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Abstract

The traveling salesman problem is one of the most well-solved hard combi-
natorial optimization problems. Any new algorithm or heuristic for the trav-
eling salesman problem is empirically evaluated based on its performance on
standard test instances, as well as on randomly generated instances. However,
properties of randomly generated traveling salesman instances have not been
reported in the literature. In this paper, we report the results from an empir-
ical investigation on the properties of randomly generated Euclidean traveling
salesman problem. Our experiments focus on the properties of the edge lengths
and the distribution of the tour lengths of all tours in instances for symmetric
traveling salesman problems.

Keywords: Euclidean Traveling Salesman Problems, Random instances, Em-
pirical distributions, Generalized Beta distributions

1 Introduction

The traveling salesman problem (TSP) is one of the best known problems in combina-
torial optimization. In a TSP instance, we are given a weighted graph G = (V, E, c),
where V represents a set of n vertices, E = V × V represents the set of arcs in the
graph, and c : E → � represents the cost of each arc in E. The objective in a TSP
instance is to find the shortest simple cycle in the graph covering all the vertices in
V . Such simple cycles are called tours in the TSP context. The number n is referred
to as the size of the TSP instance. The TSP is a collection of all TSP instances. If
for any two vertices i and j, c(i, j) = c(j, i), then the instance is called symmetric,
and the arcs (i, j) and (j, i) are collectively referred to as an edge between vertices
i and j. If for any three vertices i, j , and k in a symmetric TSP (STSP) instance,
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c(i, j) ≤ c(j, k) + c(k, i), then the STSP instance is called Euclidean (ESTSP). The
TSP is known to be NP-Hard (see Karp [3]).

Since the TSP is so well-known, many solution algorithms exist for it (see for
instance, Gutin and Punnen [1]). Some are exact algorithms, which are guaranteed
to generate an optimal i.e., shortest tour, and others are heuristics, which generate
near optimal tours. The algorithms are compared with each other based on their
performance on benchmark instances, such as the ones in TSPLIB (see Reinelt [5]),
or on randomly generated TSP instances. To generate a random instance of the
ESTSP of size n, one generates n points at random in a square of pre-determined
size, and creates the edge cost matrix by measuring the distance between each pair
of points. The distances are measured as per the Euclidean norm, which means that
between any two points P1 = (x1, y1) and P2 = (x2, y2), the distance is given by

d(P1, P2) = [(x1 − x2)
2 + (y1 − y2)

2]1/2.

Since it is computationally more convenient to deal with integers rather than with
floating point numbers, the distances are rounded down in empirical studies. Thus,
the cost function c(i, j), where vertex i is represented by the vector (xi, yi) and the
vertex j is represented by the vector (xj , yj) is

c(i, j) = �[(xi − xj)
2 + (yi − yj)

2]1/2�.

To the best of our knowledge, there is no literature on the properties of such
randomly generated instances. Some pertinent questions that arise are the following.

• What is the distribution of the lengths of the edges in randomly generated
ESTSP instances, and are these lengths dependent on the size of the problems
generated?

• What is the distribution of the tour lengths of all the tours in a randomly
generated ESTSP instance?

• How are the tour lengths of optimal solutions to various randomly generated
ESTSP instances of the same size distributed?

• How difficult is it to solve an ESTSP instance?

We carry out an empirical investigation in search of solutions to these questions.
While similar questions are also unanswered for randomly generated TSP instances
using other distance metrics, we have no reason to suspect that the answers would
be very different from the ones that we obtain here.

The remainder of the paper is organized along the following lines. In Section 2
we study the distribution of the lengths of edges in randomly generated ESTSP
instances. Next in Section 3, we study the distribution of the lengths of optimal
tours to randomly generated ESTSP instances. We also study the distribution of
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the lengths of all feasible tours in such instances. The results that we obtain in
Sections 2 and 3 is summarized in Section 4. This section also points to a direction
for future research.

2 Edge Lengths

In all our experiments, ESTSP instances with n vertices are generated by randomly
scattering n vertices on a square of side 100 units. The Euclidean distances between
each pair of vertices are then rounded down to obtain the edge lengths. The edge
lengths thus lie in [0, 141]. Since the vertices are scattered randomly, the edge lengths
in a randomly generated ESTSP are expected to be identically distributed.

Since the Euclidean distance between two vertices in the square is a reasonably
complicated function of the four coordinates involved, and also since we round down
the floating point values of the inter-vertex distances to obtain integer edge lengths,
obtaining analytical expressions for the distribution of the length of an edge is in-
tractable. In this section therefore, we obtain the shape of the distribution empir-
ically, and examine whether it can be approximated using any known distribution
function. In order to study the distribution of edge lengths empirically, we measured
the lengths of ten million randomly generated edges. Each edge was generated by
randomly generating two vertices in a square of side 100 units and the length of the
edge was obtained by measuring the Euclidean distance between them. The proba-
bility distribution for the length of such a random edge is shown in Figure 1. It had
an expected value of 51.6411 units, a standard deviation of 24.7939, and a skewness
is 0.18493. This experiment of generating ten million random edges and finding the
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Figure 1: Probability distribution of edges in a random ESTSP

probability distribution of a random edge was repeated thirty times. Each time the

W.P. No. 2006-06-03 Page No. 4



IIMA • INDIA

Research and Publications

expected value of the distribution, its standard deviation, and skewness was noted.
Table 1 presents the summary statistics of each set of thirty values obtained from
the experiments. Notice that the mean of the expected values of the distributions
is 51.6433 units, not very different from the 51.6411 units that we had obtained in
our first experiment. In fact, for all the three parameters, the values obtained in the
thirty experiments were very close together, as is evident from the small values of
standard deviations, and the nearness of the maximum and minimum values. Thus,
given a square of size 100 units, we conjecture that the lengths of the edges would be
51.64 units on average, if the lengths are measured using the Euclidean norm.

Table 1: Summary statistics of the mean, standard deviation and skewness of the
distribution of edge lengths in a random ESTSP described in a square of side 100
units.

Mean value Std Dev Min value Max value
Parameter of the of the of the of the

parameter parameter parameter parameter
Expected value 51.6433 0.00684 51.6295 51.6563
Standard Deviation 24.7949 0.00429 24.7871 24.8059
Skewness 0.1844 0.00050 0.1832 0.1852

To test this conjecture, we generated ESTP instances of size 5, 10, and 15. For
each problem size, we generated ten million instances of ESTSPs on squares of side
100 units. For each problem size, we generated the empirical probability distribution
of the lengths of each of the edges from the ten million instances, and computed the
expected value, the standard deviation, and skewness of the distributions. We noticed
that there was no change in the parameters with increasing problem size; in fact the
values of the parameters never deviated by more than 0.05 from the values quoted in
Table 1. We repeated these experiments thirty times, and noted that the parameter
values that we quote here were indeed very stable.

The empirical distribution of edge lengths of random ESTSPs is seen to be smooth
and unimodal, and with finite support. Hence it seems possible to model the distri-
bution using a Generalized Beta (GB) distribution. A GB distribution supported on
[a, b] with with shape parameters α and β has the following density function (see,
e.g., Johnson et al. [2]):

f(x; α, β, a, b) =
1

B(α, β)

(x − a)α−1 + (b − x)β−1

(b − a)α+β−1
,

In our case, the natural choice of a and b are 0 and 141 respectively. However, the
densities of a GB distribution at the endpoints of its support equal 0, while in our
case, as is evident from the example which we have plotted in Figure 1, the density
at the 0 is clearly positive. Hence we let a = −1 for fitting the distribution. We
obtained the values of α and β using the method of moments, computing them from
the mean and standard deviation of our sample of 10 million data points.
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We fitted a GB distribution to the distribution of edge lengths obtained in our first
experiment. The estimates of α and β that we obtained were 2.466 and 4.185 respec-
tively. The estimated GB distribution underestimated the empirical distribution for
both low values and for high values of edge lengths, but overestimated the empirical
distribution for medium values of edge lengths. The amount of overestimation and
underestimation was minor; the maximum deviation in the distribution functions of
the empirical and estimated distributions never exceeding 0.01663. The distribution
functions of the empirical distribution and the estimated distribution are shown in
Figure 2. From the figure, it is evident that the GB distribution is a good candidate
for modeling the lengths of individual edges in ESTSPs.
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Figure 2: The estimated and empirical distributions of edge lengths

We also obtained the distribution of the length of an edge between two random
vertices when the distances were measured according to the L1 or Manhattan norm,
and when the distances were measured according to the L∞ norm. A comparison of
these distributions with the distribution shown in Figure 1 is shown in Figure 3. The
shapes of all three distributions are seen to be similar, although the spread of the
distributions and their coefficient of variations are different. This evidence is in favor
of our conjecture in the introductory section that the distance measure used does not
affect the basic nature of the results that we obtain in this paper.

3 Tour Lengths

We performed two types of experiments with respect to tour lengths on randomly
generated ESTSPs. The first type of experiments dealt with the distribution of the
lengths of optimal tours to randomly generated ESTSPs. The second type of exper-
iments looked into the whole set of tours for each instance of a randomly generated
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Figure 3: A comparison of the empirical distributions of edge lengths under different
norms

ESTSP, and examined the properties of the distribution of the lengths of the tours
in this set. Recall from Section 2 that in our experiments, ESTSP instances with n
vertices are generated by randomly scattering n vertices on a square of side 100 units.

3.1 Distribution of tour lengths of optimal tours

For our experiments regarding the distribution of the lengths of optimal tours to
randomly generated ESTSP instances, we generated a hundred instances each of
random ESTSPs of sizes 50, 100, 150, 200, and 250. We solved each of the instances
to optimality using the CONCORDE TSP solver, implemented by Hans Mittelmann,
and made available through the NEOS Server for Optimization [4]. For presentation
purposes, the lengths of the optimal tours to the instances were grouped into classes
of width 10 units. The results of the grouping are shown in Figure 4. Note that even
when the problem sizes are relatively large, the distributions of the lengths of optimal
tours are not smooth enough to reasonably fit known probability distributions. The
shapes of the distributions also vary widely with changing problem sizes. On the other
hand, the distributions have a reasonably wide spread. This means that, although the
distribution of the lengths of edges in similar sized problems are similar, their optimal
solutiosn could have widely different tour lengths. This makes randomly generated
ESTSP instances a good test bed for comparing the performance of algorithms.

3.2 Distribution of tour lengths of all tours

An ESTSP defined on n vertices admits (n − 1)!/2 tours as solutions. In this sec-
tion we examine the distribution of the lengths of these (n − 1)!/2 tours. For small
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Figure 4: Frequency distribution of optimal tours to large random ESTSPs
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values of n, it is practical to generate all tours, obtain their lengths, and construct
the probability distribution of these lengths. We constructed the probability distri-
butions for tour lengths of ESTSPs of sizes 8 through 12. For each size, we generated
one hundred instances randomly. We observed that the distribution of tour lengths
became smoother as the problem sizes increased. As an example, in Figure 5 we show
the distribution of tour lengths for an instance of size 8 and an instance of size 12.
The distribution of tour lengths for the instance with 8 vertices is jagged, while the
distribution of tour lengths for the instance with 12 vertices is quite smooth. We ex-
pect that as the problem sizes increase, the distributions of tour lengths will become
smoother.
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Figure 5: Distribution of tour lengths for small sized random ESTSPs

For each distribution of tour lengths that we generated, we computed the mean,
the standard deviation, and the skewness values. These data are summarized in
Table 2. In this table, for each problem size, we provide the mean, standard deviation,
minimum and maximum values from the data on all the one hundred instances that
we have of that size. Each column in the table refers to a parameter for the individual
distributions, while we summarize the characteristics of each of the parameters in the
rows of the table. Notice that the average of the lengths of tours is an approximately
linear function of the problem size. Also note that the standard deviations in all the
cases are quite large, compared to the means. Further, note that the skewness values
that we obtain for all problem sizes are small, but not zero, so that the distributions
of tour lengths are not symmetric for these problem sizes.

For large ESTSP instances, it is not practical to generate all tours and examine
the parameters of their distributions. For these ESTSPs, we therefore use a sampling
based procedure to obtain estimates of the parameters of the distributions of the tour
lengths. We work with ESTSPs of sizes 50, 100, 150 and 200. One hundred instances
of each of these problem sizes are generated. These are identical to the instances that
were generated to test the distributions of lengths of optimal tours in Section 3.1.
For each of these instances, we generated ten million random tours and noted the
distribution of their lengths. This distribution is assumed to be an estimate of the
distribution of all tour lengths for the instance. The distributions that we obtained
were all found to be similar to the distribution in Figure 6, which is the distribution

W.P. No. 2006-06-03 Page No. 9



IIMA • INDIA

Research and Publications

Table 2: Parameters of the distribution of tour lengths for small random ESTSPs

Distribution Parameter
Mean Std. dev. Skew

8 vertices Average 417.32 49.66 -0.21
Std. dev. 62.61 11.46 0.14
Minimum 250.57 20.29 -0.68
Maximum 558.57 78.00 0.04

9 vertices Average 466.93 54.26 -0.21
Std. dev. 59.20 10.30 0.12
Minimum 290.75 23.97 -0.60
Maximum 599.00 75.18 -0.01

10 vertices Average 517.34 58.80 -0.22
Std. dev. 61.71 10.41 0.12
Minimum 650.67 79.18 -0.04
Maximum 358.89 32.03 -0.67

11 vertices Average 569.15 62.61 -0.21
Std. dev. 63.61 10.01 0.10
Minimum 420.00 32.34 -0.62
Maximum 708.80 82.30 -0.06

12 vertices Average 622.65 66.53 -0.20
Std. dev. 65.61 10.06 0.09
Minimum 484.73 44.05 -0.65
Maximum 754.55 89.01 -0.07

of the lengths of ten million tours for an ESTSP instance of size 200. Notice that the
distribution is quite smooth and unimodal. We modeled it as a GB distribution, and
the maximum difference between the empirical and estimated distribution functions
was 2.1× 10−6. On a diagram, the two distribution functions were indistinguishable.

The distributions of the sample tours from each of the instances allow us to esti-
mate the parameters of the distributions of all the tour lengths of these instances. By
our assumption, the average of the sample of tours that we generate is an unbiased
estimate of the average of the tour lengths of all tours. We obtained the sample
standard deviation of the tours in our sample, and used it as an unbiased estimate of
the standard deviation of the tour lengths in the distribution of all tours. Given the
lengths xi of the tours in the sample, their meanx̄, and n = 10,000,000, we consid-
ered the following as an unbiased estimate of the skewness of the distribution of the
lengths of all tours:

n
√

n − 1
∑n

i=1(xi − x̄)3

(n − 2) (
∑n

i=1(xi − x̄)2)
3/2

.
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Figure 6: Distribution of tour lengths of 10 million tours in a random ESTSP with
200 vertices

The properties of the estimated parameters for the distributions of the lengths of
all tours is shown in Table 3. The explanation of the figures in this table is identical to
those of the figures in Table 2. Notice that here too, the averages of the lengths of all
tours are approximately linearly related with problem size. The values of the standard
deviations here too are quite large. This implies that randomly generated ESTSP
instances are quite different from each other. The skewness values are smaller than
the values presented in Table 2, thereby showing that the distribution of tour lengths
for larger ESTSPs are more symmetric than those of smaller ESTSPs. We conjecture
that for still larger ESTSPs, the distribution of tour lengths would be very nearly
symmetric. The symmetric distributions of the tour lengths for random ESTSPs
suggest that for randomly generated ESTSP instances, the fraction of solutions that
are near optimal solutions are reasonably small, and good bounding mechanisms
can fathom a large proportion of the solutions quite early in the branch and bound
execution. Thus, although they are varied in nature, they are unlikely to be among
the more difficult problems for branch and bound algorithms.

4 Summary and Discussion

In this paper, we have empirically examined some properties of randomly generated
Euclidean symmetric traveling salesman problem (ESTSP) instances, which are often
used to test the performance of heuristics and exact algorithms for the symmetric
traveling salesman problem. Our experiments were on random ESTSP instances
generated by distributing vertices randomly on a square of side 100 units. They
concerned three aspects of ESTSP instances, the lengths of the edges in such problems,
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Table 3: Estimates of the parameters of the distribution of tour lengths for large
random ESTSPs

Distribution Parameter
Mean Std. dev. Skew

50 vertices Average 1308.76 155.22 0.06
Std. dev. 62.68 8.28 0.01
Minimum 1130.62 131.74 0.04
Maximum 1477.30 181.18 0.07

100 vertices Average 2603.67 220.05 0.04
Std. dev. 86.48 8.08 0.00
Minimum 2395.64 198.07 0.03
Maximum 2766.96 236.57 0.05

150 vertices Average 3883.48 268.41 0.03
Std. dev. 111.50 8.15 0.00
Minimum 3546.03 248.43 0.03
Maximum 4150.62 285.60 0.04

200 vertices Average 5201.81 311.99 0.03
Std. dev. 117.10 7.55 0.00
Minimum 4933.15 293.99 0.03
Maximum 5411.57 324.94 0.03

the distribution of the lengths of optimal tours in such problem instances, and the
distributions of lengths of all tours in any given instance.

In Section 2 we found out the distribution of edge lengths for a random ESTSP.
This distribution is difficult to compute theoretically, since it is not just the Euclidean
distance between the vertices, but the greatest integer below the (floating point) value
of the Euclidean distances. Hence we constructed this distribution empirically. Our
construction was based on ten million randomly generated ESTSP instances. We
observed that the edge lengths followed a unimodal positively skewed distribution
(see Figure 1) and could be modeled using a Generalized Beta (GB) distribution (see
Figure 2). Since the ESTSP instances were generated randomly, some pairs of vertices
in them could be close to each other, and a number of edges could have zero lengths.
Hence the estimated distribution of the edge lengths needed to have the left side of
the support at -1 instead of 0, even though negative edge lengths do not have any
physical significance. We noted that all the edges in a randomly generated ESTSP
came from identical distributions, and that the edge lengths did not vary with varying
problem sizes.

In Section 3, we examined the distributions of the lengths of optimal solutions, as
well as those of the set of all solutions to random ESTSPs. We saw in Section 3.1 that
the optimal tours in randomly generated ESTSPs are distributed over a significant
range, and that the distributions did not stabilize as problem sizes increased (see
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Figure 4). In Section 3.2 we looked at the distribution of the lengths of all tours in
randomly generated ESTSP instances. For small instances (of size 12 and less), it was
feasible to generate all the tours, compute their lengths, and obtain the distributions
of the tour lengths (see Figure 5). For larger instances, generating all tours was
impractical, and hence we generated the distribution based on random samples of ten
million tours. (We expect the distribution of all tours in an instance to be similar to
the distribution of the lengths of tours generated in this manner.) The distributions
of the lengths of tours in our samples for each of the larger instances were found
to be relatively smooth and unimodal (see Figure 6), and were seen to be amenable
to modeling using GB distributions. The properties of the actual distributions of
the tour lengths for smaller instances were presented in Table 2, and those of the
estimated distributions of tour lengths for larger instances were presented in Table 3.
In both cases, we saw that the average of the tour lengths varied approximately
linearly with changing problem sizes, and that the spread of the distributions were
quite significant. This showed that random ESTSPs are good candidates for testing
algorithms and heuristics for ESTSPs. The skewness of the distributions were seen
to decrease with increasing problem sizes, especially for the larger instances, but the
distributions were not symmetric even for random ESTSPs of size 200. We conjecture
that as the problem size increases, the skewness would approach zero. The fact that
the skewness values are not high implies that there are a relatively small number of
near-optimal solutions. So randomly generated ESTSP instances are not likely to be
very hard for branch and bound algorithms for STSPs.

The fact that the distribution of lengths of tours of ESTSP instances are amenable
to modeling using GB distributions is a particularly interesting result for future re-
search. If the distribution of lengths of tours can indeed be modeled using GB distri-
butions, then, given a relatively small set of randomly generated tours, it should be
possible to estimate the parameters of the distribution that they come from. The left
end of the support of this distribution is nothing but the length of an optimal tour to
the ESTSP instance. Hence this could be a novel method of solving the evaluation
version of the ESTSP. It may also be worthwhile to see if such a method could be
used on other hard optimization problems.
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