p fw;)%
’/ [

%

At d
-

|

2%

[ 4 —
Y



A SCENARIO BASED STOCHASTIC PROGRAMMING
APPROACH FOR TECHNOLOGY AND
CAPACITY PLANNING

By

Zhi-Long Chen
Shanling Li
&
Devanath Tirupati

W.P.N0.99-04-04
iNo.99:04:04 /1514

WPi514

wp
99-4-04
(1514)

The main objective of the working paper series of the IIMA is
to help faculty members to test owt their research findings
at the pre-publication stage.

e ——

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD - 380 015
INDIA




PURCHASED
APPROVAL

GRATIS/EXCHANGS
' PRICE
{ .CC NO.

YIKRAM SARABHAI LIBRAR:

t M AHMEDABRAD




A Scenario Based Stochastic Programming Approach
for Technology and Capacity Planning

Zhi-Long Chen
Department of Systems Engineering
University of Pennsylvania
Philadelphia, PA 19104-6315 USA

Email: zichcni@scas.upcnn.cdu

Shanling Li
Faculty of Management
McGill University
Montreal, PQ Canada, H3A 1GS

Email: ligmanagement. megill.ca

Devanath Tirupati
P&QM Area
Indian Institute of Management
Vastrapur, Ahmedabad, India 380 015

Email: devanath@iimahd emet in



A Scenario Based Stochastic Programming Approach for
Technology and Capacity Planning

Abstract: In response to market pressures resulting in increased competition, product
proliferation and greater customization, firms in many industries have adopted modern
technologies to provide operational flexibility on several dimensions. In this paper,
we counsider the role of product mix flexibility, defined as the ability to produce a
variety of products, in an environment characterized by multiple products, uncertainty
in product life cycles and dynamic demands. Using a sceqa.rio based approach for
capturing the evolution of demand, we develop a stochastic programming model for
determining technology choices and capacity plans. Since the resulting model is likely
to be large and may not be easy to solve with standard software packages, we develop
a solution procedure b:?sed on augmented Lagrangian method and restricted simplicial
decomposition. The scope of our approach for deriving context specific managerial
.insights is illustrated by the results of limited computations. Finally, we demonstrate
the versatility of our approach by deriving a special case of the general model to address

some tactical issues related to new product introduction.

Key Words: Stochastic Dynamic Demands, Flexible Technology, Capacity and Technology Plan-

ning, Scenario-Based Approach, Large-Scale Stochastic Programming



1 Introduction

The decade of the 90s has witnessed an increasingly competitive market place characterized by
short product life cycles, demand uncertainty, product proliferation, increased customization, and
quick response. A number of companies in diverse industries such as semiconductors and electron-
ics, pharmaceuticals, automotive and fabrication have adopted manufacturing flexibility as a key
element of their strategy to cope with this dynamic environment and compete on several dimen-
sions. Typically, advanced technologies such as Flexible Manufacturing Systems (FMS), Computer
Integrated Manufacturing (CIM) provide a variety of flexjbilities that include volume, routing,
process and product mix flexibility. However, these modern technologies are expensive, require
significant investments and / or involve higher operating costs in comparison with dedicated fa-
cilities designed to produce efficiently a limited set of products. The trade-offs involved in the
- acquisition of these modern technologies are conceptually well understood. However, limitations of
evaluation methodologies and justification techniques have been well documented (see, e.g. Kaplan
1986) suggesting the need for development of economic rationale for such investments. As a result,
in recent years there is a growing body of literature on modeling and quantifying the benefits of

flexible technologies.

In this paper, we focus on the role of product mix flexibility in an environment char-
acterized by multiple products and uncertainty in product life cycle (PLC) demands. Using a
scenario approach to capture dynamic demands and uncertainty associated with PLCs, we develop
- a stochastic programming model for strategic decisions related to long term technology and capac-
ity planning. The model is quite general and captures a number of issues that include the following:
(i) stochastic and dynamic demands, (ii) technology mix between dedicated and flexible technolo-
gies, (iii) economies of scope and (iv) economies of scale. Since the resulting stochastic program is
likely to be large and not easy to solve with standard packages (even with linear costs), we present
solution procedures to facilitate implementation of the approach. OQur algorithm, based on aug-
mented Lagrangian method and restricted simplicial decomposition, can provide optimal solutions
for moderate sized problems with linear costs (few thousand scenarios) in reasonable time. Using
computational results we demonstrate the application of our approach for obtaining managerial

insights into issues related to technology and capacity planning.

It is interesting to note that the general model developed in this paper simplifies readily

for certain special cases which may be used to address some tactical problems that arise in this
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context. We discuss in detail one such application dealing with new product introductions and

illustrate the tactical model with a case from the pharmaceutical industry (Pisano and Rossi 1994).

The remainder of the paper is organized as follows. In the following section, we present
an overview of the related literature. Section 3 is devoted to the development of the general model
and the solution procedure. The tactical model for evaluating product introductions is considered
in Section 4. We describe computational experiments and the resulting insights in Section 5 and

conclude in Section 6 with some remarks on the scope of the model.

2 Literature Review

The literature related to flexibility, technology choice and capacity planning is quite diverse and
.comes from a variety of disciplines such as Management Science, Operations Research, Operations
Management, Economics etc. and a comprehensive review is beyond the scope of this paper.
Instead, we provide a brief overview of research dealing with technology and capacity choices in
the context of uncertain demands. In contrast to the extensive literature on the general subject of
flexibility, reported work in our focused area is fairly recent and quite sparse. Topic-specific review
papers, emphasizing different aspects, include the following: Finnie (1988), Swamidass and Waller
(1990) on the role and merits of financial appraisal decisions to acquire advanced manufacturing
technology; Fine (1993) on models for new technology choice and adoption; Mahajan and Wind
(1986) and Mahajan et al. (1990) on diffusion of innovations; Sethi and Sethi (1990) on flexibility
in manufacturing; PierskeHa and Voelker (1976) on equipment replacement models; and Li and
Tirupati (1992) on capacity expansion and planning.

In modeling demand uncertainty and consideriﬁg capacity and technology choices, it is
useful to distinguish between two factors that contribute to this uncertainty. The first is a random
(or noise) component, usually modeled as an additive or multiplicative term to complement a
predictable demand pattern that could incorporate dynamic factors such as seasonality, trend,
cyclicity etc. The second factors relates to the uncertainty associated with the demand pattern,
typically used to describe the evolution of demand over the product life cycle and / or the planning
horizon. The primary characteristic that distinguishes the two factors is the behavior of uncertainty
over time. In the first approach, the random components are permitted to be dynamic (i.e., vary
with time) but assumed to be mutually independent. As a result, the demand history does not

provide any additional information about future demand. Coupled with an appropriate predictable
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component, such models could be used to describe a variety of stochastic dynamic demands. In
contrast, in the second approach, the focus is on capturing demand dependencies over time and
the associated uncertainties. Such dependencies could arise, for example, when the demand is
strongly influenced by the degree of product success. Thus, demand for successful products could
be consistently high in successive periods. For ease of exposition we refer to the two approaches
as stochastic demand and life cycle uncertainty approaches. Clearly, identifying the sources of
uncertainty and their characterization would be useful in developing appropriate strategies for
coping with them. However, in practice, both types of variations exist together, and are often not

distinguishable, thus making the decision problem more complex.

Much of the reported literature (with one exception discussed later in this section) deals

with the first approach and the results and analysis are based on the independence assumption
. described above. For example, Cohen and Halperin (1986) use a discrete period, finite horizon
model to consider the technology choice problem in the context of a single product with dynamic,
uncertain demands. Each technology is uncapacitated and characterized by a fixed acquisition
and variable operating costs. The focus of the paper is on identifying conditions for switching
technologies. The authors discuss extensions to consider capacity constraints. Similarly, Fine and
Freund (1990) consider the optimal mix between dedicated and flexible technology for a two product
situation with static, uncertain demands. Using a scenario approach for describing the potential
demand realizations, they formulate the technology - capacity problem as a two stage model. The
first stage captures strategic choices and deals with investment decisions in flexible and dedicated
technologies. The second stage is operational and focuses on capacity allocations after the demand
realizations are known. The second stage decisions could be interpreted as a multiperiod problem
with the allocations changed in each period following the aema.nd realizations. The paper develops
a number of structural results characterizing the optimal choices in capacity and technology. It may
be noted that in the two examples described above the models are profit maximization problems
with constraints on demand. Chakravarty (1989) considers a different version of the two product
problem in which prices and shortage costs are not specified and examines the role of rationing
policies to achieve prespecified service levels in shortage situations. His results demonstrate that
such policies do impact capacity choices and hence need to be considered at the strategic level. A
key assumption in the literature cited above is linearity in capacity costs that makes the resulting
optimization problems tractable and the analyses in the papers provide useful structural results.
However, these models ignore economies of scale which are significant in most investment situations.

3



Another stream of recent literature considers the trade-offs between dedicated and flexible
technologies in the presence of scale economies. Since the resulting problems are not tractable most
of the insights obtained are based on computational results. For example, Li and Tirupati (1995)
consider a two product problem to determine capacity choice to achieve prespecified service levels
independent of allocation policies. Their results suggest that often optimal strategy requires a mix
of dedicated and flexible facilities. Li and Qiu (1996) obtain similar results while considering oper-
ational factors that include setup times. Li and Tirupati (1996) examine the interaction between
operating policies and investment strategies in the context of‘large number of products and suggest
procedures to determine robust capacity strategies that perform well under a variety of rationing
policies.

It is interesting to note that most of the literature dealing with uncertain demands is based
‘on the stochastic demand approach (the first approach) and does not permit dependencies over time.
We believe this is a key feature of the markets in the 90s with increased product proliferation and
customization. As a result, the product success is determined in the market place and thus there
is a strong correlation between demands over the product life cycle. Hence, our focus in this paper
is to develop a modeling approach to determine technology and capacity choices in an environment
characterized by life cycle uncertainty (the second approach). Eppeh et al. (1989) describe a similar
approach to capacity planning using scenarios to describe potential demand price combinations.
The planning problem is modeled as a stochastic mixed integer linear program with recourse and
is used to examine the trade-offs between risk and returns associated with investments in capacity.
While there are similarities between our approach and that of Eppen et al. (1989), in this paper we
present a more general model and consider many issues not considered in the earlier work. These
include the following: (a) As mentioned earlier, we per‘r;it dependencies over time. This is an
important feature that provides additional information about future demand and allows dynamic
decision making. (b) The number of scenarios considered in Eppen et al. (1989) is small (243, for
a five period model). While this was appropriate for the application described in that paper, their
solution procedures are limited to small and moderate problems. We develop procedures that can
handle much larger problems (up to a few thousand scenarios) suitable for sitnations with multiple
products and / or time periods. We conclude this section by noting that the overview presented in
this section has a rather limited scope with focus on the literature relevant to the work reported in

this paper.



3 A General Model with Stochastic Dynamic Demands

In this section we present a general model that considers multiple products with dynamic, uncertain
demands and technology alternatives characterized by economies of scale and scope. The objective
is to determine optimal investments in technology and capacity plans over a multiperiod planning
horizon. Similar to Fine and Freund (1990), the model also determines tactical decisions related to
allocations of flexible capacity as a function of demand realizations and capacity plans. We consider
the above issues faced by a firm producing multiple products and examine the role of product mix
“flexibility. For ease of presentation we assume that only two types of technologies are available -
(a) dedicated, designed to produce efficiently one product and (b) flexible, capable of producing all
products. We note that the model can be modified easily to incorporate other types of technologies
_providing partial flexibility in terms of producing a subset of products. (This extension is mentioned
briefly in Section 6.) As noted earlier, these issues are becoming important for firms in several
industries facing product proliferation and short product life cycles, and significant investments for
capacity additions. Examples of such firms can be found in semiconductor (Texas Instruments),
pharmaceuticals (Eli Lilly), and automobile (General Motor, Ford) industries. We use a scenario
approach for modeling demand uncertainty. This approach is similar to the ones used by Fine
and Freund (1990) and Eppen et al. (1989) and is based on the premise that potential demand
outcomes in any period may be specified as discrete alternatives. This assumption is consistent
with the practices of many firms whose demand forecasts for medium and long term are conditional
estlmates based on states of nature. The latter could include firm specific factors (for example,
chances of product success) and global factors such as GNP, level of economic activity etc. Often,
such forecasts are in the form of optimistic, most likely and péssimistic estimates and fit our model
quite well. When there are dependencies over time, a tree structure may be used to capture the
evolution of demand over the planning horizon. Figure 1 describes such a tree for a two product
example with a three period horizon. As shown in the figure, the number of demand outcomes are
two in each of the first two periods and three in the third period. Each arc in the tree represents
one set of demand (one for each product) outcomes in a period and a path from the root node
to a node in period ¢ describes one possible demand evolution till period t. In our model, each
scenario defines a set of possible outcomes over the planning horizon — demand realizations for each
product in each period. Clearly, a path from the root node to a terminal node represents a scenario.

Further, there is a one to one correspondence between scenarios and paths from the root node to



a terminal node in the tree structure. It may be noted that while no two scenarios are identical,
partial sharing of demand history between scenarios is inevitable. In the formulation presented
below we assume that capacity decisions in each period are made before demands for the period
are observed and capacity allocations are made after demands are realized. These assumptions are
not critical, and may be modified without seriously affecting the model structure or the results of

our paper.

3.1 Notation and Model

We introduce the following definitions and notation:

e N = the total number of products, indexed as 1,2, ..., V.

¢ N +1 = the number of technology types, indexed as 0,1, ..., N, where 0 represents the flexible
technology and 7 (1 < 7 < N) the i-th dedicated technology.

e T = the planning horizon, indexed as 1,2,...,T.

e S = the total number of scenarios for demands, indexed as 1,2, ...,5;

e A(t) = the set of arcs in the scenario tree in period t, fort =1,2,...,T.

o N(t) = the set of node's in the scenario tree at the beginning of period ¢, fort =1,2,...,T.

o I'Y = the set of scenarios that share a common arc « in the scenario tree in the period ¢, for

a € A(t);and t = 1,2,...,T.

. I‘f = the set of scenarios that share a common node.3 in the scenario tree at the beginning

of period t, for 3 € N(t); and t = 1,2,...,T.
e P; = the probability that scenario s occurs.

e Df, = the demand of product : in period ¢ under scenario s, for: =1,2,...,N;t=1,2,...,T;

and s =1,2,...,S.

o Cjo = the initial amount of capacity of technology type ¢ at the beginning of period 1, for
1=0,1,...,.V.

e X;, = the amount of capacity addition for technology type i at the beginning of period ¢

under scenario 8, fori = 0,1,...,N;t=1,2,...,T;and 8 = 1,2,...,5.
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scenario s,.for¢ =1,2,... ,N;t=1,2,...,T;and s = 1,2,..., 5.

the amount of dedicated technology type i allocated to product i in period ¢ under

e Z} = the amount of flexible capacity allocated to product i in period ¢ under scenario s, for

1=1,2,..,N;t=12,..,T;and 6 = 1,2, ..., S.

o I;, = the initial inventory of product i at the beginning of period 1, for: = 1,2,..., N.

e I = the amount of inventory of product i at the end of time period ¢ under scenario s, for

1=1,2,..,N;t=1,2,...,T;and s = 1,2,..., 5.

e Fiy(-) = the investment cost function for technology i in period ¢, for : = 0,1,...,N; and

t=12,..T.

¢ U;: = the unit operating cost for product z by dedicated technology in period ¢, for : = 1,..., V;
and t=1,2,...,T.

s Vi = the unit operating cost for product i by flexible technology in period ¢, for : = 1,..., N;
andt=1,2,..,T.

e H; = the unit holding cost for product ¢ in period ¢, for i =1,...,N;and t = 1,2,...,T.

We now present the general model (GM) as below:

[GM]:
| s
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Y20, Yi>0, Z;>0, I3>0 t=1,.,T; i=0,..,N; s=1,...,8 (9)

The objective function (1) minimizes the total of investment and operational costs compris-
ing of production and inventory carrying costs over the planning horizon. When demand constraints
are soft and it is not essential to meet all demands, the objective function can be modified to include
shortage costs. Alternately, the problem can be formulated to maximize profits, given the price
function. It may be noted that while the investment cost functions Fj(:) are general to permit
economies of scale, we assume that operating costs and inventory holding costs are linear with
production volume. (2) denotes capacity constraints on dedicated technology while (3) represents
constraints on flexible capacity. (4) and (5) specify that demand be satisfied for each product in
each period under all scenarios. Finally, (6) — (8) represent logical constraints that require some

‘ elaboration. In stochastic programming literature such constraints are referred to as nonanticipa-
tivity constraints (for details, see Birge and Louveaux 1997, P. 96). These constraints arise out of
the recognition that when two scenarios share demand history till time £, all the decisions till time
t must be the same for the two scenarios. In [GM], (6) denotes nonanticipativity constraints on
capacity additions. Likewise, (7) and (8) respectively represent the corresponding constraints for
allocations of dedicated and flexible capacities. Similar constraints for inventory become redundant
as a result and hence omitted in the formulation. We conclude this section with a few comments
about the model {GM]. While we have included inventory decisions in the model for the sake of
completeness, they may not be very significant in the context of strategif: and tactical decisions.
Typically, in such situations the periods are fairly large (one year, for example). In such cases, the
inventory variables can be set at zero and deleted from the model without affecting its structure.
Second, it may by noted that while the formulation of [GI\/E] is straightforward, the problem be-
comes large fairly quickly because of the exponential growth in the number of scenarios with the
number of products and time periods. In the following section we discuss solution procedures to

solve the model [GM] with linear investment cost functions.

3.2 An Algorithm for Optimal Solutions

The model GM is a large scale stochastic program with (4N + 1)ST variables and (2N + 1)ST
constraints exclusive of the nonanticipativity constraints. Even with linear cost functions, the
resulting problems are not easy to solve using standard optimization packages. Hence, in this

section we present a computational procedure for deriving optimal solutions for moderate sized
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problems with linear investment cost functions F;;. For [GM] with concave costs and / or larger
sized problems, we suggest a heuristic procedure described in Chen et al. (1998), an unpublished,

extended version of the present paper.

Before we present the algorithm, we first observe that the model [GM] with linear invest-

ment costs has a primal block angular (PBA) format as below:

[PBA]:
S
minimize cha:, ) (10)
=1
subject to
Azy = by s=1,2,..,5 (11)
S
ZB,I, = d (12)

s=1

v
(=]
w
I
—

N
%5

g

(13)

where (11) represents S independent sets of constraints, each corresponding to one scenario, and
(12) is the coupling constraints linking all the scenarios. It is easy to show that constraints (2)-(5)
in the general model are simplified into (11) and the nonanticipativity constraints in the general
model, (6)-(8), are represented by (12) in [PBA].

To solve [PBA], it i; known that Dantzig-Wolfe (DW) decomposition (Dantzig and Wolfe
1960) is a popular solution approach. Unfortunately, in our model, the nonanticipativity constraints
(12) link almost all variables. As a result, the number of rows in the DW master problem could be

extremely large and makes the DW decomposition impractical.

We propose to use the augmented Lagrangian method (see, e.g. Bertsekas 1982) to solve

the problem [PBA]. The augmented Lagrangian function for the problem [PBA] is as follows:

S ) S
1
L(z,7r, P) = E :c;rza + 7rT (d - E Bazs) + iplld— E :BOI-’Hz (14)
s=1 s=1

s=1
where 7 is a Lagrangian multiplier and p is a penalty parameter.

The augmented Lagrangian method for solving the problem [PBA] can be described as

follows:

Augmented Lagrangian Method (ALM)
OHERAD SARASRA) LISRAN
Begin with iteration counter k£ = 0. «man INSIITUTE OF SANABSRES
akTNAPEE, AMEDARADEE—=—



e Step 1: For fixed multiplier 7* and penalty p*, solve the following problem

min L(z,x*, pF) (15)

subject to
Az, =b, s=1,2,..,5 (16)
2,20 s=1,2,..,8 (17)

Let z* = (¥, 2%, ..., z%) be the solution.

o Step 2: If
s
Y Buzi=d (18)
s=1
then stop; otherwise update the multipliers and the penalty parameter:
s
= 1f 4 p(d- ) B,ak) (19)
s=1
Pt =yt (20)

where v is a parameter typically selected from the interval [4, 10] (see, e.g. Bertsekas 1982).

Increase k£ by 1 and go to Step 1.

The advantages of the augmented Lagrangian method over traditional dual methods are
the simplicity and the stability of multiplier iterations and the possibility of starting from arbitrary
70 (see Bertsekas 1982 for details). This method has been proven successful in the literature
(see, e.g. Mulvey and Ruszczynski 1992, and Bai et al. 1994) for solving large-scale stochastic
programming problems with a primal block angular strueture. However, an obvious drawback
is that the augmented Lagrangian function (14) is not separable although its feasible region is
separable. To overcome this drawback, we propose to use the restricted simplicial decomposition
(RSD) method (see Hearn et al. 1985 for details) to solve the problem in Step 1, i.e., the problem
(15)—(17): RSD is a more sophisticated version of the simplicial decomposition (SD) (Hohenbalken
1977) and designed to solve convex programming problems with linear constraints more efficiently
than SD. The core idea of RSD and SD is to find the optimal solution for a nonlinear problem by

solving a series of linear problems.

Applying RSD to the problem (15)-(17), we will have a linear problem in each iteration
which is separable by scenarios and hence can be solved easily. The details of RSD for the problem

(15)-(17) are described as follows:
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Restricted Simplicial Decomposition (RSD)
¢ Define:

- X, = {z;>0]| A,z, = b,}, the polytope of block s (here we assume the set X, is
bounded).

— )y = a set of retained vertices of polytope X;.
— ¥, = a set that is either empty or contains one of the iterates.

- H(®)= {z =Y et MNTi | zea di= 1,0 2 0}, the convex hull generated by the points

in set ®.

— r, = maximum number of retained vertices for polytope Xj.

¢ Step 0: Initialization. Set iteration counter i = 0.
Let 29, s = 1,2,..., S, be a feasible solution in X,.

Set Q, =0, &, = ¥, = {29}.
e Step 1: Auxiliary problem. For each scenario s = 1,2, ..., 5, solve the subproblem:

min (V,L(z",7%,04)" (2, - o) (21)

T,€X,
where V,L(z¢, v, p*) is the portion of VL(z*, 7%, p¥) associated with scenario s and VL(z?, 7, p¥)
is the gradient of the objective function (15) at the given point z‘ = (z},...,z%). Hence

(VL(a:i, wk,pk))T (:z: - :1:") = XS: (V,L(:v‘, wk,pk))T (a:, - a:',)

s=1
is the linear approximation of the objective function (15) at the given point z*. Let 3} denote

the solution of the s-th subproblem (21). Clearly #! is a vertex of the polytope Xj.
e Step 2: Vertex update. If
(VL' 7, 04) " (8- 28) 20, foralls=1,2,..,5 (22)
then stop, the optimal solution to problem (15)-(17) is z*. Otherwise,

—if |Q,| < 7, set Q, = Q,U{3L};
- if |9Q;] = r,, let 2% replace the vertex in 2, with the minimum weight in the expression of
zi as a convex combination of vertices of ®,, and let ¥, = {z¢}.

Set &, = O, ¥,.
11



o Step 3: Master problem. Solve problem (15)-(17) over a restricted region, that is,
min {L(z,ark,p") |z, € H(®,), 8= 1,2,...,.5'} (23)
Since we can express any point z, € H (®,) as a convex combination of the vertices in ®,, i.e.

T, = Z AshZsh, for some Ay, > 0 such that El,:t,_‘{ A =1 (24)
Iah€¢a

problem (23) is thus equivalent to the following problem with A-variables:

. s &l T S &l 1, S |®.] ,
minL(/\Jr yP)-‘—‘ZZCshr\sh-l-(ﬂ’) d"zzl\ahgsh +§p ”d_ZZ’\ahgsh ”
=1 h=1 s=1 h=1 s=1 h=1
(25)
subject to
[®s]
N dm=1, s=12,..,5 (26)
h=1
Ash 20, h=1,2,.,18); s=12,..,5 (27)

where the constant e,, = cz'a:,h and the vector g,n = Bezsn, correspond to each vertex

Zgp € Qa-

Let the solution of problem (25)-(27) be A*. Then the solution of problem (23), denoted as
il = (m‘i‘”, ...,z‘s+l), is given by equation (24) with A replaced by A*. Discard all vertices

z4n With A5, = 0 from Q, or ¥,. Set ¢ =i+ 1 and go to Step 1.

We note that the nonseparable objective function (15) is linearized in Step 1. Thus the
resulting auxiliary problem in Step 1 is separable. Also note ghat the master problem (25)-(27)is a
convex quadratic program and has a very simple structure in the constraint matrix. This program
can be solved easily as long as the number of blocks S (i.e. the number of rows in this program)
and the total number of retained vertices 3°5_; |®,| (i.e. the number of variables in this program)

are not too large.

In summary, we solve the general model [GM] with linear costs by combining Algorithms
ALM and RSD. We use ALM in the outer loop for the update of multipliers and penalty parameter
and RSD in the inner loop for solving the problem (15)-(17) with the given multipliers and penalty
parameter. The sequence of solutions generated by this solution method converges to an optimal
solution because both augmented Lagrangian method and restricted simplicial decomposition are

convergent.
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4 A Tactical Planning Model for New Product Introduction

As mentioned earlier, the model [GM] is quite general and combines strategic and tactical decisions.
Models with such a wide scope are not always necessary (particularly, after the strategic decisions
have been made). Hence, our objective in this section is to demonstrate that special cases of [GM]
can be used to address some of these tactical issues related to technology and capacity choices.
An application in the context of a firm manufacturing seasonal products can be found in Chen et
al. (1998). The new product introduction application described in this section is in the context of
an innovative firm using flexible technology strategy to develop a number of alternative products
for markets with high degree of uncertainty with respect to product success in the market and the
resulting variability in demand. We use the well documented case of Eli Lilly (Pisano and Rossi

1994) to make our application concrete. However, the model can be adapted easily to other similar

situations.

I_n summary, the situation at Eli Lilly, as described in the case, is as follows. Typical new
product development and life cycle follow three phases of varying lengths. In the first phase small
quantities of the product are made for clinical trials. The focus is on time, and not much effort is
devoted to process development. Following the clinical trials, the firm starts developing, in parallel,
manufacturing process suitable for the specific product. In the second phase, the emphasis is on
optimizing the manufacturing process while the product is under lengthy FDA approval and mar-
ket testing as well. The third phase represents commercial production with efficient manufacturing
ﬁrocess. The phases are of unequal length and vary between two to twelve years and the total
life cycle for a new product may be as long as fifteen years. The traditional approach at Eli Lilly
may be characterized as a dedicated strategy in which manufacturing process development for a
new product starts as soon as sufficient information is available. The process is optimized for the
new product before mass production gets under way. This approach has two serious drawbacks.
First, because of uncertainties associated with FDA approval and product development, there were
significant delays in obtaining information necessary for process development. Coupled with the
long process development times, this resulted in very long time to market causing significant lost
revenues in some cases. Second, the time lags and uncertainties were such that capacity decisions
had to be made before product success could be established. Capacity additions required significant
amount of capital and had high degree of scale economies. Coupled with the fact that dedicated

capacity could not be used for any other product without incurring expensive retrofit, made the tra-
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ditional strategy very risky. In early 90s faced with a number of pressures - increased competition,
pricing pressures, decreasing returns from investments on product development, environmental reg-
ulations, need for reduced time to market etc, Eli Lilly considered a flexible facility strategy for
reducing the risk associated with manufacturing facilities for new products. Under this strategy,
the firm would set up flexible facilities for development of new products and products requiring low
volume production. Investments in dedicated capacity would occur only after the product success
becomes clear and the demand levels warrant such capacity. While the strategy is attractive in
principle, it involved significant costs. For example, flexible capacity was more expensive, typically
three times the cost of dedicated technology. Because of time lags involved it was impossible to
eliminate all risk and commitment to dedicated capacity had to be made while there was some

uncertainty.

In this section, we assume that the company has chosen a flexible strategy and has set up
flexible facilities. We develop a special case of [GM] to evaluate the implications of this strategy
for new product introduction. Specifically, we consider two questions: (a) whether the company
should develop the new product, and (b) if yes, the capacity strategy to be followed. To reflect
the situation at Eli Lilly, we assume that dedicated capacity can be added in discrete units (0.25
rigs in Eli Lilly’s nomenclature). In contrast, we model flexible capacity as a continuous variable
that can be used as needed. This is reasonable, given our assumption about the strategic decision.
we assume that the cost coefficient of flexible capacity represent opportunity cost as the facility
could be used for other products. Finally, we permit multiple time periods of unequal length and
ignore inventory carry over between periods. Again, this is reasonable given the lengths of the time
periods in each phase. We now present the new product introduction (NPI) model.

" INPJ|

S T T

t=1 t=1
subject to
Y? < i X: t=1,..,Tg s=1,..,5 (29)
YP+7Z = T=;‘l t=1,..,T; s=1,..,5 (30)
X¢ = X! uwvelf; geNty t=1,..T; (31)
Y = Y u,vely; aeAlt), t=1,.,T; (32)
Zr = 27 uweld;, acA(t), t=1,..,T; (33)
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Y>0, Z;>0 t=1,..,T; s=1,..8 (34)
X! >0, integer t=1,..,T; s=1,..,8 (35)

where F; is the investment cost of purchasing one unit of the dedicated technology in period t and
X{ is the number of units of the dedicated technology purchased in period ¢ under scenario s. The

other notation is similar to the corresponding one in [GM].

The formulation above is similar to [GM], follows directly from the assumptions described
and requires little elaboration. Unlike the multi-product model [GM], [NPI] is a single product
model. (Hence, for ease of exposition, we have omitted the product subscript i in the formulation
above.) This simplification is the result of two assumptions: (a) strategic decisions have already
been made and flexible capacity is available, and (b) it is easy to determine the opportunity cost

“of flexible capacity. In the absence of reliable assessment of the opportunity costs, [NPI] may be
formulated as a multi-product model with a constraint on flexible capacity linking the individual
products. While we have omitted inventory variables in our application their inclusion does not
add complexity to model. On the other hand, discrete choices in dedicated capacity make [NPI] an

integer linear program that may be difficult to solve for large problems.

5 Computational‘Results

In this section we describe the results of computational experiments and discuss their implications
for deriving managerial insights into issues related to technology choice in the context of stochastic
environment considered in this paper. We recognize that pur experiments are not comprehensive
enough for conclusions based on rigorous statistical analysis. However, they are extensive and
permit some generalizations. In addition, the experiments demonstrate that the algorithm proposed

for the model [GM] is effective for solving moderate sized problems.

5.1 Results Based on Model [GM]

We conducted two experiments for the general model (GM]. The first experiment, called robustness
experiment, was focused on the length of the planning horizon and robustness of the first period
decisions to changes in the horizon length. In the second experiment, called impact ezperiment,
we examine the nature of optimal technology mix and investment and capacity plans under a wide

range of demand conditions and cost parameters. In the robustness experiment, all test problems
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involve two products and eight time periods. Since our experiments found that inventory decisions
have little impact on other decisions, we ignored inventory considerations in this experiment. Each
test problem is specified by the cost and demand data, the former comprising of investment and
operating costs in each period. In each problem, the cost parameters for dedicated technology were
identical for the two products. The unit operating and investment costs of dedicated technology
in the first périod were set respectively at 100 and 200. The corresponding costs for subsequent
periods were determined using a discount factor of 0.9 for each period. For defining the costs
of flexible technology, we considered 3 levels of operating costs (at 70%, 100% and 130% of the
dedicated techrology) and 4 levels of invesiment costs (at 125%, 150%, 175% and 200% of dedicated
technology). See Table 1 for the details of the cost data.

The scenario structure is an important characteristic of the prc;ublem and we considered

" three patterns in which the number of possible demand outcomes ranges between 2 and 9. The total
number of scenarios in each problem ranged between 3456 and 4608. The details of the scenario
structure are shown in Table 1. In generating the product demands in each period we considered
the following two factors: total demand variability (R), and individual demand variability (W).
The product demands in a period (say, period ¢ + 1) were derived from the total demand in the
previous period (period t) and using the two parameters, R and W, in the following manner.
Let D; be the total demand in period {. Then the total demand at period t 4+ 1 is generated as
D¢y1 = Dy(1 + g)r, where g is the growth rate of the total demand and generated randomly from
the interval (0, 0.3] (hence an average of 15% growth each period), and r reflects the variability of
total demand and is randomly chosen from [! — R,1+ R]. Given the total demand D;4, in period
t+ 1, individual product demands, d; 41 (for product 1) ard d 4, (for product 2), are generated
as follows: dy 41 = pDyy1, and dap4y = Dyyy —dy 141, Where pis randomly chosen from the interval
[0.5 - W,0.5 + W]. The procedure above is followed for generating the demands in each scenario.
In generating the test problems, we considered two levels for each of the variability parameters, R
and W. The levels were chosen as 0.2 and 0.4 to obtain a wide variation of demand in our test

problems.

In summary, the combination of demand and cost parameters yields 144 data sets. For
each data set we generated five test problems in a random manner as described earlier, resulting
in a total of 720 problems. For the sake of brevity we do not present the details of the data used
in our test problems. (These may be obtained from the authors by the interested readers.) An

overview of the design of our test problems for the robustness experiment is presented in Table 1.
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In the impact experiment, we examine in detail the impact of cost and demand patterns
on technology mix and capacity choices. Again, we considered only two-product problems and
ignored inventory considerations. The planning horizon for this experiment was set at 5 periods.
This choice was motivated by our observation that, in practice, five-year plans with one-year time
periods are quite popular for long-term planning. This choice was also consistent with the results
from our robustness experiment (discussed later in this section). The design of this experiment
was the same as the robustness experiment described earlier except that only the first 5 periods
are considered and the scenario structure was a little more elaborate with number of joint demand
outcomes in a period ranging between 2 and 16. The fotal number of scenarios in a test problem
ranged between 2304 and 3456. The three patterns of scenario structures used in the experiment
are shown in Table 1. As in the robustness experiment, there are 144 data sets defined by the cost

-and demand parameters, and for each data set, we generated five test problems, resulting in a total

of 720 problems.

Discussion of Results

As mentioned earlier, in the robustness experiment we examine the influence of the length
of the planning horizon on the first period investment decisions. Accordingly, for each test problem
we generate four subproblems by varying the number of time periods from 5 to 8. Each subproblem
is derived by simply truncating the problem at the desired length and dropping all subsequent data.
We chose the optimal first-period solution of the 5-period subproblem as the candidate solution for
assessing the impact of changing horizon length. This choice was motivated by our observation that,
in practice, five-year rolling horizons with yearly periods is quite popular for long-term planning.
Accordingly, we determine, for each subproblem, the relé;ive error in the objective function due
to the candidate solution with the first-period decisions dictated by the solution of the 5-period
subproblem. (The reader may note that this requires solution of each subproblem twice, once to
optimality and the second with specified decisions in the first period.) Again, for the sake of brevity,
we do not present the detailed solutions. Instead we provide summary results in Table 2. The table
presents, for each combination of investment and operating cost parameters, the average and the
maximum relative error for all problems in the group. Thus each entry in the table represents
a summary of 60 test problems. The relative errors are reported for each subproblem. Eg, E7,
and Ejg represent relative errors for the 6-period, 7-period, and 8-period subproblems respectively.

The results in the table are very encouraging and suggest that, from a managerial perspective, the
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first period solution of the five-year problem is quite robust. For example, the average error is
quite small and less than 0.5% for every data set. Even the maximum relative error is less than
1%. Furthermore, about 30% of the test problems yield no error at all in all three subproblems.
It is interesting to note that the relative error is not monotone in the length of the planning
horizon. While this is not surprising, it is useful to note that increasing the planning period (with

implications for generating good forecasts) may not always be helpful.

In the impact experiment we focused on the impact.of demand and cost parameters on the
optimal mix of technology and capacity plans. Accordingly, we computed the following measures
for each test problem: (a) the proportion of flexible capacity added in each period, (b) the ratio of
flexible capacity to total capacity in each period, (c) costs of flexible capacity, both investment and
operating costs, relative to the total cost. In addition, we compared the cost of the optimal solution
" with those corresponding to extreme solutions of all-dedicated and all-flexible technology strate-
gies. The relative cost penalties of these extreme strategies provide an indication of the economic
consequences due to adoption of such strategies based on faith, without adequate analysis. In our
experiments, we did not observe significant differences due to the alternate scenario structures.
Hence, we have aggregated these results and report a summary in Tables 3-6. The tables contain,
for each set of cost parameters, the average of the measures described above. Each average is over

15 test problems (five for each of the three scenario structures).

Not surprisingly, some of our results are consistent with intuition and agree with earlier

studies on this subject. These include the following and require little elaboration:

e For a given level of demand variability (defined by R and W), the amount of flexible capacity

increases with reductions in cost of flexible technology.

o Most of the flexible capacity additions occur early in the planning horizon. For example, as
can be seen from Tables 3-6, in most cases, the proportion of flexible capacity in the first
period is more than 60%. We conjecture that in the presence of scale economies this figure

could be even higher.

While the above conclusions are obvious, our results demonstrate clearly the need for
a systematic approach based on sound models for making technology and capacity choices. For

example, the results in the tables lead to the following conclusions:

o Extreme strategies (either all-dedicated or all-flexible) could lead to severe cost penalties and
18



are as high as 36% in some cases.

¢ Both extreme strategies fail in at least 50% of the test problems. A strategy resulting in a
cost penalty greater than 5% is considered a failed strategy.

o The amount and time of capacity additions depend on a combination of a number of factors
related to demand and costs and generalizations based on limited data could be misleading.
For example, in our test problems, the amount of flexible capacity as a fraction of total
capacity ranged from 0 to 88%. This indicates that such decisions should be resolved based

on specifics of a given situation, rather than relying on thumb rules.

o Flexibility is more useful in the presence of individual demand variability (in comparison with
total demand variability). For a given set of cost parameters, amount of flexible capacity al-
ways increases with a higher value of W. Similar increases occurred when the factor R was
increased, but not always. Perhaps this is due to the fact that there are no scale economies
in investment and the growth trend in demand. Together these factors favor dedicated tech-

nology.

5.2 Results Based on Model [NPI]

The data set for the experim(:mt; with the model [NPI] is based on the case presented in Pisano and
Rossi (1994) described in Section 4. The investment and operating costs for dedicated technology
were taken directly form the case. In the absence of any information on opportunity costs, we
used the data on investment and operating cost data to derive the per unit cost of usage of flexible
capacity. While each of the first two phases were modeled as one period, the third phase consisted
of three periods to represent the growth, maturity and declining stages of the product life cycle.
It may be noted that periods are of unequal length and dictated by product life cycle. The base
demands presented in the case were used as the initial demands. In both Phases 1 and 2, we assume
there are only two possibilities: success and failure. In Phase 3, we assume that there are three
outcomes (high, medium and low) in each period. Based on the demand data given in Pisano and
Rossi (1994), we grouped them into three phases, and added high and low demand volumes in each
period of the third phase. In phase 1, we considered five levels of probability for product success
and in phase 2, three levels of probability to reflect the high uncertainty of a new product in its life
cycle. Needless to say, failure at any stage makes the demand for the remainder of the planning

horizon zero. Table 7 provides a summary of the data used in these test problems.
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Discussion of Results

In the experiment, we had 9 problems for each level of product success in the first stage.
Thus we had forty five test problems for each product, in all 135 problems. Each problem was di-
rectly solved by the commercial optimization software package CPLEX (1995). Our computational
results suggested that the effect of uncertainties in the second and third phases were relatively
minor. Hence, we only report the average of the measures for the nine problems in each data set
defined by the level of product success in phase 1. These results, reported in Tables 8 and 9 include
the following: (a) cost implications, relative to all-dedicated :;nd all-flexible strategies (see Table 8),
and (b) capacity strategy, defined by the amount of flexible capacity as a fraction of total capacity
and the timing of this usage (see Table 9).

Similar to the problem [GM], the results with [NPI] suggest that the cost penalties of
.extreme strategies can be very severe. The results are quite dramatic and the penalty, in some
cases, is more than 200% (product C). Due to low volumes in the case_of product C, flexible
capacity is more useful and all-flexible strategy is reasonable. The results reinforce the intuition
behind use of flexible capacity as a hedge. In all cases, flexible capacity is used in the first two
phases with significant uncertainty about product success and low demands. Phase 3 represents the
point of departure, and dedicated capacity becomes attractive when the demands are sufficiently
high. Again, use of dedicated capacity for product C is limited because of relatively low volumes
even when successful. Such facilities are justified only in period four when justified by the level of
demand. It may be noted that scale economies are significant for dedicated facilities and investments
in them are not attractive for low levels of demand. ;

We conclude this section with some comments on the computational performance of the
algorithm developed for solving [GM] in this paper. The algorithm was implemented using C lan-
guage and all the computations were carried out on a Sun Ultra wo;ksta.tion. In terms of the
computational time, for the test problems we solved with model [GM] (with up to 4608 scénarios),
our algorithm clearly outperformed the direct solver that uses CPLEX directly. Our limited exper-
iment on other problems with the same model showed that the direct solver could outperform our
algorithm for smaller problems (with fewer than 500 scenarios), but our algorithm is much more
effective than the direct solver for larger problems (with more than 1000 scenarios). Our algorithm
is capable of solving problems with up to 5000 scenarios in reasonable time. It may also be noted

that the direct solver is likely to have memory storage difficulty for large problems with more than
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2000 scenarios, which may severely limit its application.

6 Conclusion

In this paper we considered a problem of technology and capacity planning in an environment
characterized by multiple products, stochastic demands and technology alternatives distinguished
by investment and operating costs. We formulated the decision problem involving strategic and
tactical decisions as a stochastic programming model. The strategic decisions relate to technology
choice and investments in new capacity. These are long-term decisions often made with imperfect
knowledge of demand. Tactical decisions, on the other hand, deal with allocation of capacities
among products and are made after demand realizations are known. Our model is based on the
" use of scenario approach to capture demand uncertainty and its evolution. A key feature of this
model is a provision for dependent demands that permit demands in later periods to be a function
of the demand history. Even with linear costs, the general model [GM] is likely to be large and
not amenable for easy solution with standard software packages. Hence we developed an algorithm
based on augmented Lagrangian method and restricted simplicial decomposition. Our computa-
tional results suggest that this algorithm is effective in solving problems with up to 5000 scenarios.
These results indicate that opl;imal strategy often involves a mix of technologies that depend on risk
factors, demand levels and cost parameters and hence require a systematic approach such as the
one developed in this paper. Finally, we demonstrated the versatility of our approach by deriving
a special case of [GM] for tactical decisions related to new product introduction while following
a flexible technology strategy, and illustrated its application using data from the case of Eli Lilly
and Company. It may be noted that the general model permits a numbgr of extensions in a fairly
routine manner. For the sake of brevity, we do not discuss the details, and only mention a few.
While we have only considered the two extreme technologies (dedicated and completely flexible),
it is easy to add other technologies that provide some types of partial flexibility. These include
technologies that are capable of producing a predefined subset of products. Second, for ease of
exposition we did not consider retirement of capacity with age. This feature could be added easily
without complicating the model and the solution approach. Other desirable extensions may be
more involved and require further work. For example, inclusion of uncertainty in technological de-
velopments and / or costs significantly increases the problem complexity and may require a different

approach. Second we have considered only product mix flexibility in our model. Consideration of
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other benefits of flexible technology, such as imptroved quality, faster response time raise a number
of modeling issues that are not easy to incorporate within the stochastic program developed in this
paper. Finally, it might be of interest to identify and model the impact of other benefits of modern
technologies. For example, reported evidence suggests that improvements in quality and response
time are likely to have a positive influence on customers and thus demand itself may be a function
of technology choice.
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Table 1: Design of Test Problems with Model [GM]

Number of products: 2
Planning horizon length: 8 periods for robustness experiment; S periods for impact experiment
Total demand variability (2 levels): R =0.2, and 0.4
Individual demand variability (2 levels): # = 0.2, and 0.4

Time Period 1 2 3 4 5 6 7 8
Case | Flexible Capacity 250 | 225, 203 | 182 | 164 | 148 | 133 | 120
Dedicated Capacity | 200 | 180 | 162 | 146 | 131 | 118 | 106 | 95
4 Cases Case 2 Flexible Capacity 300 | 270 | 243 | 219 | 197 | 177 | 160 | 144
of Unit Dedicated Capacity | 200 | 180 | 162 | 146 | 131 | 118 | 106 | 95
Investment Case 3 | Flexible Capacity 350 | 315 | 284 | 255 | 230 | 207 | 186 | 168
Costs Dedicated Capacity | 200 | 180 | 162 | 146 | 131 | 118 | 106 | 95
Case 4 | Flexible Capacity 400 | 360 | 324 | 292 | 262 | 236 | 212 | 191
Dedicated Capacity | 200 | 180 | 162 | 146 | 131 | 118 | 106 | 95
Case 1 | Flexible Capacity 130 [ 117|105 | 95 | 85 | 77 | 69 | 62
3 Cases Dedicated Capacity | 100 | 90 | 81 | 73 | 66 | 59 | 53 | 48
of Unit Case 2 | Flexible Capacity 100 90 | 8 | 73 | 66 | 59 | 53 | 48
Operating Dedicated Capacity | 100 | 90 | 81 | 73 | 66 | 59 | 53 | 48
Costs Case 3 | Flexible Capacity 70 | 63 | 57 | 51 | 46 | 41 | 37 | 34
Dedicated Capacity | 100 | 90 | 81 | 73 | 66 | 59 | 53 | 48
g ;f:;icr}: o Case | | Number of Joint 9 | 6 | 2 | 2| 2|2 ]|2]2
Robustness Case 2 | Demand 6 6 4 2 2 2 2 2
A Outcomes
Experiment Case 3 4 4 4 4 2 2 2 2
3 Scenario Case 1 | Number of Joint 16 1 9 4 2 2
in“;:c“t"es for ~Case 2 | Demand 9 19 | 4| 4| 2
Experimcnt Case 3 Outcomes 6 6 6 4 4
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Table 7: Design of Test Problems with Model [NPI]

Number of products: 3 (A B, C)
Number of phases: 3
Number of time periods: 5

Purchase cost of flexible capacity: 0
Purchase cost of dedicated capacity: $6250 / unit
| Operating cost of flexible capacity: $1352 / kg

[ Phase 1 2 3
Success Probability 0.1 04
1 03 0.5
0.5 0.6
0.7
: 0.9
. | Number of Demand Outcomes 1 1 - 3
" | Probability of Outcomes 03 04 03
: 04 04 02
02 04 04
[Time Period i 2 3 4 5
Yield from ded. Capacity (kg/unit) | 20,000 | 16,000 [ 20,000 | 20,000 | 20,000
Op. cost of fiex. Capacity ($/kg) 1352 | 1352| 1.352 1.352 1.352
Op. cost of ded. Capacity ($/unit) 5,660 | 4528 | 5,660 5,660 5,660
Demand Outcomes
Product A
High ‘ 1,000 | 5,000 | 100,000 | 160,000 | 80,000
Medium 50,000 | 80,000 | 40,000
Low 25,000 | 40,000 | 20,000
Product B
High 1,000 [2,000 | 30,000 | 40,000 | 20,000
Medium 15,000 | 20,000 | 10,000
Low 7,500 | 10,000 | 5,000
Product C i
High 1,000 | 1,000 7,000 | 10,000 | 5,000
Medium 3,500 5,000 | 2,500
Low ° 1,750 2,500 | 1250




Tabie 8: Test Results with [NPI] — Optimal vs. Extreme Strategies

A B C

Success Probability [Allded. | All flex | Allded. | All flex | All ded. | All flex

In Phase [ Optimal | Optimal | Optimal | Optimal | Optimal | Optimal
0.1 2224 2.627 4.155 2.092 7.776 1.039
03 1.415 2.627 2334 2.092 3.678 1.039
0.5 1252 2.627 1.872 2092 .|2.856 1.039
07 1.182 2.627 1.674 2.092 2.504 1.039
0.9 1.143 2.627 1.564 2.092 2308 1.039

Table 9: Test Results with [NPI] — Role of Flexible Technology

Performance Measure A B C
Periods in which flexible capacity is used
1,2 1,2,3 1,2,3,4,5
Usage of flexible capacity . 100% (t=1,2) 100% (t=1,2) [100% (t=1,2,3)
33% (t=3) 27% (t=4)
' 16% (t=Y5)
Flexible Operating Cost 0.1392 03449 0.7377

Total Operating Cost

Note (i) Usage of flexible capacity= Flexible Capacity Used tn {
Total Available Capacity in t

Total available capacity in t = flexible capacity used in pertod t + dedicated capacity available in period

(i) The results in this table are independent of success probability tn phase 1 and phase 2.

PURCHASED
APPROVAL
ORATIS/REGRANGE
PRICE

ACC N0,
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