solution that they output showed
that TS2 required the maximum time, 60.89 CPU seconds on an average, while RVNS and
VNS required the minimum time, generating the final solution within the first CPU second
of execution. VNDS required 11.95 CPU seconds on an average, VND required 5.32 CPU
seconds, and TS1 required 2.11 CPU seconds.

4 A brief summary

In this paper, we study the performance of six heuristics based on tabu search and variable
neighborhood search on the generalized network design problem. We define this problem in
Section 1 and present a brief survey of published literature on this problem. In Section 2, we
describe the six heuristics that we compare in this work. In addition to a formal description

10

Table 2: Costs of solutions output by the heuristics for the first category of TSPLIB-based
instances

Instance Vertices Clusters Optimum TS1 TS2 VND RVNS VNS VNDS
Geographical Clustering
gr202 202 34 135 135 135 136 136 136 140
pr124 124 25 30174 30416 30174 30174 30174 30174 30404
bier127 127 26 58150 58343 58150 58343 58343 58343 58355
gr137 137 28 329 330 329 330 330 330 330
pr144 144 29 40055 40085 40055 40085 40085 40085 40085
krob150 150 30 10048 10063 10048 10063 10063 10063 10084
pr152 152 31 39109 39109 39109 39116 39116 39116 39116
rat195 195 39 751 751 751 751 751 751 776
kroa200 200 40 11634 11698 11636 11698 11698 11698 11698
krob200 200 40 11244 11477 11245 11291 11291 11291 11477
Grid Clustering (µ = 3)
bier127 127 50 71221 71221 71221 71640 71640 71640 71696
gr137 137 49 391 393 391 393 393 393 393
pr144 144 48 43725 43725 43725 43725 43725 43725 43725
pr152 152 54 44253 44294 44253 44253 44253 44253 44294
u159 159 58 24214 24214 24214 24221 24221 24221 24221
rat195 195 81 1111 1116 1111 1116 1116 1116 1137
kroa200 200 72 14881 14966 14888 14885 14885 14885 14970
krob200 200 76 15320 15357 15328 15346 15346 15346 15449
Grid Clustering (µ = 5)
bier127 127 26 58989 58989 58989 58989 58989 58989 58989
gr137 137 32 338 339 338 339 339 339 339
pr144 144 30 36279 36279 36279 36279 36279 36279 36279
pr152 152 33 38143 38143 38143 38143 38143 38143 38143
rat195 195 49 796 796 796 806 806 806 830
kroa200 200 47 11628 11671 11628 11671 11671 11671 11671
krob200 200 48 11113 11115 11114 11115 11115 11115 11205
Grid Clustering (µ = 7)
bier127 127 19 52097 52097 52097 52242 52242 52242 52468
gr137 137 22 264 268 264 268 268 268 269
pr152 152 24 35429 35429 35429 35429 35429 35429 35429
rat195 195 36 639 639 639 641 641 641 667
kroa200 200 35 9640 9687 9686 9687 9687 9687 9688
krob200 200 36 9742 9780 9742 9818 9818 9818 9907
Grid Clustering (µ = 10)
pr152 152 16 33340 33340 33340 33340 33340 33340 33340
rat195 195 25 482 482 482 490 490 490 516
kroa200 200 25 6895 7102 6895 7102 7102 7102 7102
krob200 200 25 6922 6922 6922 7212 7212 7212 7318
pr226 226 27 43389 43389 43389 43389 43389 43389 43389
suboptimal solutions (out of 36) 19 6 26 26 26 29

11

Table 3: Time of obtaining the final solution by the heuristics for the first category of
TSPLIB-based instances

Instance Vertices Clusters TS1 TS2 VND RVNS VNS VNDS
Geographical Clustering
gr202 202 34 2 2 15 0 0 0
pr124 124 25 0 4 0 0 0 0
bier127 127 26 0 3 1 0 0 0
gr137 137 28 0 59 0 0 0 0
pr144 144 29 0 23 0 0 0 0
krob150 150 30 0 5 1 0 0 0
pr152 152 31 1 0 0 0 0 0
rat195 195 39 4 4 5 0 0 0
kroa200 200 40 1 19 0 0 0 0
krob200 200 40 0 55 3 0 0 0
Grid Clustering (µ = 3)
bier127 127 50 1 1 0 0 0 0
gr137 137 49 0 12 0 0 0 0
pr144 144 48 0 0 0 0 0 0
pr152 152 54 0 10 1 0 0 0
u159 159 58 0 2 0 0 0 0
rat195 195 81 1 2 2 0 0 0
kroa200 200 72 1 26 1 0 0 0
krob200 200 76 1 22 2 0 0 0
Grid Clustering (µ = 5)
bier127 127 26 0 1 0 0 0 0
gr137 137 32 0 6 0 0 0 0
pr144 144 30 0 0 0 0 0 0
pr152 152 33 0 0 0 0 0 0
rat195 195 49 1 1 6 0 0 0
kroa200 200 47 1 4 1 0 0 0
krob200 200 48 1 89 2 0 0 0
Grid Clustering (µ = 7)
bier127 127 19 1 0 1 0 0 1
gr137 137 22 0 19 1 0 0 0
pr152 152 24 0 0 0 0 0 0
rat195 195 36 1 1 6 0 0 0
kroa200 200 35 1 0 1 0 0 0
krob200 200 36 1 3 2 0 0 0
Grid Clustering (µ = 10)
pr152 152 16 0 0 0 0 0 0
rat195 195 25 0 1 2 0 0 0
kroa200 200 25 0 34 0 0 0 0
krob200 200 25 0 1 2 0 0 0
pr226 226 27 0 0 0 0 0 0
Average 0.49 11.63 1.14 0 0 0.03

12

Table 4: Costs of solutions output by the heuristics for the second category of TSPLIB-based
instances

Instance Vertices Clusters global Percentage improvement over UB
UB� TS1 TS2 VND RVNS VNS VNDS

Geographical Clustering
d198 198 40 7232 2.24% 2.34% 1.12% 1.12% 1.12% 0.65%
gr202 202 41 250 3.20% 3.20% 0.00% 0.00% 0.00% 0.00%
ts225 225 45 62506 -1.50% 0.22% -0.24% -0.24% -0.24% -1.50%
pr226 226 46 55971 0.81% 0.81% 0.81% 0.81% 0.81% 0.60%
Grid Clustering (µ = 3)
d198 198 67 8599 2.91% 3.67% 2.85% 2.85% 2.85% 2.34%
gr202 202 68 302 2.32% 2.98% 1.66% 1.66% 1.66% 0.66%
ts225 225 75 81962 3.42% 3.59% 3.42% 3.42% 3.42% 3.29%
pr226 226 84 63148 0.92% 0.98% 0.94% 0.94% 0.94% 0.92%
Grid Clustering (µ = 5)
d198 198 40 7291 1.19% 2.51% 2.65% 2.65% 2.65% 1.21%
gr202 202 41 243 4.53% 4.53% 0.82% 0.82% 0.82% 0.41%
ts225 225 45 62242 1.14% 2.38% 2.01% 2.01% 2.01% 1.34%
pr226 226 50 56822 0.13% 0.18% 0.18% 0.18% 0.18% 0.13%
Grid Clustering (µ = 7)
d198 198 32 6759 3.77% 3.82% 3.82% 3.82% 3.82% 3.77%
gr202 202 31 207 1.93% 1.93% -2.90% -2.90% -2.90% -2.90%
ts225 225 35 53661 5.21% 5.26% 5.21% 5.21% 5.21% 5.21%
pr226 226 33 48254 0.01% 0.01% 0.01% 0.01% 0.01% 0.01%
Grid Clustering (µ = 10)
d198 198 25 6351 2.61% 2.61% 2.60% 2.60% 2.60% 2.60%
gr202 202 21 185 2.16% 2.70% 2.16% 2.16% 2.16% 1.08%
ts225 225 25 41162 1.44% 2.00% 1.66% 1.66% 1.66% 1.33%
Average Improvement over UB 2.02% 2.41% 1.51% 1.51% 1.51% 1.11%
�: UB quoted in Feremans [5]

13

of the heuristics, the section also contains details about our implementations. Section 3
describes the results of our computational experiments. We experimented with two types
of instances, some of which were randomly generated, and some others were modified from
symmetric traveling salesman problem instances from the TSPLIB (Reinelt [14]). In case
of randomly generated instances, we describe an alternative scheme of generating random
problems, which is more elaborate than the one commonly used in the literature (e.g. in
Myung et al. [12] and Feremans [5]). Our experiments in this section demonstrate that this
scheme allows us a richer analysis of the performance of the heuristics for these problems.
For the second type of instances, we used a subset of the instances used in Feremans [5].

Our results show that for small and medium sized instances, which in this study include
all the TSPLIB based instances and randomly generated instances with 100 clusters, TS2,
a tabu search heuristic incorporating both recency based memory and frequency based
memory was the heuristic of choice. For large instances, i.e. the ones with 400 clusters,
the recommendation is divided. If the clusters overlap, then TS2 is still the best option
available. Otherwise, we recommend variable neighborhood decomposition search.

The basic neighborhood structure that we use for tabu search heuristics is a 1-swap
neighborhood, in which we allow a change in the choice of a vertex in exactly one cluster.
One could use a 2-swap neighborhood structure, in which one allows a change in the the
choice of vertices in a maximum of two clusters. Such a neighborhood is not necessary for
small and medium sized problems, in which tabu search almost always generates an optimal
solution using a 1-swap neighborhood. However in larger problems the 2-swap neighborhood
may generate solutions better than those generated with a 1-swap neighborhood structure,
although the time required to search the neighborhood would be longer. Finally, hybrids of
tabu search and variable neighborhood decomposition search could yield better composite
heuristics for the generalized minimum spanning tree problem.

Acknowledgement:

The author thanks Corrine Feremans for providing us a copy of her dissertation and data
on the TSPLIB based instances, and Saral Mukherjee for many useful suggestions. Most
of the computational experiments were carried out in the Manufacturing and Supply Chain
Laboratory at IIM Ahmedabad.

References

[1] Dror, M., Haouari, M., and Chaouachi, J. (2000), Generalized spanning trees, European
Journal of Operational Research 120, 583–592.

[2] Faigle, U., Kern, W., Pop, P.C. and Still, G. (2000), The generalized minimum spanning
tree problem, Working Paper, Department of Operations Research and Mathematical
Programming, University of Twente, The Netherlands.

[3] Feremans, C., Labbé, M. and Laporte, G. (2003), Generalized network design problems,
European Journal of Operational Research 148, 1–13.

[4] Feremans, C., Labbé, M. and Laporte, G. (2001), On generalized minimum spanning
trees, European Journal of Operational Research 134, 457–458.

[5] Feremans, C. (2001), Generalized Spanning Trees and Extensions, Ph.D. Dissertation,
Université Libre de Bruxelles.

14

[6] Fischetti, M., Salazar, J.J., and Toth, P. (1995), The symmetric traveling salesman
polytope, Networks 26, 113–123.

[7] Gendreau, M. (2003), An introduction to tabu search, Chapter 2 in [8], 37–54.

[8] Glover, F., and Kochenberger, G.A. (2003), Handbook of Metaheuristics, Kluwer Aca-
demic Publishers, Boston.

[9] Hansen, P., and Mladenović, N. (2003), Variable neighborhood search, Chapter 6 in
[8], 145–184.

[10] Ihler, E., Reich, G. and Widmayer, P. (1999), Class Steiner trees and VLSI design,
Discrete Applied Mathematics 90, 173–194.

[11] McKay, M.D., Conover, W.J. and Beckman, R.J. (1979), A comparison of three meth-
ods for selecting values of input variables in the analysis of output from a computer
code, Technometrics 21, 239–245.

[12] Myung, Y.S., Lee, C.H. and Teha, D.W. (1995), On the generalized minimum spanning
tree problem, Networks 26, 231–241.

[13] Pop, P.C., Kern, W. and Still, G.J. (2001), An approximation algorithm for the gener-
alized minimum spanning tree problem with bounded cluster size, Working Paper,
Department of Operations Research and Mathematical Programming, University of
Twente, The Netherlands.

[14] Reinelt, G. (1995), TSPLIB-95, http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95/

15

