



A NON-HAUSDORFF TOPOLOGICAL SPACE IN WHICH EVERY CONVERGENT SEQUENCE CONVERGES TO A UNIQUE LIMIT

Ву

Somdeb Lahiri

W.P.No.99-09-01 /1540 September 1999 /1540

The main objective of the working paper series of the IIMA is to help faculty members to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT AHMEDABAD - 380 015 INDIA

250018

PURCHASED APPROVAL

GRATIS/EXCHANGE

FRICE

ACC NO.
VIKRAM SARABHAI LIBE ...
L. L. M. AHMEDINEN

A Non-Hausdorff Topological Space In Which Every Convergent Sequence Converges To A Unique Limit

by
Somdeb Lahiri
Indian Institute of Management
Ahmedabad -380015
India

September 1999.

<u>Abstract</u>: Does there exist a non Hausdorff topological space, such that every convergent sequence in it converges to a unique limit? Considering the obvious scarcity of such spaces we were compelled to construct one by ourselves.

1. Let (X,T) be a topological space with X the underlying set on which the topology T is defined. Let \varnothing denote the empty set. Given x in X, let $\wp(x) = \{U \in T: x \in U\}$. (X,T) is said to be <u>Hausdorff</u>, if given x, $y \in X$, with $x \neq y$, [there exists $U \in \wp(x)$, $V \in \wp(y)$ such that $U \cap V = \varnothing$]. Otherwise it is said to be <u>non-Hausdorff</u>.

A sequence in X is a function S:N $\to X$ where N denotes the set of natural numbers.Let \Re denote the set of real numbers and Q the set of rational numbers.Thus $\Re Q$ denotes the set of irrational numbers.Given a,b in \Re with a
b, let $(a,b)=\{x\in\Re: a< x< b\}$. A sequence S is said to converge to x in X if for every U in $\wp(x)$ there exists M in N (:possibly depending on U and x) such that $[n\in N, n\geq M$ implies $S(n)\in U$. Let $L(S)=\{x\in X:S \text{ converges to } x\}$. An element of L(S) is called a <u>limit</u> of S.A sequence S is said to be convergent if $L(S)\neq \varnothing$.

Example 1:Let $X=\{1,2\}$ and $T=\{1\},\{2\},\{1,2\},\emptyset\}$. Let $S:N\to X$ be defined as: S(n)=1 if n is odd; S(n)=2 if n is even. Then $L(S)=\emptyset$.

Example 2: Let $X=\{1,2\}$ and $T=\{\{1,2\},\emptyset\}$. Let $S:N\to X$ be any sequence. Then, L(S)=X.

The following result is well known:

Theorem 1: If (X,T) is a Hausdorff topological space, then given any sequence S, either $L(S) = \emptyset$ or L(S) is a singleton.

The result is by now very standard and a proof can be found in Lipschutz (1965) or Munkres (1975).

Let (X,T) be a topological space and let $x \in X$. It is said to be <u>first countable</u> at x, if there exists a countable subset $\Omega(x)$ of $\wp(x)$ such that for every U in $\wp(x)$ there exists V in $\Omega(x)$ with $V \subset U$. The topological space (X,T) is said to be <u>first countable</u> if it is first countable at every point in X.

The following result is well known and a proof can be found in Lipschutz (1965).

<u>Theorem 2</u>: Let (X,T) be a first coutable topological space. If for every sequence S, either $L(S) = \emptyset$ or L(S) is a singleton then (X,T) is Hausdorff.

The question that follows is: Does there exist a non-Hausdorff topological space, such that every convergent sequence in it converges to a unique limit? Clearly, in view of Theorem 2, such a space cannot be first countable. Considering the obvious scarcity of such spaces we were compelled to construct one by ourselves.

2. Let $X=\Re \cup \{*\}$. For x in \Re and $\delta > 0$, let $I(x, \delta) = (x-\delta,x+\delta)$ and let $I^{\circ}(x, \delta) = (x-\delta,x+\delta)\setminus \{x\}$. Let $A=\{1/n:n\in N\}$. Let $B(0, \delta)=I(0, \delta)\setminus A$, for all $\delta > 0$; $M(*, \delta) = (I^{\circ}(0, \delta)\cup \{*\})\cap Q$, if $\delta > 0$ and δ is irrational; $B(*, \delta) = [(I^{\circ}(0, \delta)\cup \{*\})\cap (\Re \setminus Q)]\cup (A\cap I^{\circ}(0, \delta))$, if $\delta > 0$ and δ is rational; $B(x, \delta)=I(x, \delta)$, for all $\delta > 0$, whenever x belongs to $\Re \setminus \{0\}$. Let T be the smallest topology containing $\{B(x, \delta): x\in X \text{ and } \delta > 0\}$. Clearly, T is non-Hausdorff, since given any U in $\wp(0)$ and V in $\wp(*), U\cap V\neq \varnothing$. Further, every convergent sequence in X converges to a unique limit. Indeed, if S is a convergent sequence in X, and belongs to X\A infinitely often, then S converges to a unique real number. If S is eventually constant, then it converges to the unique element which occurs after a finite number of terms. If

S is not eventually constant, but remains in A after a finite number of terms, then it converges to *, and to no other element of X.

Acknowledgement: I would like to put on record my very deep appreciation and thanks to Jayant Varma for having motivated me to the main result. I would also like to thank Mamoru Kaneko for pointing out an obvious error in the definition of a Hausdorff space. However, the sole responsibility for whatever errors that might remain rests with the author.

References:

- 1. S.Lipschutz (1965): Theory and Problems of General Topology. Schaum's Outline Series, McGraw Hill, Inc.
- 2. J.R.Munkres (1975):Topology: A First Couse. Prentice-Hall Inc., Englewood Cliffs, N.J., U.S.A.

PURCHASED APPROVAL GRATIS/BEGHANGS

PRICE

ACC NG.
VIERAM SARABHAI LIBP · · ·
I. I. M. AHMEDABAD