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ABSTRACT
We consider a finite universal set of alternatives and the set of all feasible sets are simply the set of all
non-empty subsets of this universal set. A choice function assigns to each feasible set a non-empty
subset of it.In such a framework we propose and study necessary and sufficient conditions for various
types of quasi-transitive rationalizability.In a final section of this paper,we analyse necessary and
sufficient condtions for quasi-transitive rationalizability of choice functions generated by a monotonic
preference for freedom.

1. Introduction

We consider 2 finite universal set of alternatives and the set of all feasible sets are simply the set of all
non-empty subsets of this universal set. A choice function assigns to each feasible set a non-empty
subset of it.

An interesting problem in such a context is to explore the possibility of the choice function coinciding
with the best elements with respect to a binary relation. This is precisely the problem of rational choice
theory. There is a large literature today on this topic.

In this paper, we propose three new axioms which are used to fully characterize all choice functions
which are rationalized by quasi-transitive, semi-transitive and a third kind of "almost" transitive (: the
property is called intervality in the literature) binary relations. These "almost" transitive (: but not
exactly so!) binary relations, which are now quite popular in the literature (: see Yu [1985]), have the
rather interesting feature of revealing intransitive indifference for single valued choice functions. This
phenomena has been dealt with rather elegantly by Kim [1987]. Our purpose, is to shed new light on
the problem in the absence of the single-valuedness assumption. We, propose axiomatic
characterizations which are minimal. Several examples are provided, to show that the assumptions we
use are logically independent.

While characterizing choice functions which coincide with the best elements with respect to a binary
relation satisfying intervality, we invoke a property due to Fishburn [1971], which we refer to in the
paper as Fishburn's Intervality Axiom. In Aizerman and Aleskerov [1995], can be found an axiom
called Functional Acyclicity, which generalizes Fishburn's Intervality Axiom. It is correctly claimed in
Aizerman and Aleskerov [1995], that satisfaction of Functional Acyclicity is equivalent to the existence
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of two real valued functions, one with domain being the finite universal set and the other with domain
being the set of all finite subsets of the universal set, such that given a feasible set, only those
alternatives are chosen whose value corresponding to the first function is at-least as much as the value
assigned to the feasible set by the second function. Such choice functions are called threshold
rationalizable. In this paper, we provide a correct proof of this result, in view of obvious logical
discrepencies in the proof available in Aizerman and Aleskerov [1995].

In a final section of this paper we address the problem concerning quasi-transitive rationalizations
of choice functions generated by what we refer to in this paper as “preference for freedom™ . The
concept of “preference for freedom”,can be traced back to the modest yet significant literature on
“freedom of choice”.In the “freedom of choice™ literature, the principal problem is to define a
binary relation on non-empty subsets of a given set, so as to formalize the notion of “preference
for freedom” which any non-empty set of alternatives provides to a decision maker. Presumably,
the idea is to use this binary relation to rank opportunity sets and arrive at decisions on the basis
of such a ranking. This field has been pioneered by Pattanaik and Xu [1990], with subsequent
contributions by Pattanaik and Xu [1997, 1998], Arrow [1995], Carter [1996], Puppe [1996],
Sen [1990, 1991], Rosenbaum [1996],Van Hees [1998, 1999] , Van Hees and Wissenburg [1999]
and Arlegi and Nieto[1999] (as also the references therein). In a related effort (Lahiri[1999]) a
necessary and sufficient condition has been proposed which answers the question arising out of
the converse problem: given a choice function, is there anything akin to a “preference for
freedom” (. however, queer that may be !) which rationalizes the observed behaviour of a decision
maker? Puppe[1996], considers a choice function which chooses only those points from a feasible
set,whose unilateral deletion from the feasible set leads to a perceived deterioration.We show that
in the framework cosidered by Puppe[1996], Chernoff’s Axiom and the Generalized Condorcet
Axiom (both celebrated in classical rational choice theory) imply our New Quasi Transitivity
Axiom, and hence as a consequence of an earlier result,guarantee quasi transitive rationalization.

2. Model Let X be a finite, non-empty universal set. If S is any non-empty subset of X, let [S]
denote the set of all non-empty subsets of S. A choice function on X is a function C : [X] — [X] such
that C(S)cS V S &[X]. Given abinary relation R on X and S¢ [X], let G(S,R)={x£ S/ (x, y)
e RV ye S} This set is called the set of best elements in S with respect to R Let, P(R) = {(x,y) ¢ R/
(¥, x) € R}. Given a choice function C on X, let R® ={(x,y) € XxX/x & C ({xy})} and let Rc =U
{C(S)xS/Se[X]}. Let A={(x,x)/x € X}.

The following result is well known in the literature on rational choice.

Proposition 1: Given a choice function C on X if there exists a binary relation R on X such that C(S) =
G(S,R) V S £ [X], then R =RE.

A binary relation R on X is said to be

i Reflexive if (x, x) e R V x ¢ §;

ii. Complete if V x, y € X, x = y implies (x, y) ¢ Ror (y,x)eR.



.  Quasitransitive if V x,y,z € X, (x.y) € P(R), (y,2) € P(R) implies (x,z) € P(R).
iv) A Quasi-ordering if it satisfies (i), (ii) and (iii).

V) Transitive if V x,y, ze X, (x, y) e R & (v, z) € R implies (x, z) ¢ R;

v)  AnOrdering if it satisfies (i), (ii) and (v).

A choice function is said to satisfy:

a) Chemoff's Axiom (CA) if V S, T & [X] with S < T, C(T)S < C(S);

b)  Generalized Condorcet (GC) if V S € [X], G(S, R®) < C(S);

¢) Bandopadhyay - Sengupta Acyclicity Axiom (BSAA) if V S € [X],[x € S\C(S) implies that
there exist ye S with (x,y) € Rc].

Proposition 2. Given a choice function C : [X] — [X] there exists a binary relation R on X such that

C(S)=G(S,R) V S ¢ [X] if and only if at least one of the following two conditions hold:

1) C satisfies CA and GC,

2) C satisfies BSAA

The above results are available in Suzumura [1983] and Bandopadhyay and Sengupta [1991].

The reason why we refer to one of the axioms above as an acyclicity axiom is that if V S € [X], C(S) =

G(S,R) where R is a binary relation on X, then R must be acyclic in the following sense: there does not

exist t £ N and {x'};),_,,all in X such that with (X', ¥")eP(R) V i€ {1,...,t-1} with (', x')eP(R).

A choice function C is said to satisfy the Bandopadhyay Sengupta Quasi Transitivity Axiom (BSQTA)

ifV Se[X], [xeS\C(S)implies that there exist y eC(S) with (x,y) € Rc].

The following result has been established in Bandopadhyay and Sengupta [1991].

Proposition 3: Given a choice function C : [X] — [X], there exists a quasi-ordering R on X such that
C(S)=G(S,R) V S ¢ [X] only if C satisfies BSQTA.

3. i-Transitive Rationality: A choice function C on X is said to satisfy



d)  Outcasting (O)if V' S, T £ [X], C(T) = S = T implies C(S) = C(T);

e) Superset Axiom (SUA) if V S, T € [X], C(T) < C(S) < T implies C(S) = C(T),

f) Jamison and Lau's Quasij Transitivity Axiom (JLQTA) if
VS, Te[X], S c T\C(T) implies C(T \S) = C(T),

g Sen's Quasi Transitivity Axiom (SQTA)if V S,T € [X], S T, x, y& C(S), x #y implies C(T)

# {x}.

h)  Fishburn's Quasi Transitivity Axiom (FQTA) if V' S, T € [X], [S \ C(S)] ~ C(T) # ¢ implies
C(S\T #6.

Outcasting is generally attributed to Nash [1950]; the Superset Axiom can be found in Suzumura
[1983]; Jamison and Lau's Quasi Transitivity Axiom can be found in Jamison and Lau [1973], Sen's
Quasi-Transitivity Axiom can be found in Sen [1971]; Fishbum's Quasi-Transitivity Axiom can be
found in Fishburn [1975]. The following result can be found in the above mentioned papers and in
Aizerman and Aleskerov [1995].

Theorem 1: Given a choice function C on X such that C(S) = G(S,R) V S € [X], where R is a binary
relation on X, R is a quasi-transitive if and only if any one of the following holds:

i Outcasting;

il Superset Axiom,

iit Jamsion and Lau's Quasi-Transitivity Axiom,
iv Sen's Quasi-Transitivity Axiom;

v Fishburn's Quasi-Transitivity Axiom:.

We now introduce a new quasi-transitivity axiom, similar in spirit to Sen's Quasi-Transitivity Axiom.
This Axiom is originally due to Nehring (1997).

New Quasi Transitivity Axiom (NQTA): A choice function C on X is said to satisfy the New Quasi
Transitivity Axiom if V S € [X], [x, y € C(S) implies y¢ C(S\{x})].

We now introduce the following result:

Theorem 2: Let C be a choice function on X such that C(S) =G (S, R) V S £ [X], where R is a binary
relation on X. Then R is quasi-transitive if and only if C satisfies NQTA.

Proof. Suppose C(S) = G (S, R) V S € [X], where R is a quasi-ordering on X. Let x, y € S \ C(S).
Since S is finite and R is a quasi-ordering, there exists z € C(S) such that (zx) € P(R). Thus, z€ S\ {y}.
Hence, x ¢ G (S\ {y}, R)=C(S\ {y}).



Now suppose C(S) = G(S,R) V' S g[X] and C satisfies NQTA. Let (xy) € P(R), (v,z) € (P,R). Let S =
{x,y,z}. Since C(S) # &, we must have C(S) = {x}. Hence (zx) ¢ P(R). If (x,2) ¢ P(R), then

C ({x,z}) = {x,z}. However, theny, z£ S\ C(S) and z &€ C (S \ {y}), contradicts NQTA. Thus, (x,z) €
P(R). This proves the theorem.

4. Complete Logical Independence of CA, GC and NOTA :

Example 1. A choice function which does not satisfy either CA or GC or NOTA: Let X = {xy,z},
CX) = {x}, C ({xy}) = {xy}, C({y,z}) = {y.z}, C({x,2}) = {2}, C({a}) = {a} Vae X Sincex ¢
C({x,z}), C does not satisfy CA. Since z ¢ C(X), C does not satisfy GC; sincey, ze X\ C(X)and z ¢
C X\ {y}), C does not satisfy NQTA. We have here a choice function which does not satisfy BSAA
either : x ¢ C ({x,z}) and BSAA implies (x,z) ¢ R.. However z € X and x ¢ C(X), contradicting
BSAA

Example 2: A choice function which does not satisfy either CA or GC but satisfies NOTA : X =
{xyz}, C(X) = {xy}, C ({xy}) = {xy}, C({y,z}) = {y,z}, C({x2}) = {z}, C({a}) = {a} Vae X. C
does not satisfy CA since x ¢ C({x,z}); C does not satisfy GC since z ¢ C(X). However, C satisfies
NQTA. Note C does not satisfy BSAA : x ¢ C ({x,z}) implies by BSAA, (x,z) ¢ R.. Howeverz¢
X and x € C(X), contradicting BSAA.

Example 3: A choice function which does not satisfy either CA or NOTA, but satisfies GC : X =
{xy,2}, CX) = {x}, C ({xy}) = {x}, C({y.z}) = {y}, C({x2}) = {z}, C({a}) = {a} V ae X. C does
not satisfy CA, since, x ¢ C({x,z}), C does not satisfy NQTA, since y, z ¢ C(X), but ze C (X \ {y}).
However, C satisfies GC vacuously. Note that C does not satisfy BSAA: x ¢ C ({xz}) and BSAA
imply (x,z) ¢ R, contradicting z € X and x € C(X).

Example 4: A choice function which does not satisfy either GC or NOTA but satisfies CA : X =
{xy,z}, C(X) = {x}, C(S) =S V S £ [X], S # X. C does not satisfy GC since y ¢ C(X). C does not
satisfy NQTA, since y, ze X\ C(X) but z £ C (X \ {y}). However, C satisfies CA. Note that C does
not satisfy BSAA : y € X\ C (X) implies either (y,x) ¢ R. or (v,2) ¢ R; contradicting y € C({x,y}) and
ye C({y,2}).

Example 5: A choice function which does not satisfy CA. but satisfies GC and NOQTA : X = {xy,z},
CX) =X, C({xy}) = {x}, C({y,2}) = {y}, C({x.z}) = {z}, C({a}) = {a} V a & X. C does not satisfy
CA, since, y ¢ C({x,y}). However it satisfies GC and NQTA vacuously. Note C does not satisfy
BSAA: ye {xy}\C({x,y}) implies by (x,y) ¢ R. contradicting y € X and x € C(X).

Example 6. A choice function which does not satisfv GC, but satisfies CA and NOTA : X = {xy,z},
CX) = {xy}, C(S)=S V S {X], S # X C does not satisfy GC, since z ¢ C(X). C satisfies CA. C
satisfies NQTA vacuously. Note C does not satisfy BSAA : z € X\ C(X) implies by BSAA either (zx)
¢ R.or (zy) ¢ R, contradicting  z& C ({x,2}) and z& C ({y,z}). '




Example 7: A choice function which does not satisfy NQTA, but satisfies CA and GC : X = {x)y,z},

CCO = {x}, C ({xy}) = {x}, C({y,z}) = {y}, C({x.2}) = {x,z}. C satisfies CA and GC. But C does
not satisfy NQTA: y, ze X\ C(X) and yet ze C (X\ {y}). Note C satisfies BSAA.

Example 8: A choice function which satisfies CA, GC and NOQTA : X = {x,y,zw}, C(X) = {x,w}, C
(fxy)) = {x}, C{{y,z}) = {y}, C({xz}) = {x}, C({x.w}) = {x,w}, C({zw}) = {zw}, C({y,w}) =
{y.w}, C ({xy.2}) = {x}, C({xy,w}) = {x,w}, C({x,zw}) = {x,w}. C({y,zw}) = {y,w}. C satisfies
CA, GC and NQTA. Note that C satisfies BSAA as well.

R={(x.x), ,y), (z.2), (W,w), (x), (¥,2), (x,2), (x,W),
(wﬂx)5 (Y’w)’ (w7y)’ (z7w)’ (w’z)} and’

C(S)=G(S,R) ¥ Se [X]. Ris a quasi-ordering. However, (zw) € R and (w,x) € R. Yet (zx) ¢ R.
Hence R is not transitive. Thus, R is not an ordering. In view of Proposition 1, we may conclude that
there does not exist any ordering on X, such that for every S in [X], C(S) is equal to the set of best in S
with respect to the given ordering. Further, by appealing to Proposition 2 and Theorem 2, we may
now assert the following :

Theorem 3: Given a choice function C on X, there exists a quasi-ordering R on X such that C(S) =
G(S,R) V S ¢ [X] if and only if any one of the following holds :

a) C satisfies CA, GC and NQTA,;
b) C satisfies BSAA and NQTA.

Note:

Example 1 above gives an example of a choice function which does not satisfy either BSQTA or
NQTA; Examples 2, 5, 6 above gives examples of choice functions which satisfy NQTA but not
BSQTA. Thus, in view of Theorem 1 and Theorem 2 we may conclude the following.

Theorem 4 : BSQTA implies NQTA. However, the converse is not true.

It may be interesting to compare the relative strengths of SQTA and NQTA Towards that goal we
have the following result to offer:

Theorem 5: NQTA implies SQT A.However the converse is not true.

Proof : Suppose C satisfies NQTA and towards a contradiction suppose that there exists A,B € [X]
with BCA and there exists x,y € C(B) with x # y but {x}=C(A).Since this is clearly not possible with
B=A, we must have BCcA Let A\B={x,...,x;},for some positive integer r.Clearly, y ¢ {x,...,.x}.
Suppose C(BU{ x1})={y}.Then x; ,x ¢ (Bu{ x1}) \ C(B{ x;}) and x €B contradicting NQTA Thus,
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CBu{ x1}) # {y} Now suppose {y}#zC(BU{ xi,...,%}) for q<r.Towards a contradiction suppose,
{I=CBU{ x1,....Xg1}).

Casel: y ¢ C(BU{ x1,....Xq}). Let z € C(BU{ xi,...,Xq}). Thus z #y.Thus, z, xqq e(Buf{ xi,....xg1})
\CBU{ x1,...,Xg11}), and z € CBUA X1,...,Xq} ), contradicting NQTA.

Case2: {y}cc C(BU{ xy,...,X}). Let z e CBU{ xy,...,Xg}), with z 2y Thus, z, Xqr1 €(BU{ xy,....Xg+1})
\CBU{ xy,...,Xg+1}), and z € C(BUA xy,....Xq}), contradicting NQTA.

Hence, {y}#C(BuU{ xi,....X¢+1}).By a simple induction argument,we may conclude that {y}zC(A).
Thus, C satisfies SQTA.

To show that SQTA does not necessarily imply NQTA, let X={x,y,z} Define C:[X]—>[X] as follows:
CX)={x} and C(A)=A for all A e[X\{X}.C satisfies SQTA vacuously. However, y,z e X\C(X) and

yet, y € C({x,y}), contradicting NQTA.
QED.

Our primary reason for invoking and emphasising NQTA is because of the significant role it plays in
obtaining a neat characterization of quasitransitively rationalizable choice functions generated by a
monotonic preference for freedom, as we shall observe later on.

5. Semitransitive Rationality:

A binary relation R on X is said to be semi-transitive if V x, y, z. we X, [(x,y) € P (R) and (y, 2) €
P(R)] implies [(x, w) € P(R) or (w,z) € P(R)]. .

IR is reflexive and complete, then R is semi-transitive if and only if V x, y, z, w € X, [(x, y) € P(R) and
(y,2) € P(R)] implies [either (w, X) ¢ R or (z, w) ¢ R].

Proposition 4:

Let R on X be a binary relation which is reflexive, complete and semi-transitive. Then R is a quasi-
order.

A binary relation R on X which is reflexive, complete and semi-transitive is called a semi-order (or a
semi-ordering).

A set of necessary and sufficient conditions for a choice function C on X to satisfy C(S) = G(S,R) V S
¢ [X], where R is a semi-order can be found in Fishburn [1975] and Gensemer [1991]. We present a
different axiomatic characterization below.

A choice function C on X is said to satisfy the New Semi Transitivity Axiom (NSTA) if V' S, T € [X]
with T < S\ C(S), [ze T\ C(T) — [(z x) ¢ R., whenever x € C(S)]]

Theorem 6: Let C be a choice function on S such that C(S) = G(S, R) V S € [X], for some bmary
relation R on X. Then R is semi-transitive if and only if C satisfies NSTA.

VIKRAM SARABHA! LIBRARY
INDJIAN INSTITUTE GF MANAGEMPNT
VYASTRAPUR. AHMEDABAD- 380056
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Proof: Let R be a semi-ordering on X such that C(S)=G(S,R) VSe[X]. Let T cS\C(S)andze T
\C(T) where S, T £ [X]. Since R is of necessity quasi-transitive, there exists y € C(T) : (y, z) € P(R).
Since y € S \ C(S), there exists x € C(S) such that (x, y) € P(R). Let w e C(S). Clearly, (x,w) ¢ P(R).

Hence by semi-transitivity of R, (w, z) € P(R). Thus, (z, w) ¢ Re.

Now suppose C(S) = G(S, R) V S £ [X] and suppose C satisfies NSTA. Let (x, y) € P(R) and (v,2) €
P(R). Thus, {x} =C({x,y, z})and {y} = C({y,z}). Now {y,2} c (x,y,2)\C ({x, ¥, z}) and z ¢ {y,z}
\ C({y,z}). Thus by NSTA, (z, x) ¢ R.. Thus z ¢ C({x,z}). Thus (x,z) € P(R). Thus R is quasi-
transitive. Now suppose w € X and towards a contradiction suppose (x, w) ¢ P(R) & (w,z) ¢ P(R). If
(zw) € P(R), then by quasi-transitivity of R, (x,w) € P(R), which we have ruled out. If (y,w) € P(R),
then again (&w) € P(R) by quasi-transitivity of R which is not possible. If (w,y) € P(R), then (w,z) €
P(R) by quasi-transitivity of R which we have ruled out. If (w,x) £ P(R), then (w,z) &€ P(R), by quasi-
transitivity of R which we have ruled out. Thus C({x,y,zw}) = {x,w}. Now {y,z} c {xy,zw} \C
({xy,zw}) and z € {y,z} \ C({y,z}). Thus by NSTA, (zw) ¢ Rc. Hence (w, z) € P(R) which is a
contradiction. This proves the theorem.

In view of Proposition 4, Theorem 6 and Theorem 2, NSTA — NQTA. Example 8 shows that the
converse is not necessarily true. In fact a combination of CA, GC and NQTA does not imply NSTA.
The fact that CA and GC combined together does not imply NSTA or that BSAA does not imply
NSTA follows from the examples that we have given above. Without being unnecessarily repetitive,
we might mention that the logical independence of CA, GC and NSTA follows from Examples 1 to 7,
since whenever the cardinality of X is three (or less) NSTA and NQTA are equivalent. Hence, we
have the following theorem.

Theorem 7:Let C be a choice function on X. Then there exists a semi-order R on X such that C(S) =
G(S,R) V S g [X] if and only if any one of the following holds :

a) C satisfies CA, GC and NSTA.
b) C satisfies BSAA and NSTA.

6. Intervality and Rational Choice:
A binary relation R on X is said to satisfy intervality if ¥ x, y, z, w e X, (X, y) € P(R) & (zw) € P(R)
implies [either (zy) € P(R) or (x,w) € P(R)]. By setting y = z we see easily, that a reflexive binary

relation satisfying intervality, also satisfies quasi-transitivity. If R is reflexive and complete, then R
satisfies intervality is equivalent to the following condition:

Vxy,z weX [(x,y) € R & (zw) £ R] implies [either (zy) € R or (x,w) € R].

Proposition 5:
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Let R be reflexive and complete. Then R satisfies intervality if and only if R satisfies the following
condition :

Condition (*):
Vxy,zweX (x,y) e PR) (y,2) £ &R, (2 y) e Rand (zw) & R implies (x,w) & P(R)].

Proof: Let R be reflexive, complete and satisfy intervality and let x, y, z, w be as in Condition (*). Then
since (z y) ¢ P(R), by intervality (x, w) € P(R). Thus, R satisfies Condition (*).

Now let R be reflexive, complete and satisfy Condition (*). Let (x, y) € P(R) and (z, w) P(R). Suppose
y =z. Then since R is reflexive, by condition (*), (x, w) € P(R). Suppose then that y # z. If (z, y) € P(R)
then we are done. Hence suppose, (z, y) ¢ P(R). If (v, z) € P(R), then since Condition (*) along with
the reflexivity of R implies that R is quasi-transitive, we get (x, w) € P(R). Finally, if (y,z) e R & (z, y)
e R, then by condition (*) we get (x, w) € P(R). Thus, R satisfies intervality. QED.

The following axiom can be found in Bandopadhyay and Sengupta [1991]: A choice function C on X

is said to satisfy Bandopadhyay and Sengupta's Intervality Axiom (BSIA) if V S€ [X], S\C(S)# &
implies that there exists x € C(S) such that (y, x) ¢ Rc whenever y € S\ C(S).

Proposition 6: A choice function C on X satisfies BSIA if and only if there exists a reflexive, complete
binary relation R on X satisfying intervality such that C(S) =G (S, R) V S € [X].

A reflexive, complete binary relation on X satisfying intervality is called an interval order.
In the literature on rational choice, we find the following two axioms as well;

A choice function C on X is said to satisfy Fishbumn's Intervality Axiom (FIA) if V S, T, € [X], C(S) »
[T\C(T)] # & implies [S\ C(S)] ~» C(T) = .

A choice function C on X is said to satisfy Aizerman and Aleskerov's Intervality Axiom (AAIA)if V' S,
T ¢ [X], C(S) < C(C(S) u T) implies C(T) = C(C(T) u S).

FIA is due to Fishburn [1971]. AAIA can be found in Aizerman and Aleskerov [1995].

Theorem 8: Let C be a choice function on X such that C(S) = G (S, R) V S € [X], where R is a binary
relation on X. Then R satisfies intervality, if and only if any one of the following conditions hold :

a) C satisfies FQTA and FIA
b) C satisfies AAIA

We now propose the following axiom :
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A choice function C on X is said to satisfy the New Intervality Axiom (NIA)ifV S¢[X],y, we S\
C(S), y= w, ze C(S), (v,2) € R, implies w & C(S\ {x, z}).

Theorem 9: Let C be a choice function on X such that C(S) = G(S,R) V S € [X], where R is a binary
relation on X. Then R satisfies intervality if and only if C satisfies NQTA and NIA.

Proof : Let C(S) =G (S,R) V S € [X] where R satisfies intervality. Thus, R is quasi-transitive and thus,
C satisfies NQTA (by Theorem 2).

Now, lety, we S\ C(S), y # w, z £ C(S), (v, z) € R.. Thus there exists x € C(S) : (x,w) ¢ P(R).
Suppose x # z. Thus x € S\ {z} and hence w ¢ C(S \ {z}). Hence suppose x = z. Now y € S\ C(S)
implies that there exists v € C(S) such that (v, y) € P(R). Since (y,z) € R., v # z. Thus, (v,y) ¢ PRR) &
(zw) € P(R) implies by intervality, that either (zy) € P(R) or (v,w) £ P(R). Since (y,z) € R, we cannot
have (zy) € P(R). Thus, (v,w) £ P(R). Sincev#z ve S\ {z}. Thusw ¢ C(S\ {z}).

Now suppose C(S) =G (S, R) V S ¢ [X] and C satisfies NQTA and NIA. By Theorem 2, R is a quasi-
transitive. Now suppose, (x,y) € P(R) & (zw) € P(R). If (z,y) € P(R) we are done. Hence suppose,
(zy) ¢ P(R). If (y,z) € P(R). then by quasi-transitivity of R, (x,w) € P(R) and we are done. Thus,
suppose (z,y) € R and (v,z) € R. If (zx) € P(R), then (zy) € P(R) by quasi-transitivity of R, which we
have ruled out. If (x,z) € P(R), then (x,w) € P(R) by quasi-transitivity of R and we are done. Hence
suppose (x,z) € P(R). Thus (zx) ¢ P(R) and (x,z) ¢ P(R). Similarly, (w,x) € P(R) would imply by
quasi-transitivity that (zy) € P(R) which we have ruled out.

Thus, C({x.y,z,w}) = {x,z} provided (x,w) ¢ P(R) and (z,y) ¢ P(R).
However, C({x,y,w}) = {x,w} if (x,w) ¢ P(R) and (z,y) ¢ P(R).

Let S = {xy,zw}. Now, y, we S\ C(S), y#zw, z& C(S) and (y,z) e R c Rc. By NIA, w ¢ C
({x,y,w}), contradicting what we have obtained above. Thus, R satisfies intervality.

QED.

Example 9: C satisfies CA, GC and NQTA but C does not satisfy NIA : Let X = {x,y,Zw}.

Let R=Au {(xy), (zW) (,2); (zy), (x,W), (W,x), (y,W) (W,y)}.
Let C(S)=G(S,R) V S £ [X]. C satisfies CA, GC and NQTA, but C does not satisfy NIA.

In view of Theorem 9 and Example 9, we may state the following:
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Theorem 10: Let C be a choice function on X. Then C(S) = G(S,R) V S & [X], where R is an interval
order on X, if and only if, C satisfies CA, GC, NQTA and NIA.

7. Functional Acyclicity:- A choice correspondence C is said to satisfy Functional Acyclicity (FA), if
given any collection of sets S;,...., S in [X], C(St1) N (S \C(S)) # ¢ Vt=1,..., r-1 implies C(S;) N
(S:\C(S)) = ¢.

Observe that FA implies FIA.

A choice correspondence C is said to be interval rationalizable if there exists functions h: X — R and
5. [XI>Rsuchthat C(S)={xe S/hx)=h(y)+8(S)Vye S}.

A choice correspondence C is said to be threshold rationalizable if there exists functions h: X — R and
V: [X] - R such that C(S) = { x € S/ h(x) = V(S)}.

Theorem 11 :- A choice correspondence is interval rationalizable if and only if it is threshold
rationalizable.

Proof - Theorem 3.15 in Aizerman and Aleskerov [1995].

Theorem 12 :- A choice correspondence C is said to be threshold rationalizable if and only if it satisfies
functional acyclicity.

Proof: Let C be a choice correspondence which is threshold rationalizable. Thus there exists h: X — R
and V: [X] - R such that C(S)={x € S/h(x) >V (S)} V S € [X].

Towards a contradiction assume that C(Si:1)) N (S\C(S)) = o Vi=1,.., 1-1

and C(S1) A (S C(S) % ¢

Let %1€ C(Se1) A (S\CS) = oV t=1, ., -1
and x, € C(S1) M (S:\ C(SY)

Thush(x) =2V (S§;)Vt=1, ., r
further h(x.)) <V (S) V=1, .. r-1
and h(x;) < V(S,)

Thus from the weak inequalities we get, Zeeq1..p h(X) = Zieqr, .5 V (St)

and from the strict inequality we get, Zie1,..3 h(X) <Zieqt,.p V (St)

This contradiction implies that C must satisfy functional acyclicity.
Let Re” = U {C(S)x(S\C(S)/S £[X]} and T(Rc") denote the transitive hull of Rc"
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(see Suzumura[1983]). T(Rc') is transitive. Further, by Functional Acyclicity (x, y) € T(R¢") implies
(yx) € TRc) . Let R = AU T(Rc") . By Szpilrajn's extension theorem (see Fishburn [1970]) there
exists the a function h: X — R such that (x, y) € T(Rc") implies h (x) > h(y).

Given S e [X], let V(S) = min {h(y)/y c C(S)}.
Clearly, x € C(S) - h(x) > V(S) and x € S.

Now, suppose x € S, h(x) > V(S) and towards a contradiction assume x ¢ C(S). Let y € C(S) with
h(y) = V(S). Thus, (y, x) € Rc". Thus by the above h(y) > h(x) which contradicts what we obtained
above. Thus x ¢ S, f{x) > V(S) implies x € C(S).

QED.
Coupled with Theorem 11, we have thus proved:

Theorem 13 :- A choice correspondence is interval rationalizable if and only if it satisfies functional
acyclicity.

8 Monotonic Preference for Freedom : A binary relation I on [X] is any non-empty subset of [X]x[X].
Let I'={(S,S)/Se [X]}.J is said to be reflexive if 'c 3 . J is said to be transitive if (S,T),(T,U) €3
implies (S,U) €3. Let, M={(S,T)/TcS}. Note I'c M .that 3 is said to be Monotonic with respect to
Set Inclusion (MSD)if Mc3.Given 3 let P(3)={(S,T) €3/(T,U)¢3} and I(I)={(S,T) €3/AT.,S)
€3}.3 is said to satisfy Preference for Freedom of Choice(PFC)f V Se[X] which has atleast two
elements,there exists xe S with (S,S\{x})e P(J).A binary relation Jon [X] which is reflexive transitive
and satisfies PFC is said to be a Preference for Freedom (PF).If in addition it satisfies MIS, it is said to
be a Monotonic Preference for Freedom (MPF).
Let 3 be a MPF Define Ex:[X]—[X] as folfows:
Es(S)=S ,if S has exactly one element;

= {x eX/(S,S5\{x})e P(3)},otherwise.
It is easy to see that Es is well defined by virtue of PFC.
Let Ry ={(xy)/xe Es({x,y}).

Observation:Given an MPF 3 if there exists a binary relation R on X such that Ex(S)=G(S,R) ¥
Se[X],then R=Rx.

A PF 3 is said to sat_isfy Independence with respect to Non-essential Alternatives (INA) if (Ex(S),S)
€3, for all Se[X].

Theorem 14: Let 3 be an MPF. 3 satisfies INA if and only if E satisfies NQTA.

Proof. Suppose 3 satisfies INA and towards a contradiction suppose that there exists Se[X] with
xy €S\Ex(S) and y € Ex(S\{x}).Hence x2y.By INA and MIS, (Ex(S),S) €I(3).Now, y € Es(S\{x})
implies (S\{x},S\{x,y})eP(3) and by MSI ,(S,S\{x})e3.Since x,yeS\ Ex(S), Ex(S) < S\{x,y} By
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MSI, (S\{x,y}, Ex(S)) €3, so that by transitivity of I (S, Ex(S)) €P(3) contradicting INA. Hence Eq
satisfies NQTA.

Now suppose Es satisfies NQTA and let Se[X].If Ex(S)=S, then clearly (Ex(S),S) €3, by reflexivity
of 3.Hence, suppose Eq(S) cc S.Let S\Es(S)={x,,...,x:} ,for some positive integer r By MSI and
definition of Es, (S,S\{ y})el(3) fory € {x,,....x;}. Hence if =1, (S, Ex(S)) €I(3).Thus,suppose r >1.
Suppose (S\{ y1,...¥a}> S\{ Y1, Y1 )ES) Y { y,-.¥e1} € {X,....%} and for g=1,....s <r-1.
Consider, S\{ y1,....Yer1}. NOW, Ver1 ,¥s2€ (S\{ y1,.... ¥} N Es(S\{ y1,...,:} ) By, NQTA,

¥s2€ (S\{ V1,5 ,¥se1 PVEs(S\ y1,...,¥s ,¥sn1 }). Thus, (S\{ yi,....¥s+1}, S\{ ¥1,....¥s2} )€I(3).By a

standard induction argument and transitivity of 3, (Ex(S),S) €3J. Thus 3 satisfies INA.
QED.

We have already seen in Theorem 5 that NQTA implies SQTA and that the converse is not true.

Let X={x,y,z} and let 3=M U {(§,T) €[X]x[X] /x € S and S has atleast two elements}.It is easily
checked that 3 is an MPF and Ex = C, where C is the choice function in Theorem 5 which satisfied
SQTA but did not satisfy NQTA Hence, we may assert:

Proposition 7. There exists an MPF 3 such that Eg satisfies SQTA but does not satisfy NQTA.
Theorem 15: Let 3 be an MPF such that E5 satisfies CA and GC.Then Ex satisfies NQTA.

Proof : Let 3 be an MPF such that E satisfies CA and GC and towards a contradiction suppose that
there exists S €[X] with x,y €S\E«(S) and yet y eE«(S\{x}).Hence since 3 is an MPF:

() (8,8\{x})e K3),

(2) (8,8\{y}e I(3),

) (S\{x},S\{xy}e P(3).

Thus by transitivity of 3, we get ( S\{x},S\{y})e I(3) which leads to ( S\{x},S\{x,y})e P(3), once
again by the transitivity of J3.Hence, by the definition of Es, x €Ex(S\{y}).By CA, x €Ex({x,z})
Vz e S\{y} and y €Ex({y,z}) Vy € S\{y}.Since, x,y e S\Ex(S) by GC, E5({x,y}) = ¢, contradicting

the fact that the range of Ex does not contain the empty set. Hence E5 satisfies NQTA.
QED.

Corollary of Theorem 15 (Puppe[1996]:Proposition 2) : Let I be an MPF such that E5 satisfies CA
and GC. Then Ex(S) = G(S, Ry) for all Se[X], and Rz is a quasi-order.

Proof. Follows easily from Theorems 3 and 15.
QED.

Example 10: An MPF 3 such that Eg satisfies CA and NQTA but does not satisfyy GC : Let
X={xy,z} and let 3= MU {({x,y},S)/Se[X]}. 3 is an MPF Now, Ex(X) ={x,y}, and E5(S) =S

for all Se[X]\{X]} .Clearly Eq satisfies CA and NQTA However z £ Ex({za}) V a¢ X and yet
z ¢ X\ E5(X) contradicting GC.




14

Example 11: An MPF 3 such that E satisfies GC and NQTA but does not satisfyy CA : Let
X={x,y,z} and let 3 = M U {({x},S)/S€e[X], and S has atmost two elements}{({y},S)/ S€[X] and
x¢ 8}. 3 is an MPF. Now, Es(X) =X, Es({x,y})= {x}=Es({x,2}), Es({y,z})={y} and Ex(S)=S
otherwise.Clearly Eq satisfies GC and NQTA However,z € Ex(X) {x,z}, but z € {x,z}\ Ex({x,2})
contradicting CA.

Example 12: An MPF 3 such that E satisfies CA but does not satisfyy either GC or NOTA : Let
X={xy,z}andlet 3= MU { ({x,y}, SY S € [X]} u {({x, 2z}, S)/ S € [X] }. 3 is an MPF. Now,
Ex(X) = {x}, E5(S) = S otherwise. Clearly Es satisfies CA and NQTA. However, y € Es({X, y}) ™
Es ({y, z}), but y € X\Ex(X), contradicting GC.

Example 13: An MPF 3 such that Eq satisfies GC but does not satisfyy either CA or NQTA : Let
X={xyzw}andlet 3= MU { ({x,y,2}, SY S e [X] } © { ({x, y,w}, SY S € [X] }u {({x}, {x¥}),
({x}, {y}). Jis an MPF. Now, Ex(X) = {x,y}, Es({x,y}) = {x}, E3(S) = S otherwise. Clearly Eg
satisfies GC. However, w,z € X\E5(X) and w € E5 ({x,y, w}), contradicting NQTA. Further,
yeEs(X) n {xy}, and yety € {x, y}\ E5 ({X, y}), thus contradicting CA.

Proposition 8: Suppose X has three or less elements. Then for any MPF 3, [Es satisfies GC] implies
[Eg satisfies NQTA].

Proof’ If X has one or two elements then NQTA is satisfied vacuously. The same is true if X has three
elements and E5(X) has two elements. Hence assume X has three elements and without loss of
generality suppose Ex(X) = {x}.Thus (X, {x,y}) and (X,{x,z}) € I(3) and by transitivity of 3
({xy},{x,2}) € I(3) as well. Now a violation of NQTA occurs if (without generality) y € Es({x, y}) .
Thus, ({x,y},{x}) € P(3) and consequently (since ({x,y},{x,z}) € I(3)),({x,2},{x}) € P(3).
However, then z € E5({x, z}). Since Es({y,z}) " {y,z}# ¢, {y,z} < X\ Ex(X), leads to a contradiction

of GC, thereby proving the proposition.
QED.

Example 14: An MPF 3 such that E satisfies NQTA but does not satisfy either CA or GC : Let
X={xy,z} andlet 3= MU { ({y, 2}, Sy S € [X] } w { ({x}, SV S e {{xy},{xz},{y}.{z}}} Jis
an MPF. Now, Eo(X) = {y,2}, Ea(fxy})= {x}= Ex({x2}), Ex({y,2})={y.2) and Ex(S) = S otherwise.
Clearly E; NQTA. However, x € Ez({x, y}) " Es ({x, z}), but x € X\Ex(X), contradicting GC.
Further, z € Es(X)n {x,z}, but z € {x,2}\ Ex({x,2}) contradicting CA.

Example 15: An MPF 3 such that E; satisfies both CA and GC and hence NQTA : Let 3 ={(5,T)
[XIx{X] / cardinality of S is not less than the cardinality of T}.This is the MPF due to Pattanaik and

Xu [1990]. The corresponding Ej is easily seen to satisfy CA,GC and NQTA The interesting thing
about this MPF is that Ry =XxX.
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