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Introduction:- A binary relation is said to be quasi-transitive if its asymmetric part is
transitive. A binary relation is said to be a weak-order if it is reflexive, complete and
transitive. One may refer to French [1986] for a synopsis of these and similar definitions.
An easy consequence of the result in Donaldson and Weymark [1998], which states that,
any binary relation which is reflexive,complete and quasi-transitive can be expressed as an
intersection of weak orders, is the result (which for a finite domain may be traced back to
Aizerman and Malishevsky [1981],[see Aizerman and Aleskerov [1995] as well ]) that
the asymmetric part of a quasi-transitive binary relation can be expressed as the
intersection of the asymmetric parts of weak-orders.In this note we provide a new and an
independent proof of this result (which is what we refer to as Theorem 1 in this

note )considering its abiding importance in decision theory. We also,use our Theorem 1 to
prove the well known result due to Dushnik and Miller [1941],which states that any
asymmetric and transitive binary relation is the intersection of binary relations which are
asymmetric , transitive and complete. Finally,we provide a new proof of the result due to
Donaldson and Weymark{1998],mentioned above.Our proof appears to be simpler than
the one provided by them ,and is established with the help of the theorem due to Dushnik

and Miller {1941].

The Framework:-Let X be a non-empty universal set of alternatives. A binary relation Q
on X is any non-empty subset of X x X. Given a binary relation Q on X its asymmetric
part denoted P(Q) = {(x, y) € Q/ (y, x) ¢ Q } and its symmetric part denoted

Q) = {(x, y) € Q/(y, x) € Q}. A binary relation Q on X is said to be

(1) reflexive if (x,x) e Q V x € X;

(i)  completeifx,y € X, x # y implies (x, y) € Qor (y, x) € Q;

(i) transitive if V x,y,z € X, (x, y) € Q and (y, z) € Q implies (x, z) € Q,

(iv)  quasi-transitive if V x, y, z € X, (x, y) € P (Q) and (y, z) € P(Q) implies (x, z) €
P(Q);

(v)  asymmetricif (x,y) € Q implies (y,x) ¢ Q;

(vi)  aweak order if it is reflexive, complete and transitive.

A binary relation R on X is said to be extend the binary relation Q on X if
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i) P(Q) = P(R).

We are concerned here with the following theorem:

Theorem 1.- If Q is a quasi-transitive binary relation then P(Q) =~ {P(R) Re A},
where ¢ # A < { R X x X/R1s a weak order}.

This theorem for X finite, is really a consequence of two theorems in Aizerman and
Malishevsky [1981] and these two theorems have been reproduced in Aizerman and
Aleskerov [1995]. This theorem is also an easy consequence of the theorem in Donaldson
and Weymark [1998]. It is important enough from the stand point of multi-objective
decision making to merit an independent proof.

Proof of Theorem 1.- Let A = { (x, x)/x € X} and let R,= A u P(Q). R, is reflexive and
transitive. Hence by Szpilrajn’s Extension Theorem (see Fishburn [1970]), there exists a

weak order R' on X such that R, c R' and P(R,) c P(R"). Let A = {R/R is a weak order
on X with R; — R and P(R;) c P(R)}.

Now P(R,) = P(Q).

Let (x, y) € P(Q). Thus (x, y) € P(R) whenever R € A.

Now suppose (x, y) € » { P(R)/ Re A} Towards a contradiction suppose (X, y) ¢ P(Q).
Since (y, x) € P(Q) = ~{ P(R) Re A} contradicts [ (x, y) € P(R) whenever Re A],
clearly (y, x) ¢ P(Q) and also (y, x) ¢ P(R) whenever R € A.

Let P =T (P(Q) w{ (y, X)}), where if S is any binary relation on X then (a, b) € T (S) if
and only if there exists a positive integer m and elements z, ,..., z, in X with a =z, ,b =z,
satisfying (z; ,zi.1) € S wheneveri € {1, .., m-1}. Let R=AUP. Suppose towards a
contradiction that (z,w) and (w,z) both belong to P Thus there exists a positive integer
m and elements z, , ..., z, in X with z = z, = z,, ,w = z, (with n less than m, and (z; , z..)) €
PQ ui(y,x)} Vie{l,. . m-1} If(z,z.4) eP(Q)Vie {l,.,B6 m-1}, then we get
by transittvity of P(Q), that (z, , z,) € P(Q) i.e. (z, z) € P(Q), contradicting asymmetry of
P(Q). Hence (z; , zi-1) =(y, x) for somei € {1, ..., m-1}.

Observe that ‘'m’ is greater than two, for if m < 2, then (z, w) and (w, z) belong to
P(Q) w{ (y, x)} which is not possible since by hypothesis x # y.

Case 1:-Cardinality of {i € {1, ..., m-1}/(z;, zi1) = (y, X)} is one.

If(z1, 22) = (y, x), then z, = y implies by transitivity of P(Q) that (x, y) € P(Q) which is
a contradiction.



Ifi>1, then (z:, y) € P(Q) and (x, z;) € P(Q) by transitivity of P(Q), so that (x, y) € P(Q)
by transitivity of P(Q) which is a contradiction.

Case 2:-Cardinality of {i {I,' ..., m-1}/(z;, zi-1) = (y, X) 1s greater than one.

Letj=min {i € {1, ..., m-1}/(z;, zn)=(y,x)} and k=min {i € {;+1, .., m-1}/(z, zin) =
(¥, X)}. Thus 2zj.; = x, zx = y and by transitivity of P(Q), (x, y) € P(Q) which is a
contradiction.

Thus P is asymmetric and further R is reflexive and transitive. By Szpilrajn’s Extension
theorem, there exists a weak order R° such that (i) R < R° and (ii) P — P (R°). Thus
P(Q) c P(R°) and R, — R°. Thus R° € A. However, (y, x) € P implies (y, x) €

P (R°). This contradicts (x, y) € » {P(R)/Re A}. Thus (x, y) € P(Q). Hence the
proof is complete.

Corollary (due to Aizerman and Malishevsky [1981]): Suppose X is finite and Q 1s a
quasi-transitive binary relation on X. Then there exists a positive integer n and function

fiX>R,1e {1,..,n}suchthat P(Q)={ (x,y) € X x X/fi(x) > fi(y) Vie {],..,n}}.

Proof - Since X is finite, the set A above is finite. Let A= { R;, ..., R,}. Since eachR;is a

weak-order on the finite set X, fori € {1, .., n}, there exists f; : X —> R such that (x, y) €
R; if and only if f; (x) > f; (y) (see Feldman [1980]). Thus (x, y) € P(R;) if and only if f; (x)
> f; (y). Hence by the theorem above, we get the corollary.

The Dushnik and Miller Theorem:-Now we use our Theorem 1 to prove the following
well known theorem due to Dushnik and Miller [1941]:

Theorem 2:-Let P be any asymmetric and transitive binary relation on X . Then
P=n {Q/Q € B },where, ¢ 2 B c { Q € XxX/ Q is asymmetric,transitive and
complete }.

Remark1:- A binary relation which is asymmetric,transitive and complete is called
a strict linear order.

Remark2:-It is easy to see that Theorem 2 can be used to prove Theorem 1.

Proof of Theorem2:-If P is complete there is nothing to prove Hence assume,that P
is not complete Let A= { (x,x)/xe X },and let N= { (x,y) € (XxX)/(x,y) ¢ PUA



and (y,x) ¢ P U A }. By Theorem 1, there exists a nonempty subset A of { R/Risa
weak order on X }, suchthat P= ~ { P(R)/ R € A } LetR € AIfP(R) is complete
then there is nothing more to be done with P(R). Hence suppose that P(R) is not
complete.
An [ N U P(R) J-cycle is any non-empty finite subset { (zi, z1)/ie {l,..,m-1} } o
N U P(R), where m is some positive integer and z; = z, .An acyclic subset of NuP(R)
is any nonempty subset of N U P(R),which does not contain any [ N © P(R) ]-cycle.
Let D (R) = { S/ S is an acyclic subsets of NU P(R)} and let F(R) = {T(S)/SeD(R)},
ordered by set inclusion.F(R) is nonempty since P(R) is not complete. By Zorn’s lemma,
F (R) has a maximal element. Let E (R) be the set of all maximal elements of F(R).Let
T(S) belong to E(R) and let (x,y) € N. Suppose neither (x,y) nor (y,x) belong to U(S).
Then T(S U {(x,y)}) belongs to F(R) and strictly contains T(S) thereby contradicting the
maximality of T(S). Thus either (x,y) or (y,x) belongs to T (S). Further if (x,y) € N then
there exists some S in E (R) (possibly a singleton )such that (x,y) belongs to T (S) .
GivenR in A and S in E (R), let Q (R,S) = T(P(R)u T(S)). Clearly Q (R,S) is transitive
and due to the observation above we can conclude that Q (R,S) is complete. Further since
S is an acyclic subset of N U P(R), Q(R,S) is asymmetric.
Let (x,y) belong to P. Then by Theorem 1, (x,y) belongs to P(R) for all R in A. Therefore
(x,y) belongs to Q(R,S) whenever R belongs to A and S belongs to E (R). Now suppose
(x,y) belongs to ~ {Q(R,S) / ReA and ScE (R)}. Suppose towards a contradiction (X,y)
does not belong to P. If (y,x) belongs to P then by Theorem 1, (y,x) belongs to P(R)
whenever R belongs to A. Hence (y,x) belongs to Q (R,S) whenever R belongs to A and S
belongs to E(R), which is not possible since Q (R,S) is asymmetric. Thus (x,y) belongs to
N. Thus (y,x) also belongs to N. Hence by the observation made above there exists S in
E(R) such that (yx) € T( S)c Q(R, S). Byasymmetry of Q (R, S ), (x,y) does not
belongto Q (R, S). Let B = {Q(R,S)/ReA and S€E(R)}. This proves the Theorem.
QED.

We can now use Theorem 2,to establish the following theorem due to Donaldson and
Weymark [1998] :

Theorem 3:- Let Q be a reflexive and transitive binary relation on X.
Then, Q=" {R/R € A },where ¢ # A c { R < X x X/R is a weak order}.
Proof of Theorem 3:- Let I(x) ={ye X/ (x,y)e I (Q)}, and let = ={I(x)/xeX}. Clearly
given x,y in X either I(x)=I(y) or I(x)I(y)= ¢. By reflexivity of Q ,xe I(x) whenever x €
X. Let, IT ={ (I{(x),l(y))eE x=/ (x,y)e P(Q)}. Since Q is transitive, [ is well defined and
transitive. By Theorem 2,there exists ¢ C — {X/ X is a strict linear order on = },such that
[T= ~{Z/Ze A}. Let AQ)={(x,y) (I(x),I(y)) € Z}u {(I(x),I(x))/ xe X}. It is easy to
verify that A(Z) is a weak order on = , whenever € C.Let R(Z) = {(x,y)/ (I(x),I(y))e
A(Z) . R(Z) is a weak order on X whenever £e Cand Q=n{R (X)/Ze C } Let A=
{ R(2) /Ze C }. This completes the proof.

Q.ED.
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Our proof above does not require the use of the theorem due to Suzumura [1976], and
thus appears to be a little simpler than the one due to Donaldson and Weymark [1998].

Appendix

In this appendix,we give a new independent proof of the theorem due to Donaldson and
Weymark [1998] ,which has been referred to as Theorem 3,in our paper.This proof is
similar to the one we provided for our Theorem 1. Note that, neither does this proof
make use of the theorem due to Suzumura [1976].

Alternative Proof of Theorem 3:-By Szpilrajn’s theorem ,A = { R/ R is a weak order that
extends Q}= ¢ , and it is easy to see therefore Qc N {R/Re A} withP(Q)c n {P
(R) R € A } Now suppose that (x,y) € n {R/ R € A }.Towards a contradiction
suppose,that (x,y) ¢ Q.Thus x = y since Q is reflexive Further (y,x) ¢ Q since otherwise
(y;x) € P(Q) c n{P(R)/ R € A} contradicting (x,y) € n {R/R € A} Let Rj=
T({(y,x)} v Q). R, is reflexive and transitive. Hence by Szpilrajn’s Extension Theorem
there exists a weak order R° on X such that R; < R° and P(R;) < P(R®). Let (z,w) €
P(Q). Thus (z,w) € R; and z# w by asymmetry of P(Q).Towards a contradiction suppose
(w,z) € R, . Thus there exists a positive integer m and elements z, , ..., zn in X with z = z,
=Zm ,W=2Z,(withnlessthanm ), and (z , zi;) € QU{(y,x)} Vie {l, . ,m-1}.

If (zi, z1) € QV 1€ {1, .., m-1}, then we get by transitivity of Q, that (w,z)e Q ,
contradicting (z,w)e P(Q).Hence (z;, zi-)) = (y, x) for somei € {1, ..., m-1}.

Observe that ‘'m’ is greater than two, for (a) if m=2, then (z, w) and (w, z) belong to Q U
{(y, x)} which is not possible since by hypothesis x # y; and (b)if m =1 then z=w
contradicting (z,w)e P(Q).

Case 1:-Cardinality of {i € {1, ..., m-1}/(z, z;+1) = (y, X)} is one.

If (z1, z2) = (y, x), then z, = y implies by transitivity of Q that (x, y) € Q whichis a
contradiction.

Ifi>1, then (z,, y) € Q and (x, zn ) € Q by transitivity of Q, so that (x, y) € Q by
transitivity of Q and the fact that z, = z,, , which is a contradiction.

Case 2:-Cardinality of {i € {1, ..., m-1}/(z; , zi.1) = (y, X) is greater than one.

Letj=min {ie {1, .., m-1}/(z, z.1)) = (y,x)} and k=min {i € {j+1, .., m-1}/(z, zis1) =
(y, x)}. Thus z;,; = X, z, =y and by transitivity of Q, (x, y) € Q which is a contradiction.
Thus P(Q) c P(R;) < P (R°). However, R° € A and (y, x) € P (R®). This
contradicts (x, y) € ~ {R /R € A }. Thus (x, y) € Q. This completes the proof .

Q.ED.
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