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Abstract: Does there exist a non Hausdorff topological space, such that
every convergent sequence in it converges to a unique limit? Considering
the obvious scarcity of such spaces we were compelled to construct one

by ourselves.

1. Let (X,T) be a topological space with X the underlying set on which the
topology T is defined. Let & denote the empty set. Given x in X, let @ (x)
={UeT: xeU}. (X,T)is said to be Hausdorff , if givenx , y €eX, withx 2y,
[there exists U € gp(x), Ve p(y) such that U nV=J].Otherwise it is said to
be non-Hausdorff . -

A sequence in X is a function S:N—X where N denotes the set of natural
numbers.Let R denote the set of real numbers and Q the set of rational
numbers.Thus R\Q denotes the set of irrational numbers.Given a,b in R with
a<b, let (a,b)={x eR: a<x<b}. A sequence S is said to converge to x in X if
for every U in g (x) there exists M in N (:possibly depending on U and x)
such that [neN, n > M implies S(n) € U].Let L(S)={xeX:S converges to
x}.An element of L(S) is called a limit of S.A sequence S is said to be
convergent if [.(S) #&.

Example 1:Let X={1,2} and T={1},{2},{1,2},02} .Let S:N—X be defined as:
S(n)=1 if n is odd;S(n)=2 if n is even.Then L(S)= O.

Example 2: Let X={1,2} and T={{1,2},J}.Let S:N->X be any sequence.
Then, L(S)=X.



The following result is well known:

Theorem 1: If (X, T) 1s a Hausdorff topological space, then given any
sequence S, either L(S)= & or L(S) is a singleton.

The result is by now very standard and a proof can be found in Lipschutz
(1965) or Munkres (1975). ‘

Let (X,T) be a topological space and let xeX. It is said to be first countable
at x, if there exists a countable subset Q (x) of g (x) such that for every U in
% (x) there exists V in Q(x) with Ve U.The topological space (X,T) is said
to be first countable if it is first countable at every point in X.

The following result is well known and a proof can be found in Lipschutz
(1965).

Theorem 2: Let (X, T) be a first coutable topological space. If for every
sequence S, either L(S)= & or L(S) is a singleton then (X,T) is Hausdorff.

The question that follows is: Does there exist a non-Hausdorff topological
space, such that every convergent sequence in it converges to a unique limit?
Clearly, in view of Theorem 2, such a space cannot be first countable.
Considering the obvious scarcity of such spaces we were compelled to
construct one by ourselves.

2. Let X=RuU {*} .For x in R and 6 >0, let I(x, 8) = (x-8,x+d) and let

I° (%, 8) = (x-8,x+3)\ {x}. Let A= {1/n: neN}.Let B (0, 8) = [(0, 5)\A, for all
8>0; M (%, 8)=(1° (0, 8) U{*}) NQ, if 8 >0 and & is irrational; B (*, §) =
[1° (0, &) U{*}) N (R\Q)] U (A N I°(0, ), if &>0 and & is rational; B (x,
d) = I(x, d), for all § >0, whenever x belongs to R\{0}.Let T be the smallest
topology containing { B (x, 8): xeX and 8 >0}.Clearly, T is non-Hausdorff,
since given any U in (0) and V in g (*),U "V # . Further, every |
convergent sequence in X converges to a unique limit. Indeed , if S is a
convergent sequence in X, and belongs to X\A infinitely often , then S
converges to a unique real number.If S is eventually constant, then it
converges to the unique element which occurs after a finite number of terms.If
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S is not eventually constant, but remains in A after a finite number of terms ,
then it converges to *, and to no other element of X,
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