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Abstract

We study the capacitated version of the two commodity network design prob-
lem, where capacity can be purchased in batches of C' units on each arc at
a cost of w;; > 0, and di > 0 units of flow are sent from source to sink for
each commodity k. We characterize optimal solutions for the problem with
fixed costs and no flow costs, and show that either |di/C|C or (|dx/C| —-1)C
units of each commodity are sent on a shortest path, and the remaining flows
possibly share arcs. We show that the problem can be solved in polynomial
time. Next, we describe an exact linear programming formulation, i.e., one
that guarantees integer optimal solutions, using O(m) variables and O(n)
constraints. We also interpret the dual variables and constraints of the for-
mulation as generalizations of the arc constraints and node potentials for the
shortest path problem. Finally, we discuss several other variations of the

single and two commodity problems.

Key words and phrases: capacitated network design, two commodity, integer
optima



1 Introduction

This paper studies the capacitated two commodity network design problem,
and is a sequel to Sastry [6], which studies the uncapacitated problem. The
uncapacitated version of the multicommodity problem has been studied by
Balakrishnan et.al. (1], who have solved large instances of the problem to
optimality. Hu [3], Sakarovitch [5] and Seymour [7] have studied the two
commodity maximum flow problem with no fixed or flow costs on arcs. How-
ever. the capacitated version has received relatively less attention. At the
same time, the capacitated problem is important and has applications in
telecommunications and transportation where large investments are required
for building such networks. It is therefore important to obtain efficient solu-
tion procedures.

The capacitated two commodity network design problem CTC can be de-
scribed as follows. Consider an undirected graph G = (¥, A), with node set
N, arc set A, and origin destination pairs sy, ;, with demand of d; units
between each pair for k = 1.2. Capacity can be purchased in batches of C
units on each arc (7,7} € A at cost w;; > 0. Flow costs are assumed to be
zero. The objective is to minimise the total cost while satisfying demand
between both origin destination pairs. The problem can be formulated as

follows.
Problem CTC

Min Z Wiy
. (i.j)eA
subject to:
—dyp  ife =3
Z(;U?i —_ .Bf;) = dk lfl = tk

j ‘ 0 otherwise
Cyiy 2 i+, + 2k +
z.y 2 0;y integer.

Let m = |A| and n = |/V| denote the number of arcs and nodes respectively.

The arcs are undirected and have symmetric cost, i.e.. wi; = w;;. The flow
variables J:f‘j are directed. This problem is also known as the network loading
problem. In the next section we characterise optimal solutions of CTC,
and in Section 3, describe a simple O(n?) algorithm to solve the problem. In



Section 4 we give an explicit reformulation for the problem in O(m} variables
and O(n) constraints and show that it always has an integer optimal solution.
In Section 5 we discuss several other variations of the one and two commodity
network design problems, and in Section 6 we present the conclusions.

2 Characterizingf Optimal Solutions

In this Section, we characterize optimal solutions. We describe three types of
solutions, called the independent, star and shared solutions, and later, show
that one of these is an optimal solution for CTC. This leads naturally to
the polynomial algorithm described in the next Section. We first define a
few terms. A free arc (i,j) has 0 < z}, + z}; + =}, + =} < Cyij. A free
cycle has only free arcs in the cycle. Assume without loss of generality that
yi; = [z} + = + =& + 2%)/C] for all arcs in any optimal solution, since
all costs are nonnegative. Assume also that both :rfj and x‘;,- are not greater
than zero in any optimal solution. Assume that s, # ty for either commodity:
otherwise there is only one commodity at most, and the problem reduces to

the shortest path problem. Similarly, assume that either s; # sg or t; £ 5.

Lemma 1 There ezists an optimal solution with no free cycles.

Proof
Suppose there is a free cycle ®. We say that arc (¢, ) € ®(¢) if the arc is in
the cycle, and node i comes before node j when we traverse the arc as we go

around the cycle in a clockwise direction. Let
O*(k) = {(1,J) € ®(c) : zj; 2 0},

& (k) = {(2.7) € ®(c) : z; 2 0},
denote the set of arcs that have nonnegaiive quantity of commodity & flow

on it in the same and opposite directions respectively. Let

A~ =min {Cy;; —z}; — 2% : (1,7) € 2~(1) N &7(2)},

A™(1) =min {Cyij — ) ~ £ : (i,)) € (1) N @¥(2)},
A™(2) = min {Cyi; — z3; — 23 : (1,7) € #7(2) N &* (1)},

TR
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A*(k) = min {:r:f‘J > 0:(z,7) € ¢t (k)}.

Let A = min {A~, A™(1), A™(2), A*(1), A*(2)}. By the definition of
a free cycle, A= > 0, A=(1) > 0, and A™(2) > 0, and hence A > 0. If
A = A™(1) = Cyij — zf; — =¥, for some arc (i,7) € &~(1) N $*(2), then
by sending A units of commodity 1 in the anticlockwise direction around
the cycle, we obtain a solution where arc (i, 1) is no longer free. Similarly,
if A equals A™(2) or A7, then by sending A units of commodity 2 in the
anticlockwise direction around the cycle, we obtain a solution where arc (2, j)
is no longer free.

If A*(1) = A = z}; for some arc (i,7) € ®*(1), then by sending A units
of commodity 1 in the anticlockwise direction, we obtain a solution with
r; = 0. If 2 + 2% = 0, we are done. Otherwise, calculate A again, and
repeat the procedure. Either A = min {A~, A~(1), A~(2)}, in which case
total flow on some arc equals y;; and we are done, or we obtain a solution
where flow of some commodity on some arc reduces to zero. Notice that once
flow of commodity k on arc (i,7) € ®*(k) reduces to zero, the flow in the
clockwise direction does not increase in subsequent iterations. By repeating
this procedure at most m times, we either obtain a solution with no free
cycle. or a solution in which each arc in the cycle has only one commodity
flowing on it. If we now repeat the procedure once more, we are done.

Remark 1 f there are commodity specific flow costs, there could be an opti-
mal solution with two nodes i* and j* that have two arc distinct paths between

them, carrying rr < C units of commodity k on each path. However, re-
routing of a commodity flow from one path to the other might not be possible
because flow costs on the other path are too high.

Hereafter, we only consider optimal solutions with no free cycles. To simplify
the notation, we assume that in any feasible solution (z,y) for CTC, we
replace arc (i, ) by y;; parallel arcs. Let this be the graph G(z,y) = (N, A7)
associated with the feasible solution (z,y). Arbitrarily assign C' units of
commodity k flow to |(z¥ + £%)/C| of these parallel arcs. If

2
0< Z(‘T?j + “-’fi - CL(IE‘ + -'ffi)/CJ) <C,
k=1
assign the remaining flow to another parallel arc. Otherwise, if 0 < z}, +
zj;— Cl(z}; + 2};)/C|, assign this quantity to one arc, and if 0 < 2}, + z; —
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Cl(z% +2%)/C|, assign it to another arc. If the flow on an arc satisfies the
conditions

0< z:f-‘j + xf,- -C L(:::f‘J + a:f,-)/C | for both commodities, and

2
;(15 +a3; = Cl(; +25)/C]) < C,
=1
then the arc is shared, otherwise it is independent. For any feasible solution,
a path P between nodes ¢ and j connects the two nodes and has capacity C
on each arc in the path. However, there may be several paths of capacity C

between nodes ¢ and j.

For any commodity k, a complete path P, connects s, to tx. Path P is shared
if it has at least one shared arc, and a shared forwaerd path (shared reverse
path) if both commodities flow in the same direction (opposite directions)
on all shared arcs. A path if fully shared if all arcs in it are shared. A
path is independent if none of the arcs in the path is shared. Note that this
definition implies that no cost is saved even if both commodities flow between
the same pair of nodes on independent paths. Commodity k¥ has a complete
independent path if no complete path for the other commodity shares any
arcs with it. An in junction node for commodity k£ has commodity k& flow
entering it from at least two arcs, and flow leaving it on exactly one arc. An
out junction node for commodity & has commodity & flow leaving it on at
least two arcs, and flow entering it on exactly one arc.

Let di = ppC + ry where pug is a nonnegative integer and 0 < rp < C.
Thus, if di is a multiple of C, we define ry, = C. Consider any feasible
solution with only independent paths. We can re-route all independent flows
of commodity k on any shortest path from s, to ¢, without increasing cost.
Thus we can obtain a solution of at most equal cost by setting y;; = pux + 1
on all arcs (z,7) € G(NV, A) on a shortest path from sx to fx: however, if
some arc (i,J) belongs to the shortest path for both commodities, we set
Yi; = p1 +p2 +2. Such a solution is independent. For example, in Figure 1, if
C =10. d; = d; = 6, and commodity 1 flows on path s; —k —k; —/; — ¢, and
commeodity 2 flows on path s, — ky —k; —I; —t5, then we have an independent
solution. A cycle with one end (with two ends) is a cycle with capacity C on
all arcs, and has one node (two nodes) through which all flows enter or leave

the cycle.



Lemma 2 There ezists an optimal solution that has no cycles with one or
two ends.

Proof
If there is a cycle with one end, we can delete it. Let P,Q be two paths

between nodes :* and j* with capacity C on all arcs, such that all flows enter
or leave the cycle through these two nodes. Without loss of generality assume
that 3(ijiep wij < Lijjeq wij. Decrease y;; by 1 on all arcs (,7) € @, and
increase y;; by 1 on all arcs (7, 5) € P.

Corollary 1 There ezists an optimal solution (z,y) such that any two paths
P!, P? in G(,,,) have at most one fully shared connected path P = P' N P.

Proof

Consider any optimal solution (z,y), and any flow decompostion into paths.
If paths P! and P? are independent, then they do not share any arcs in
G(z.y). Suppose the paths are not independent. Consider all shared arcs
(¢,7) € PN P2. If these arcs do not form a connected path, then there must

be a cycle with two ends.
a

Next. we describe the so called shared solution. Suppose yiC' units of com-
modity k& fow on a shortest path from s; to ¢k, and the remaining r; units
flow on a shared path. This is a shared solution, which as we show later,
is possible only if r; + r, < . Since the shared solution has at most one
shared path for each commodity, Corollary 1 implies that there is one fully
shared path. Hence all shared arcs are either shared forward arcs. in which
case there is a shared forward solution, or they are shared reverse arcs. in
which case there is a shared reverse solution. For mstance. in Figure 2, if
ri+rz £ C, urC units of commodity k£ flow on arc (s, 8}, 1 units on path
8y —k—1—1t;, and r; units on path s; — k — [ —1;, we have a shared forward
solution. If ry units of commodity 2 flow on path s — ! — k — 3, then we
have a shared reverse solution.

Next, we describe the so called star solutions. Suppose sy,$2,1%1,12 are four
distinct nodes, and suppose there is one out junction node k;, and one in’
junction node {, for commodity 1, and one out junction node &,, and one in
junction node [, for commodity 2, such that &y, ks, !, > are distinct nodes.

[ ]



Suppose commodity 1 has two complete independent paths, P}, P} that can
be partitioned into arc distinct paths in G(x,y) such that

Pl = Pi(s1, k1) U Plky, k2) U P(ka, ) U Pri(1h, 1),

le = Pz(Sl,k1) UP(kl,lg) U P(Zz,ll) 9] Pg([l,tl),

where paths P(s1, k1), Pa(s1, k1) connect nodes s; and &y, and path P(i,j)
connects nodes ¢ and j. Notice that Pj(s;, k) and Py(s1, k1) are independent,
and that they are arc distinct in G(z,y). Commodity 2 has two complete
shared paths P2, P} each of which can be partitioned into arc distinct paths

such that
Pf = P8y, ky) U Pk, k1) U Pk, i) U P(l2, t2).

P} = P(sg, k) U Plky, ) U P(L, L)Y U P(lg, 1),

and PPN P} = P(sy, k) U P(l,t;). The four paths P(ky,k2), P(ks, hh),
P(l, 1), P(l3, k1) are all fully shared and arc distinct in G(V, A), and form
a star. Further, commodity 1 has a total of C' + r; units flowing on paths
P!, P}, and commodity 2 has a total of r, units flowing on P2, Pi. For
instance. r,/2 units of commodity 2 flow on paths P2, P}, C — ry/2 units of
commodity 1 on path P!, and ry + ry/2 units of commodity 1 on path P}.
The remaining {4, — 1)C units of commodity 1 and u,C units of commodity
2 flow on complete independent paths. This is the first star solution (see

Figure 1 and Example 1).

Similarly. if commodity 2 has two complete independent paths, P?, P, and
commodity 1 has two complete shared paths P!, P}, we have a second star
solution. In this solution, commodity 2 has a total of C' + r, units flowing
on paths P?, P}, and commodity 1 has r; units flowing on P!, Pl. The
remaining 4, C units of commodity 1 and (g2 — 1)C units of commodity 2
are sent on complete independent paths (see Figure ! and Example 1).

If ky = k;, we have a star solution with a triangle having paths P{ky, [},
Plky, 12}, P(h, ;) and four paths connecting sy to &y, s2 to &y, &y to ¢, and [
to tp. Similarly, if k; =1, Iy = k; or I} = I3, we have a star with a triangle.
[f 57 = 59, 8, = £3, 83 = ¢, or t; = {,, then we have a star with a triangle, and
three paths connecting each vertex of the triangle to one of the terminals. In
each of these cases, there are corresponding first and second star solutions.
If k&, = k; and /; = I3, then there is a cycle with two ends, which by Lemma 2
we need not consider. Thus a star either has three or four vertices.



INSERT FIGURE 1 HERE

The two commodity flow problem finds the maximum flow in a network if
capacities are given on each arc. Let ¢{s;,#) and ¢(s;,t;) denote the mini-
mum capacity of any cut separating s; from ¢;, and s; from t; respectively.
Let ¢(s,t) denote the minimum capacity of any cut separating sy, s, from
t1, 12 or 81,t; from ¢y, s2. Let f(k) denote the net value of commodity k flow
leaving s, for k = 1,2. The following theorem is due to Hu [3].

Theorem 1 (Hu [3]} Flows f(1), f(2) are feasible for any two commodity
flow probdlem if and only if f(1) < efs1,t1), f(2) < e(s2,t) and f(1)+ f(2) <
(s, t).

Given any feasible solution (z,y) to CTC, consider the graph G(z,y) =
(N.A*). Further, let capacity of each arc be either zero or one. Let the two
commodity maximum flow problem on this graph be the problem associated
with a feasible solution for CTC. Hu [3] also showed that there always exists
an optimal solution such that flow of a commodity on every arc is in multiples
of 0.5 units. For a given commodity, a full path has 1 unit of flow on each
arc in the path, and a half path has 0.5 units of flow on each arc in the path.
Let X(1.2) C N be a subset of nodes or a cut such that

81,872 € ,Y,tl,tg €N - )(, or 8y, € .X-, l1,82 € N - X.
and let A(X{1,2)) be the set of arcs with exactly one node in X(1,2). Define

efs.ty=min { D vi; - X{1,2) C V}L
(ir}eA(X(1.2)}

Cut capacities ¢(s1.1,) and c(sq, ;) are similarly defined for cuts
X(k)C N:sp € X(k), th € N - X(k).

If e(s.t) > w1 + pa + 2, then c(sg,tx) > px + 1 for some commodity since

c(s1,t1) + ¢(82, 82) > c(s.t) > p1 + p2 +2. Suppose without loss of generality

that ¢(sy,t1) > gy + 1. We can reduce y;; by 1 on some complete path

from s, to ¢, and still have a feasible flow for CTC. Assume therefore, that

corresponding to any optimal solution for CTC, c(s,t) = uy + p2 + 2 if-
ri+re > C and ¢(s.t) equals gy + o +20r g1+ g2+ 1ifry + 72 < Cin the

associated problem. Define an arc in the associated problem to be shared if
both commodities have 0.5 units flowing on it.

7
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Theorem 2 There exists an optimal solution OS to problem CTC such that
(i) if ry+ry > C, then OS is independent,

(it} if ri+7r < C and C < dy, C < dy, then OS is either independent, first
star, second star or shared,

(i) if ri+r; C,and C < dy, dy < C, (dy < C, C < dy), then OS is
either independent, first star, (second star), or shared,

(iv) if dy + dy < C, then OS is either independent or shared.

Proof
Consider any optimal solution (z,y) with no free cycles or cycles with one or

two ends, and its associated two commodity flow problem. If any complete
half path P; for commodity % in a maximum flow is independent. then we
can increase flow on it by 0.5 units. Therefore, consider only maximum fows
where each complete half path of one commodity shares arcs with one or
more complete half paths of the other commodity.

Suppose r; + r2 > C. Then ¢(s,t) = g1 + 2 + 2, and hence, by Theorem 1,
there is a maximum flow such that f(k) = px + 1 for each commodity in
the asociated problem. Since the arc and cut capacities are all integer in the
associated problem. there are an even number of complete half paths for each
commodity. Arbitrarily number all half paths P} for commodity 1 from 1
through 2p and half paths P? for commodity 2 from 1 through 2q, where 2p
and 2q are the number of half paths for commodities 1 and 2 respectively. Let
K, be the total cost of all shared arcs @y in {P{U...UP}N{P?U...UP},
L.e.. arcs that have flow of 0.5 units of both commodities. Similarly. let K; be
the total cost of all shared arcs @z in {Pp, U...UPL}N{PA, U...UPS}.
If K; > K,. we reduce the capacity of all shared arcs in Q; by 1. and add a
parallel arc of capacity one on all shared arcs in ¢;. Notice that we can now
send full flows on each of the original half paths P!,..., P;, P..., qu since
shared arcs in @, now have sufficient capacity. Thus we obtain a solution
for the associated problem with only full flows. Since there are at least
pi + 1 full paths for each commodity, we can send (u; + 1)C > di units of
each commodity on independent paths in the original problem CTC. Hence
there is an independent solution. A similar argument establishes that we can

obtain an independent solution if K, > Kj.

Suppose r; + r; £ C. Suppose ¢(s,t) = py + g2 + 2. Then using the
same arguments as in the case r; + r; > C, we can obtain an independent



solution. Suppose c(s,t) = py + gy + 1. It follows that there must be at
least one shared path in the solution to CTC. Further, as shown earlier,
we only need to consider optimal solutions for the associated problem where
each half path of one commodity shares arcs with one or more half paths
of the other commodity. Consider two maximum flows in the associated
problem. Solution 1 has a maximum flow of x; + 1 for commeodity 1, and g,
for commodity 2. Solution 2 has a maximum flow of x; + 1 for commodity 2
and y; for commodity 1. By Theorem 1, there always exist such maximum
fiows. Since maximum flows in the associated problem are in multiples of 0.5,
there are two cases: (1) either there is exactly one path for each commodity
“on which 1 unit more of commodity k flows in solution k, or, (ii) there are
two shared paths for each commodity, on which 0.5 units more of commodlty
k flow in solution k. Consider the following cases.

Case 1.

Let P! and P? be two complete paths for commodity 1 and 2 respectively.
Suppose that in the associated maximum flow problem, P? has 1 unit of flow
and P? has zero units of flow in solution 1, and P! has zero units of flow and
P? has 1 unit of flow in solution 2. Further, y; units of commodity k flow on
paths other than P!, P? in G(z,y). By Theorem 1, there exist such solutions.
Consider all paths other than P! and P2. Using arguments identical to those
in the case when r; +r; > C, we can send these flows on independent paths.
If P! and P? do not share arcs, we can increase the maximum flow. If they
share both forward and reverse arcs, then there is a cycle with two ends in
CTC. Hence, we either have a shared forward solution or a shared reverse

solution. but not both.

Case 2.

Suppose there are complete paths P!, P} for commodity 1 and P?, P} for
commodity 2 such that P}, P} have 0.5 units of flow more in solution 1, and
P}, P? have 0.5 units of flow more in solution 2. For instance, in Figure 1, if
Ysiky = Yty = 2, Yy, = 0, and y;; = 1 for all other arcs (¢, 7), we obtain the
two solutions mentioned.

Suppose flow on each of these four paths is either zero or 0.5 in the two .
solutions. This implies that we send at most C units of either commodity
on these paths in CTC, and hence, we can send at least uxC units of each
commodity on other paths. Let A, be the total cost of shared arcs ¢ in



P! N P}, and K, the cost of shared arcs Q; in P} N P2, Assume without
loss of generality that K; > K;. Increase y; by 1 for all arcs (i,;) in @
and decrease it by 1 for all arcs in Q2. We can obtain a solution to CTC
without increasing cost: send u;C units of both commodities on paths other
than P}, P}, P}, P?. The remaining r; units for both commodities can be
sent on paths P}, P}.

This also establishes that if dy < C, then we need not consider first star
optimal solutions: at most d; units can flow on P}, P}, and hence, by shifting
capacity from arcs in §); to arcs in @};, we can obtain a shared or independent
solution. Similarly, if d; < C, then we need not consider second star optimal

solutions.

Suppose flow on each of the paths P}, P} is 1 unit in solution | and 0.3 units
in solution 2, and flow on paths P?, P} is zero in solution 1 and 0.5 units in
solution 2. This implies that we can send C +r; units of commodity ! and r;
units of commodity 2 on these paths in CTC. Assume we can send at most
(g1 — 1)C units of commodity 1 on paths other than P!, P} in CTC. since
otherwise, we can reduce y;; by 1 on all arcs in some complete commodity 1
path. Using arguments identical to the case when ry + r; > C, we can send
all lows other than those on P}, P}, PZ, P? on independent paths without
increasing cost. We can still shift capacity from arcs in @, to arcs in ;.
However, some segment of path P! for commodity 1 has capacity of C in
CTC, and we cannot send the entire C' + r; units on it. Thus we cannot
disturb the four paths. Suppose for one of these four paths, say P}. there
is some arc (,7) € P} such that (i.j) ¢ P U Pl U P}. Then we must have
a free cycle or a cycle with two ends in the original problem CTC. Hence,
there is no such arc, and we must have a first star. A similar argument shows
that if commodity 2 had unit flow in solution 1 and half flow in solution 2,
then we have a second star solution.

0

Example 1
Consider Figure 1, where costs are shown beside each arc, and suppose C =
10. If r, = r, = 6. then r{ + r; > C, and we have an independent solution.

For instance if w > 25, then

Ysiky = Ukiks = Yty = H1 +l$ Ykaty = M1 +.u2+21 Yaaky = Yoty = Ylyea = ”2+1

10



is an optimal solution. If w = 18 and d; = 11, d; = 6, then r; +r; < C, and
we have the following first star solution of cost 50

Yauby = ¥ty = 2, Yiyks = Ykaty = Ykila = Yialy = Ysokg = Ylata = ]-a
1 - 1 — 1 —— el — 1 - a1 .
Toiky = Thyey = 11, Thiky = Thaty = 7’ Ty = Ty = 1,

2 Y —_ 2 2 - 1 _ a1 -
Topky = Thr, = 6. Thy = Ty, =30 Tpyy, = 2, = 3

If dy = 11 and d; = 16, then we obtain a second star solution of cost 68.
However, if dy = 1. d2 = 6. then we obtain a reverse shared solution of cost
35 where commodity ! flows on path s; —k; —k; — I} ~¢;, and commodity 2 on
path s; —k; — k; — 5 —t5. Similarly, if d; = 11, d; = 6 and w = 12, we obtain
a reverse shared solution of cost 44 where the two commodities flow on paths
Sl_kl—[l—'tlv and Sg"'kg—ll —kl—lg—tg. If w=12, Wy iy 2100, and
d, = 11. d; = 6, then there is an independent solution of cost 49. If w = 18,
and wy,;, = 100, then there is a forward shared solution of cost 38 where 10
units flow on path s; — k; — ; — ¢, 1 unit on path s; — k; —ky —I; — ¢, and
6 units on path s; — ky — I} — I3 — ¢5.

3 Algorithm

Consider the two cases ry+r; > C and ry+r, < C separately. Ilf ri+r; > C,
then find the shortest path from s; to t; for both commodities. Let a(z*, ;%)
denote the cost of the shortest path from node :* to node j* using w;; as arc
costs. Then the optimal cost is (g + 1)a{sy, t1) + (g2 + L)a(s2,t2). Suppose
ri+7r; £ C. We find the least cost independent. shared and star solutions.
and choose the one with minimum cost. The least cost shared solution can be
found as follows. Find the shortest path from s; to tx for both commodities.
Send pixC units of flow on these paths at a cost of ygra(sk,tx). The remaining
ri units can be sent on a shared path using the so called two path algorithm
as follows. The forward (reverse) problem is to find an optimal solution if
any shared path is a shared forward (reverse) path. For the forward problem
we define O = s, and D, = {,, while for the reverse problem, we define

01=31, D]‘—“tl, D2=Sz and Og=t2.

Add a super source O, a super destination D, arcs (O, ) of cost a(Oy,J) +
a{0,,)), and arcs (j, D) of cost a(j, D1) + a{j, D2). The two path algorithm

11



then uses any standard algorithm to find the shortest path between O and
D. Notice that there are two passes for the algorithm, one for the forward
problem, and the other for the reverse problem. Choose the shorter of the
two shortest paths. If arc (O, j) belongs to the shortest path, replace it by
the shortest paths from Oy to j and from O to j. Similarly, if arc (j, D)
belongs to the shortest path, replace it by the shortest paths from j to D,
and from j to D,. Sastry [6] has shown that this gives the optimal solution,
and that if 7;(f) and 7;(5) are the distance labels for each node j € V, in
the forward and reverse problem, then

7;(f) = min {a(s1,%) + a(s2,i) + a(i,j) : i € N}, and,
7;(b) = min {a(s1,1) + a(t2,i) +a(i,j): 1€ N}

Algorithm two path takes O(n?) iterations if the distances a(sk, 7) and a(}), ti)
are known. However, these distances can be obtained by finding the simple
shortest path trees rooted at nodes s, and #; in at most O(n?) time. The
complexity of the two path algorithm is therefore O(n?). Let OPT(s) be the
cost of the optimal shared solution.

The first star solution can be found similarly. Let 7} = min {a(sy,¢) +
a(ty,t) + a(¢,J) : ¢ € N} denote the minimum cost of connecting nodes
s1,t; to node j. Note that these values can be found using the two path
algorithm as follows. Create a new super source S, and connect arc (S, j) of
cost a(s1,j) + a(ty, j) between every node j and node S. Solve the shortest
path problem between node S and all other nodes. Thus it takes O(n?) time
to solve the problem. Then the optimal first star solution costs OPT(1}) =
7;'12 +7,,. Similarly, let Trf denote the minimum cost of connecting nodes s;, {;
to node j. Then the optimal second star solution costs OPT(2) = x2 + x7.
The total optimal cost is therefore

2 2
OPT = Zpka(sk,tk)-kmjn {Z a(sg, tx), OPT(s), OPT(k)—a(s, te) : k = 1,2}.
k=1

k=1

Finding OPT(k) takes O(n?) for either commodity. Hence problem CTC .
can be solved in O(n?) time.



4 An Exact Formulation

We now describe an eract linear programming formulation for the problem
and show that it always has an integer optimal solution. The formulation is
suggested by the algorithm described in the previous section. When ry +r; >
C, then the following formulation TP guarantees optimal integer solutions.

Miﬂ = Z w,-j( '11+ 5,)

(ij)eA
subject to :
—pe—1 J=3;
SUE-F) = o m+l j=t4
i 0 otherwise

All variables > 0

Formulation TP is really two separate shortest path problems and hence
guarantees integer solutions. Now consider the case when ry +r; < C.

Let z = 1 if there is an independent solution, and 0 otherwise.
Let z, = 1 if there is a shared solution, and 0 otherwise.

Let z; =1 if there is a first star solution, and 0 otherwise

Let z; = 1 if there is a second star solution, and 0 otherwise.

Consider the first star solution. Let ky,!; be the out and in junction nodes
for commodity 1. and k5,5 the out and in junction nodes for commodity 2.
To find the minimum cost first star, we assume that 2z; units flow out of
node 3;, split into 2 at node k&, and z, units enter nodes &, and [,. This is
called the ”sy flow” which occurs before node k; or [;. Similarly, 2z; units
flow out of node ¢, split into 2 at node [/, and z; units enter nodes k; and {;.
This is the "t; flow” which occurs before node k; or i;. Finally, z; units of
commodity 2 flow from k; to s, and from /; to ¢;. Commodity 2 flow occurs
after node ky or {,. We define the following variables.

For each arc (z,7) € A let :
e;(1) equal the quantity of s, flow on the arc
gi;(1) equal the quantity of ¢; flow on the arc
(1) = 1 only if it has commodity 2 flow on it after k; or I
For each node j € .V let u} = 1 if junction node j equals k; or /;
Let z; = 1 if there is a first star solution.

13



Consider the following formulation S(1).
Min v(1) = 3 wi(el;(1) +gi(1) + f5(1)

(i.7)€A

subject to :

Z(egj(l) - 6;;(1)) - “Jl' {
1 _ =25 j=1t
Z(gilj(l) —g;(1)) = u; - { 1 otherwise
0

+

SR - fA)) +u! =

i

0
31 J=asg0ris
0 otherwise

ea.‘}?f’uezl 2

Consider any first star solution to CTC. We can obtain a corresponding
solution for S(1) as follows. Set z; = 1, and e};{1) = 2 for all arcs (¢, )
between s; and ky, in the star. Similarly, set g(1) = 2 for all arcs (3, j)
between t; and /; in the star. Next, set up, = uj, = 1, and e},(1) = 1 on all
arcs (1, j) between nodes ky, k; and between nodes &, /5, and g}j(l) = 1on all
arcs (i.7) between nodes [, k; and between nodes [, {; in the star. Finally,
set fj(l) = 1 for all arcs (z, j) between nodes ks, s, and between nodes I3, ¢,
in the star. Let S'(x) be the polyhedron defined by these constraints. The
second star formulation $(2) can be similarly described using variables eZ(2),
9%:(2), f5(2), and u}. Let 5%(+) be the polyhedron defined by the constraints
of $(2). It is easy to establish the following result.

Lemma 3 Given q first star (second star) solution to CTC of cost W +
(p1—Da{s tr) + poa(sa, b2), (W +pralsy, t1) + (g2 — 1)a(s2,t2)) there exists
a solution for S(1) (S(2)) of cost W.

Sastry [6] has described an exact linear programming formulation (one that
guarantees integer optimal solutions) for the uncapacitated two commodity
network design problem with fixed costs and no flow costs. This formulation
is based on a characterization of optimal solutions. where each commodity
flows on one path, and the two paths are either shared or independent. This
suggests that we can use a similar formulation for the shared solution. For
the sake of completeness, we describe the formulation here, and later show
how it can be used to describe an exact formulation for CTC.

14



We define shared path P to be mazimalif all shared arcs belong to it. Suppose
there is a shared maximal path from node ¢* to node j* with commodity 1
flowing from :* to j*. We say that the shared path starts in node :* and
ends in node j*. Let § € {f,b} be a parameter that denotes whether there
is a forward or reverse solution respectively. If £ =1 or § = f, then flow of
commodity & on arc (2,7) is said to occur before the shared path if the flow
has not yet entered node " and is said to occur after the shared path if it
has left node j*. If ¥ = 2 and § = b. then flow of commodity 2 on arc (¢, ;)
is said to occur before the shared path if the flow has not vet entered node
J™ and is said to occur after the shared path if it has left node :*. We define

the following 0-1 variables.

For each node j € N let:
uj(8) = 1 if the shared path starts in node j
v;(8) = 1 if the shared path ends in node j

For each arc (i,7) € A let :
el = 1 only if commodity k flow occurs before the shared path

gf} =1 only if commoedity & flow occurs after the shared path
hi;(6) = 1if it is a shared arc.
Consider the following formulation for the shared problem SF.

Min v(s) = > wij(e); + el + gl + 95 + hii(f) + hi(8))

{i.j}€A
subject to :
1y _ —<s j———S]
;(eu e,:) — u;i(f) uj(b) = 0 otherwise
I, ) =82

0 otherwise

11 , .. - & y=h
Z(gij 9’;‘:') +u;(f) +e(8) = 0 otherwise
Iy .} =i,

(g5 = g5) + v+ us(d) =

e,g.h.u,v.z,

v



Let SC be the polyhedron defined by these constraints. It is straightforward

to verify that given a complete shared path for each commodity, we can obtain

a corresponding feasible solution for SC (see also Sastry [6]). We can now

reformulate the capacitated two commodity network design problem CTC

as follows. Let § =1 if ry + r2 > C and zero otherwise. For & = 1,2 and
= 1,2, define f%() as zero if k = I. Define ef;(1), gk(/) as zero if k # 1.

Reformulation CTC(R).
2 2
Max v = 3 wilhi(F)+hi(0)+ 2 (fr+eb+gk+ 3 (FE(D+ek (D+g5(1))]

(ij)€A k=1 i=1
subject to
—e -0+t zm—§ j=8%
S(UE-f) = {#k+~0"~k+€ J=t
: otherwise
30+33+31+Zz+6 =1
U,gv, hi;(8), u,(é) v,(é) € SCfork=1,2 6= fb
(1 9.;( ), fa(1),u; € S'(x)
2), 955(2), (2), € S'x)

Notice that if 7, +r; > C and £ = 1, then all variables associated with
the shared and star solutions are zero, and the problem reduces to TP. The
reformulation has 28m 4 6n -+ 4 zero-one variables: 4 variables for zq, z,, 71, 22,
and an additional 12m + 4n for the shared solution (where we count ef; and
e separately), 6mn + n for each of the star solutions, and 4m for variables

%. The original formulation for CT'C has 5m variables. The reformulation
has 14n constraints: 6n for the shared. and 3n for each of the first star and
second star solutions, and 2n for variables f7. k. The original formulation has
O(m + n) constraints. Thus if m = O(n?) as in the case of complete graphs,
the reformulation has fewer constraints. We show later that CTC(R) always
has an integer optimal solution. First we motivate the result by interpreting

the dual variables.

4.1 Interpretation of dual variables and constraints

In this section, we consider the dual DCTC(R) of CTC(R) and interpret
the dual variables at each node as an upper or lower bound on the distance
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from one of the terminal nodes, or as a bound on the cost of sending one
unit from a source sink pair, s, £, to one of the other terminals. The dual

constraints corresponding to the first star solution, except the constraint for
7 are

aj 1)—03(1) S Wy
A1) = Bi(1) < wy
(1) —n¥(l) < w
77(1) = aj(1) = 84(1) < 0.

Let DS'(*) denote the polyhedron described by these constraints. Notice
that the first three constraints of the dual are identical to those of the sim-
ple (one commodity) shortest path problem and correspond to the primal
variables ej;(1), ¢/;(1) and f%(1). In the simple shortest path problem, with
origin s, destination ¢, and dual variables «;, we can find at least two sets of
optimal dual node potentials: (i} x; = a(s, ), ot (i) 7; = a(s.t) — alj,1).
Either of these sets of values gives a dual optimal solution. The first set of
dual values can be interpreted as an upper bound on the node distances or
how far’ nodes can be from s, and the second set of values as a lower bound
on node distances, or how 'close’ nodes can be to s given that the shortest

distance from s to ¢ is a(s, t).

As we show later, the optimal value of dual variables a}(1) is a(sy,j), the
upper bound on distances from s, and 8/(1) is a(t1.j), the upper bound
on distances from ¢;. The variables n}(1) equal =} which is the least cost
of connecting nodes s,,%,,J in the first star solution.. The last constraint,
corresponding to primal variable u}, states that the minimum cost ! of
connecting nodes $;,¢, to J is at most equal to a(sy,J) + a(ty, j)-

The constraints for the second star solution. except the constraint for =, are

af(2) - af(2) £ wy

8H2) - BH2) < wy

n7(2) - ni(2) < wj
1731(2) — Otf('.?) - 512(2) < 0.

Let DS*(x) denote the polyhedron described by these constraints. The in-
terpretation of the dual is identical to that of the first star solution with the
roles of the two commodities reversed. The dual constraints corresponding

17



to the shared solution, except the constraint for 2, are

ok — a" < wy;

ﬁi 5" < Wy

n;(8) —m(d) < wy
ni(f)—a}—al <0
B +82-n{f) £0
7;(0)+ 62 —a; < 0
Bl —a?—n(b) £ 0

Let DSC denote the polyhedron described by these constraints. As we show
later, the optimal node potential a , which corresponds to the low conserva-
tion equation for ef ", equals a(sy, _;) the upper bound on the distance from s;
to node j. Similarly, n;(f) corresponds to the flow conservation equation for
hi;(f), and equals #;(f), the minimum cost of reaching ; from nodes sy, ss.
The node potentials 3% correspond to the flow conservation equations for g5,
and equal OPT(s)/2 — a(j,t;). If we interpret OPT(s)/2 as the refracted
distance between s; and ¢, then these values are a lower bound on distances.
and measure how ’close’ these nodes can be to si given the shortest distance
OPT(s)/2.

Again, as we show later, the dual constraints with #;(f) and af , correspond
to the primal node variable u;(f), and ensure that the minimum cost n;{f)
of reaching node j from s; and sz, is at most equal to a(s;,j) + a(s2,j). The
dual constraints with n;{f) and Jf, correspond to the primal node variable

vj(f), and ensure that the minimum cost 7;(f) is at least equal to OPT(s) —
a(j,t;) —a(J,t3), the sum of the lower bounds on the node potentials.

Finally, the dual DCTC(R) of reformulation CTC(R)}, including objective
function and the constraints for the variables zq, z,, 21, 22 15

2
Max v =3 uu(vg, = 7o) +©

k=1
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subject to
k

'Yf"’)’; < wy
O+, +15, -1 -7 £ 0
O +2a) (1) +28: (1) —n2 () —nd(L)+9L =44, < 0
© +2a7,(2) +285(2) ~ 3, (D) =, () + 75 -7, < O
Ota, +al, ~8, -8, <0

ag(1),8](1),73(1) € DS'()

az(‘-’),ﬂf(?),n}(?) € DS«

of, 85, n;(f),m;(6) € DSC
All variables > 0.

The first constraint is the shortest path type constraint corresponding to
primal variable ff which send yj units from sy to £;. The dual variable
"/f equals a(sk,s). Thus, the dual objective function equals gya(sy.¢1) +
p2a(sy, t2)+ ©. If we recall that OPT(1) = #x, +; and OPT(2) = L +7rt21,
the next constraints ensure that

0 < a(sy.t1) + alsy, ta)

O < OPT(1)—a(sy.ty)

O < OPT(2)—alsy,ty) and
0 < OPT(s).

Clearly. this ensures that the extra cost © is at most equal to the cost of two -
independent paths. the cost of a shared solution. or the extra cost of a star

solution.

4.2 Integer Optimal Solutions

We now come to the main result of this Section, where we show that the linear
program CTC(R) is an exact formulation, i.e., it has an integer optimal

solution.

Theorem 3 The linear programming formulation CTC(R) always has an
iteger optimal solution.

Proof
We prove the result by describing a dual feasible solution for DCTC(R)

that has the same objective function value OPT as the primal solution. Let

7; = a(‘gkaj)'
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Using the r;(6) values from algorithm two path in the shared problem, let
O‘E = a3k, ),
; = OPT(s)/2 - a(j, t),
rfj(f) = Wj(f)’ and
2;(b) = ;(b) — OPT(s)/2.

Using the 7 values from algorithm two path in the first star solution, let

aj(1) = a(s1,j). 31(1) = a(j, ta), n}(1) = 7}.

Using the 72 values from algorithm two path in the second star solution. let
}(2) = a(s3,j), BH(2) = alj,t2), )(2) = 7}
Finally, let

E‘) = min {a(sl,t1)+a(32,t2),OPT(s),OPT(I)—a(s1, tl),OPT(Q)—a(32, tg)}

Hence the dual objective function equals the minimum of the costs of the
independent, shared. first star or second star solution. Therefore. if the dual
values are feasible, we are done.

First consider the shared solution. From algorithm two path notice that.
={f) < a(s1,]) + a(s2,)) and that 7;{b) < a(s1,J) +a(j.t2). Since 7,(f) is
the minimum cost of sending one unit of flow from each of the nodes s; and

2 to node j, and since a(j,t;) + a(j,%2) is an upper bound on the cost of
sending one unit from node J to each of nodes ¢, and {5, it follows that

m(f) +alj.t) + a(j.t2) = OPT(s).

Since 7;{b) is the minimum cost of sending one unit of flow from node s; to
node j. and one unit from j to ty, and since a{J.t1) + a{s2, /) is an upper
bound on the cost of sending one unit from node j to node ¢, and from s; to

j. it follows that
m;(0) + a{j. 1) + alsy,j) = OPT(s).

[t is now easy to verify that these values of the dual variables satisfy dual
feasibility for the shared problem. Similar arguments establish that dual’
constraints are satisfied for the two star problems.



5 Related Problems

Consder one and two commodity problems, capacitated and uncapacitated,
with or without fixed and flow costs. Fixed costs can be shared between
two commodities. whereas flow costs cannot. It is important to distinguish
between the network loading type of capacitated problems considered here
where capacity can be purchased in batches, and fixed capacity problems
where at most some fixed quantity C of capacity can be added. Unless
specified otherwise, we consider problems on undirected graphs.

Consider single commodity problems. The uncapacitated version of this
problem with or without fixed costs, with or without flow costs is easy to
solve. The shortest path from source to sink provides the optimal solution.
The network loading problem with fixed costs and no flow costs, or with no
fixed costs and only flow costs can be solved using a shortest path algorithm.
However, if there are both fixed and flow costs, Chopra et.al.[2] showed that
the problem is NP-hard. They also showed that if there are two types of
facilities where capacity can either be added in units of C or 1. the problem
is NP-hard even without flow costs.

Consider uncapacitated two commodity problems. If there are no fixed costs.
but only flow costs, the problem can be solved by finding the shortest path
from each source to the corresponding sink. If there are fixed costs, but no
flow costs, Sastry {6] showed that the problem has an optimal solution with
at most one shared path, and can be solved in O(n?) time. and described
an extended linear programming formulation that guarantees integer optimal
solutions. If there are both fixed and flow costs. it is not known whether the

problem is in the class P or not.

Some related problems are the so called two path problems, where we wish
to find the shortest paths from two sources to two sinks, and paths are
allowed to share arcs. If the problem is defined on an undirected graph, it
reduces to the uncapacitated two commodity network design problem with
no flow costs. If it is on a directed graph, then the best known combinatorial
algorithm solves the problem in O(n*) time (M. Natu and S.Fang [4]). This .
problem is equivalent to the uncapacitated two commodity network design

problem on a directed graph.
Consider the network loading type of capacitated two commodity problems.
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If there are no fixed costs, the problem can be solved by finding the shortest
path from each source to the corresponding sink. If there are fixed costs,
but no flow costs, then we have shown in this paper that the problem can be
solved in O(n?) time, and have described an exact linear programming formu-
lation that guarantees integer optimal solutions. If there are both fixed and
flow costs, then clearly, the problem is NP-hard, since the single commodity

version is known to be so.

The following table summarises the results known so far. Dashes in the table
indicate that the particular parameter is irrelevant. The table shows the
complexity of the best best known combinatorial algorithm if the problem
can be solved in polynomial time. All costs are assumed to be non negative.

Problem Capacitated | Fixed Cost | Flow Cost | Complexity
Single No - - O(n?)
Commeodity | Yes Yes No O(n*)
Yes No Yes O(n*)
Yes Yes Yes NP-hard
Yes (two
facility) Yes Ne NP-hard
Two No Yes No O(n?)
Commodity Digraph: O{n*)
No No Yes O(n?)
No Yes Yes Not known
Yes Yes No O(n?)
Yes No Yes O(n?).
B Yes Yes Yes NP-hard

6 Conclusions

We have characterized optimal solutions and shown that the capacitated two
commodity network design problem with fixed costs and no flow cost can
be solved in polynomial time. Either all lows are on independent paths. or.
4+ C units of each commodity are sent on shortest paths with the remainders
sharing paths (which we call the shared solution), or (ux — 1)C units of one
commodity and i, C of the other commodity flow on shortest paths, with the
remaining flows forming the kth star solution. The algorithm repeatedly uses

(3]
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Djikstra’s algorithm on different auxiliary graphs derived from the original
one. We also describe an exact linear programming formulation that guar-
antees integer optimal solutions, using O(m) variables and O(n) constraints.
We also discuss several other variations of the single and two commodity
problems, where the presence of both fixed and flow costs makes capacitated

problems hard.
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