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Abstract

In this paper, we describe the capacity management of Intensive Care Units (ICUs) in
a 300-bed multi-speciality hospital where the alternative ICU is utilized when the appropriate
ICU is full for a set of two types of ICUs. Inter-arrival time and service time distributions in
these ICUs have been tested and found to be exponentially distributed.

While most capacity management models are deterministic in nature, we have
developed a queuing model to provide a basis for decision-making in the design and
management of these ICUs. The model results in around 19800 linear steady state equations,
which are solved using the CPLEX linear optimization solver. Based on real data available
from a hospital in India, the results demonstrate that the utilization of the ICU beds will

improve up to 28 percent when admissions to the alternative ICU are permitted.
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1. Introduction

An Intensive Care Unit (ICU) is a specific part of a hospital that provides one-to-one
nursing care to patients requiring special attention. The concept of ICU originated during the
poliomyelitis epidemics in the 1950s, when polio patients were managed in a specific part of
the hospital and received one-to-one nursing care. From then on, there was a gradual
development in this concept, until the ICU was a recognizable component of most general
hospitals. Now modern ICUs are special nursing units designed, equipped and staffed with
specially skilled personnel for treating critically ill patients or those requiring specialized care

and equipment.
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With the advancement in medical care and the availability of facilities for highly specialized
treatments, separate sophisticated ICUs are available for admitting patients according to their
age, surgical procedures, diagnosis etc. In particular, Surgical Intensive Care Unit (SICU)
provides care to post-surgical patients and those patients who develop complications after
surgery and require close nursing observation and care. Medical Intensive Care Unit (MICU)
provides care for emergency patients suffering from coma, shock, hemorrhage, convulsions,
respiratory and other medical problems. In Pediatric Intensive Care Unit (PICU) neonates and
children are admitted, while the Coronary Intensive Care Unit (CICU) cares for patients with
acute cardiac conditions utilizing electronic monitoring and therapy equipment. In Neuro
Intensive Care Unit (NICU) patients with epilepsy, head injury, paralysis, etc. are admitted

Capacity management in an ICU involves optimal utilization of available resources
(doctors, nursing staff, equipment, operating theatres and beds). The bed of an ICU is a
scarce and expensive resource because a fixed number of beds are allotted to each ICU.

We undertook this study in a multi-speciality hospital where a patient may be
admitted to an alternative ICU when the appropriate ICU is full. We have developed a
queuing model where every ICU is considered as a service station and each ICU bed as a
server. Here we consider a system where patients qualify for any of these two service stations
can be interchanged to a certain extent. We also show that there is an increase in capacity
utilization of up to 28% when admissions to alternative ICUs are permitted.

The remainder of this paper is organized as follows. The next section deals with a
brief review of available literature on ICUs; a detailed discussion on the problems faced by
the hospital administration is given in section three. Methodology and statistical models are
presented in sections four and five respectively. Sections six and seven provide the
demonstration of computer implementation and the results. The last section gives the

concluding remarks and extension for further research.

2. Literature Survey

A wide range of literature is available on capacity management and bed allocation
models in a hospital. Here, we focus only on the literature related to a hospital’s ICU. Some
of the literature relies on queuing theory, while some discuss simulation and prediction
models.

The estimation and forecasting of the number of beds required in an ICU is an

important issue for new planners and for those who want to expand existing unit beds.



Cooper and Corcoran (1974) estimated bed needs by means of queuing theory in a hospital
that was planning to increase acute Coronary Care Unit (CCU) beds and also establish a new
intermediate CCU. Sissouras and Moores (1976) report that the number of beds a CCU
requires depends on medical and operational criteria. They use simulation procedures to
provide a guide to planners of prospective CCU’s to determine the number of beds most
appropriate for various projected admission rates.

While forecasting is an important issue, another equally important consideration is the
efficient utilization of available ICU beds. This has an impact on a patient’s welfare in terms
of quality of care provided, and on the hospital’s cost effectiveness. Ridge et al. (1998) use a
simulation model, which shows that there is a non-linear relationship between numbers of
beds, mean occupancy level, and the number of patients who have to be transferred due to
lack of bed space. Kim et al. (1999) analyze the admission-and-discharge data of a specific
ICU of a public hospital within a steady state queuing framework and through a computer
simulation model of that ICU. Kim et al. (2000) suggest that the way to minimize the number
of cancelled surgeries is to reserve some of the unit’s beds for the exclusive use of the
elective-surgery patients. Based on a hospital ICU’s historical data, they evaluate various
bed-reservation schemes via a simulation model.

We know that for good patient care in an ICU, optimum staffing level of nursing staff
is required. Hence, management of staff is also a challenging issue. Hashimoto et al. (1987)
designed a computer program to simulate a 12-bed Medical/Critical ICU workload and
staffing system. Nursing staffing policy costs, availabilities, and a table of past patient acuity
points per shift were input; total overstaffing, understaffing, and cost per year for full-time
nursing equivalents for direct patient care were output for different staffing levels. Issues of
financial cost, quality of care, and staff working preferences were used to evaluate optimal
staffing levels.

Another important point is the prediction of the risk associated with the transfer of a
patient from ICU to a ward because the ICU is full. When a CCU becomes full, an existing
patient is transferred into a ward in order to make room for the next arrival. The patient
transferred may have suffered a heart attack and still be at risk whilst the next patient
admitted may subsequently be diagnosed as having nothing more serious than indigestion.
McNeer et al. (1975) present their experience with 522 consecutive patients with acute
myocardial infarction admitted directly to the CCU. They suggest that it would be feasible
and ethically justified to make a trial of early discharge in patients who meet the given

criteria. Wharton (1996) used the queuing theory to develop a model which predicts the



proportion of patients from each diagnostic or risk category that would be prematurely
transferred as a function of size of the unit, number of risk categories, mean arrival rates and
length of stay.

Advances in intensive care have made it possible to prolong the lives of patients with
little expectation that they will survive. Futile treatment is not only costly but also prolongs
suffering for patients and families. Predictive models to identify patients in ICU who will die
depend on physiological data obtained at the time of admission or in the first 24 hours.
Atkinson et al. (1994) describe a dynamic scoring system based upon daily organ failure
scores — APACHE II scores corrected for the duration and number of organs in failure- with
an algorithm designed to make daily predictions of individual outcomes in 3600 patients.

If the length of ICU stay can be predicted, patients can be scheduled so as to improve
the use of existing ICU beds. Tu et al. (1994) develop a predictive index for length of stay in
the ICU following cardiac surgery. Univariate and multivariate logistic regression analysis of
a cohort of 1404 patients divided into a derivation set of 713 patients and a validation set of
691 patients was conducted. A predictive index was created by assigning risk scores based on
the odds ratios of the significant variables in the logistic regression analysis. The predictive
index was found to predict lengths of ICU stay greater than 2, 4, 7, 10 days, and patient death
in the validation set.

In the literature survey we found that Ridge et al. (1998) and Kim et al. (1999, 2000)
have reported work on a single ICU. Generally, they have considered it to be the only ICU
(General ICU) or one of the many ICU’s of the hospital. To the best of our knowledge, no
work is available for multiple ICUs where admissions to alternative ICUs are permitted when
the appropriate ICU is full. Moreover, in the Indian context, practically no research work has

been done in this area.

3. Problem Description

We undertook this study in a hospital situated in a prime location of the city of
Ahmedabad in western India. This hospital was built in 2001 with a bed capacity of 250 in
the beginning. Subsequently the bed strength was increased to 300. It is a multi-speciality
hospital offering medical services in general medicine, general surgery, cardiology,
neurology, pulmonary medicine, orthopedics, gynecology and obstetrics, pediatrics, skin,

ophthalmology etc. It also has a recognized medical college under Gujarat University, India.



A brief study of different activities in this hospital enabled us to have detailed
discussions on the different problems being faced by the physicians and hospital
administrators and seek suitable solutions. The hospital faces a heavy patient load over ICU
beds as compared to general beds, particularly over MICU. The hospital administration was
sure that utilization of alternative ICUs would increase the capacity-utilization of the hospital,
but they were not sure about the extent of such an improvement.

In this hospital five ICU’s are available for admitting the patients separately, i.e.,
SICU, MICU, NICU, CICU and PICU. Distribution of beds in these ICUs for June 2004 is

given in Table 1.

Table 1 Distribution of beds among different ICUs

Type of ICU No. of beds
Surgical ICU 8
Medical ICU 14
Coronary ICU 9
Neuro ICU 10
Pediatric ICU 8

This hospital guarantees elective admission dates and does not turn away any emergency
admission. This creates a situation where, when there is no empty bed in the appropriate ICU, a
sufficiently recovered patient is transferred to the ward in order to create a vacancy for the new
referral. If an expedited transfer is not possible, the new referral is admitted to an alternative
ICU. This process is feasible only for MICU, CICU and NICU. As Figure 1 indicates, a new
referral that qualified for any of these three ICUs (MICU, CICU, and NICU) could not be
admitted to SICU or PICU, since the chances of infection were high in SICU and PICU.



Referral qualified for
MICU/NICU/CICU

Referral qualified
for SICU/PICU

SICU MICU CICU NICU PICU

Figure 1. Feasible movements of new referral in ICUs.

MICU, CICU and NICU work as a network - in case of an emergency the same treatment
and care is provided in an alternative unit (Figure 2). In the beginning, the original MICU had 23
beds where patients qualified for MICU and also for CICU were admitted together. In June 2004,
the original MICU was divided into a new 14-bed MICU and a 9 bed CICU. One more CICU is
being planned.

We decided to restrict this study to the network of two ICUs (23-bed original MICU and
10-bed NICU) over the continuous four-month period before June 2004 i.e. from February — May

Referral qualified for
MICU/NICU/CICU

14 bed | 9 bed

Micu | cicu 10 bed NICU

23 bed original MICU

Figure 2. Network of three ICUs

2004. A new referral who qualifies for the MICU is the right type for MICU and if admitted to
the NICU, he/she is the wrong type for NICU. Similarly a new referral who qualifies for NICU is
the right type for NICU and if admitted to the MICU, he/she is the wrong type for MICU. Now

we consider two possibilities. When,

1. wrong type of patients are not allowed, i.e., alternative ICU admissions are not permitted, so

two ICUs work as independent service stations (case 1),



ii. wrong type of patients are allowed, i.e., alternative ICU admissions are permitted so two

ICUs work as dependent service stations (case II).
Initially we have set up the following goals:
1. To obtain steady-state queuing models for these two cases
2. To obtain expected number of patients in the system for both the cases.
To achieve the above goals, real data is required to study the following:
1. The average arrival rate per day for these ICUs.
ii. The arrival pattern of the patients in these ICUs.
iii. The average length of stay (service time) in each ICU.

iv. The service time distribution of the patients in these ICUs.

4. Methodology

Our data collection exercise was very challenging. In every ICU, details of each
arriving patient were written manually in different registers by the nursing staff. They
maintained different registers- such as Admission Book (for details of patients admitted to the
ICU), Discharge Book (for details of patients discharged directly), Transfer Book (for details
of patients transferred), Death Book (for details of patients who die), and Remaining Book
(the number of patients in the ICU at midnight, after accounting for the day’s arrivals,
transfers, discharges). The data were, therefore, scattered in various registers which were
dumped in a record-room at the hospital. The following are the different data details that we
have collected from the different registers:

1. Total number of arrivals per day (one day is counted from midnight to midnight) in each
ICU.

2. Age, sex, and diagnosis of each patient.

3. Aurrival and discharge/transfer date and time of each patient.

4. Survival outcome of the patient.

The ICU that is the focus of this study receives virtually all of its patients from four
different sources: (1) Ward; (2) Casualty; (3) Operating Theatre; and (4) Admission office.
Patients are referred to the ICU by their physicians. Very often, a physician will call at the
admission office of the hospital when a patient is to be admitted, giving the name of the
patient, his accommodation preferences, and a brief diagnosis, so that the admitting clerk will
know in advance where to assign the patient expected. When the patient comes directly to the

hospital without any physician’s reference, he/she will go through the assessment process in



the 3-bed casualty, where the appointed physician or the hospital’s on-call physician will
decide his accommodation preferences. The number of patients admitted is not necessarily an
indication of the correct assessment of the cases when first seen. Patients are admitted
throughout the day and night but usually discharged in the morning.

In ICU all the patients can be classified into two groups according to the medical
speciality of the required treatment: (1) Medicine, and (2) Surgery. For each ICU these

specialties can be divided into sub-specialties (Table 2).

Table 2  Sub-speciality groups in each ICU

Type of ICU Medicine Surgery
MICU Internal General
Infectious Disease Orthopedic
Oncology Onco surgery
Gestroentrology Gastric surgery
Nephrology Urology
Respiratory Plastic surgery
ENT
CICU Cardiology Cardiothoracic surgery
NICU Neurology Neuro surgery

The problem could be modeled in two approaches (analytical/queuing and
simulation). In the analytical approach, the actual arrival and service time distributions are
approximated using one of the statistical distributions known, i.e. Poisson, exponential, etc.,
to describe the expected value of various operational characteristics of the queuing process.
We first looked at the arrival and service-time data and attempted to determine their

distributions.

5. Model Development

For the period February to May 2004, approximately 4600 inpatients were admitted in
the hospital. Of these, 1125 patients were admitted to the MICU and NICU. Out of the 1125
patients, 43 came twice and 3 came thrice to the ICU during the length of their stay in the
hospital. The classification of patients according to their ICU preference and medical sub-

specialties is given in Table 3.



Table 3 Admission and survival rates according to medical sub-specialties in each ICU.

Type Admiss Survival | Patient(s) came
of Sub-speciality | Admitted on rate Died sutcome Total
Groups patients patients Twice | Thrice | arrivals
ICU (%) (%)

MICU | Inter. Medicine 61 5.42 7 88.52 3 - 64
Infec. Disease 7 0.62 1 85.71 - - 7
Respiratory 41 3.64 7 82.93 2 - 43
Gestroentrology 9 0.80 - 100.00 1 - 10
Nephrology 9 0.80 2 77.78 - 9
Oncology 4 0.36 - 100.00 - - 4
Cardiology 694 61.69 27 96.11 22 2 720
General surgery 20 1.78 4 80.00 1 - 21
Orthopedic 13 1.16 2 84.62 1 - 14
Onco surgery - - - - - - -
Gastric surgery 2 0.18 - 100.00 - - 2
Urology 5 0.44 - 100.00 - - 5
Plastic surgery 1 0.09 - 100.00 - - 1
ENT 4 0.36 - 100.00 1 - 5
Cardio Th. Surg 82 7.29 1 98.78 7 - 89

NICU | Neurology 105 9.33 11 89.52 3 - 108
Neuro surgery 68 6.04 7 89.70 2 1 72

Total 1125 69 43 3 1174

5.1 Distribution of Arrival Time

We tested the data to check if the arrival process could be following a Poisson
distribution. If the probability distribution of a number of random arrivals in a fixed time
interval follows a Poisson distribution (or if the arrival process follows the Poisson
distribution), then the distribution of the intervals between successive arrivals (defined as
inter-arrival time) follows the (negative) exponential distribution and vice-versa.
An exponential distribution has the property that its variance is equal to the square of the

mean. We therefore compute mean inter-arrival times and variances for each ICU. We



also carry out Chi-square tests of the hypothesis that inter-arrival times are exponentially
distributed and find that the hypothesis cannot be rejected at the 1% level of significance for
MICU and 5% level of significance for NICU.

5.2 Distribution of Service Time

The service time in the ICU means the length of time a patient stays in ICU before
being discharged/transferred. We compute the means and variances of the service time for
each of the ICUs. We again conduct Chi-square tests to test the hypothesis that service-time
distributions are exponential. The results show that the hypothesis for exponential distribution
cannot be rejected at the 1% level of significance for MICU and 5% level of significance for

NICU. Table 4 shows mean arrival and mean service rates in both the ICUs.

Table 4 Mean arrival rates and mean service rates for each ICU

Mean arrival rate A Mean service rate |
Type of
1CU = 1/ (mean inter-arrival time) =1/ (mean service time)
patients per day patients per day
MICU A=7.97 n1=0.46
NICU Ao=1.44 11,=0.33

5.3 Obtain the System of Steady State Equations
Consider MICU as a system of M servers (beds) in which patients arrive, from outside
the system, to each server i, i =1,...,M, in accordance with independent Poisson processes at
rate ;. then they join the queue until their turn at service comes; the service rate per server is
pi. Similarly NICU as a system of N servers (beds) in which patient arrive, from outside the
system, to each server k, k =1,...,N, in accordance with independent Poisson processes at rate
A2 then they join the queue until their turn at service comes; the service rate per server is L.
The derivation of this model is based on certain assumptions about the queuing
system:
(1) Patients arrive according to Poisson processes at average rates of A; and A, patients per

unit of time in MICU and NICU respectively.
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(i1))  Patients are admitted on a First Come First Served (FCFS) basis at any of the servers
in MICU and NICU.

(ii1)  These servers are identical, each serving according to exponential distribution with
average rates |11 and p, patients per unit of time in MICU and NICU respectively.

(iv)  No queue is allowed (i.e. finite capacity).

Case I: Those patients, who are qualified for MICU (or NICU), admitted to MICU (or
NICU) only, notwithstanding the empty beds in NICU (or MICU). If all the servers in MICU
(or NICU) are busy, a sufficiently recovered patient is transferred to the ward. If an expedited

transfer is infeasible, the new referral joins a queue. This movement can be easily understood

Proper ICU
is full

by the flow chart given in Figure 3.

Transfer
possible

Joins the queue

Transfer to
ward

Admission in
proper ICU

Figure 3. Flow chart of the admission process for new referral in ICUs

Define
M = Number of servers in MICU
N = Number of servers in NICU
A1 = Arrival rate of the patients in MICU

A2 = Arrival rate of patients in NICU

11



p 1 = Service rate per bed in MICU

K2 = Service rate per bed in NICU

P;= Steady state probability of i patients in MICU

Py = Steady state probability of k patients in NICU

P, = Steady state joint probability of (i + k) patients when i patients in

MICU and k patients in NICU
Figures 4a and 4b show the movement of patients among several steady states. Under
steady state conditions for 1, k>0, the expected rates of flow into and out of state (i, k) must

be equal. The steady state balance equations are:

[Ai+ Ao+ iy ko] Paw=APio 9T A Paxay+ A+ Dpy Pas g+ (k+ Dpo Paw+y (1)

Wherei=1,...,M-1, k=1,...,N-1.

The balance equations associated with boundary states are:

Fori=0,

[A1+ A2+ kpo] Po, 19 =22 P,k -1y + 1 P + (K + Do Peo iy (2)
Fork =0,

A+ 2+ ini] Paoy=AiPi-1,00+ (A + Dt Pavr,0)+ 12 Pa o (3)
Fori=0,k=0,

[A1+ 2] Po,0) = 11 P oy + 12 Poo, 1y 4)
Fori=M,

[A2+Mpy +kpo] Pov iy = AP 1,10+ A2 Pov, -+ (K + Do Pov e+ 1 )
Fork =N,

[A+ i+ Npo] Paony=MPaony+ A2 Pin-ny+ (1 + Dy Py (6)

Fori=M, k=N,
Mpg+ Npo ] Pov, vy =MPovi- 1,8+ A2 Py (7)
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Figure 4b Steady state diagram for independent service-stations queuing system
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The normalization is provided by

Z Z P(i’k)zl (8)

0<i<M 0=<k=N

N
where Pi= 2 Pg 1 fori=0,1,.....M 9)
k=0
M
and Pk= > P(i, k) fork = 0,1, ..... ,N (10)
i=0

When M = 23 and N = 10, then the total number of possible steady states is 264.

Hence a total of 264 balance equations exist corresponding to 264 steady states.

Case II: Those patients, who are qualified for MICU (or NICU), admitted to MICU
(or NICU) only. If all the servers are busy in MICU (or NICU) a sufficiently recovered
patient is transferred to the ward. If an expedited transfer is infeasible, the new referral is

admitted to NICU (or MICU) and the same treatment and care is provided in NICU (or

No Proper ICU
is full

Transfer
possible

Another
ICU is full

Admission in
another ICU

Transfer to T f
ransfer
ward possible Join the queue
A 4
o lYes
Admission in
proper ICU Transfer to

ward

Figure 5. Flow chart of the admission process for new referral in ICUs
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MICU). If all the servers in both MICU and NICU are busy, a sufficiently recovered patient
is transferred to the ward and if an expedited transfer is infeasible, the new referral joins a
queue. The flow of the patients is given in Figure 5.
Define
M = Number of servers in MICU for right type of patients
m = Number of servers in MICU for wrong type of patients
N = Number of servers in NICU for right type of patients
n = Number of servers in NICU for wrong type of patients
A1 = Arrival rate of right type of patients in MICU and wrong type of patients in NICU
A2 = Arrival rate of right type of patients in NICU and wrong type of patients in MICU
p1 = Service rate per bed in MICU for right type of patients and in NICU for wrong type of
patients
p2 = Service rate per bed in NICU for right type of patients and in MICU for wrong type of
patients
P; = Steady state probability of i right type of patients in MICU
P; = Steady state probability of j wrong type of patients in MICU
Py = Steady state probability of k right type of patients in NICU
P; = Steady state probability of / wrong type of patients in NICU
Pi.j k. )= Steady state joint probability of (i + j + k + /) patients when i right type and j wrong
type patients in MICU, k right type and / wrong type patients in NICU
The steady state diagrams in Figures 6a, 6b, 6¢, 6d show the movement of patients
among several states. Under steady state conditions for 1, j, k, /> 0, the expected rates of flow

into and out of state (i, j, k, /) must be equal. The steady state balance equations are:

A+ A+ ipg+jua Hkpo 1] P n=MPe-1 i nt A Pk, nt A+ D Pavrjen +

(k+ Dpa Po_jx+1,0+ G+ Dpa Pa e n ™ (C+ Do P+ (11)

Wherei=1,....M-1, j=1,...m-1, k=1,....N-1, /=1,...n-1.

[M+ Ao +ipg +juo Hkpo + 1] P n=MPa i n T A2 Pk, p T A2 Pijaen (1 + 1)
i Paanjnt (G Dua Pk (12)

Wherei=1,...M-1, j=1,...m-1, k=1,...N, /=1,...n, and k+/=N.
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Figure 6b Steady state diagram for dependent service-stations queuing system when k + /

= N (equation 12)

[M+ Ao +ipg +juo +kpo + 1] Pk n= MPaaj T A2 Pij o, p T 2 Pejoron H (k1)
w2 P, g+t (0 Dy Pej k141 (13)

Wherei=1,...M, j=1,....m, k=1,....N-1, /[=1,...n-1, and i+j=M.

[ipg +jpo+kpo ] P n=MPi-1 i nt A2 Pt t 22 Py M Py -y (14)



Wherei=1,...M, j=1,...m, k=1,...N, /=1,...n,and i+j=M, k+/=N.

Figure 6¢ Steady state diagram for dependent service-stations queuing system when 1 + j
=M (equation 13)

Figure 6d Steady state diagram for dependent service-stations queuing system when 1 + j
=M, k + /=N (equation 14)

The balance equations associated with zero boundary states are:

For i =0, substitute P(;_1 j «, h= 0 in above equations. (15)
For j = 0, substitute P .1 k= 0 in above equations. (16)
For k = 0, substitute P ; «-1,))= 0 in above equations. (17)
For [ = 0, substitute P j ,;-1y= 0 in above equations. (18)

18



The normalization is provided by

izj:z 0 kzlfg,j,k,l): ! (19)
i< M kH/< N
i N N-k )
Where Pi =j§(:) kgo g.o P(ijjj Kk, 1) s fori=0.. .M, (20)
M-j N N-k )
P; =3 k§0 EOPMW forj=0...m, 21)
M M- N-k
Pk = ig() j§0 Zg(:) P(i’j’ k1) fork=0.. .N, (22)
M  M-i N-/
P[ = iZ:O jé) kZ::OP(i’j’k’[) . for /= 0...11, (23)

When M =23, m = 23, N = 10 and n = 10, then the total number of possible steady
states is 19800. Hence a total of 19800 balance equations exist corresponding to 19800 steady

states.

5.4 Objective function and constraints
We assume the objective function of these queuing models to be the maximization of
the expected number of patients served in the system.
Ly = Expected number of right type of patients in MICU
L= Expected number of wrong type of patients in MICU
Ly = Expected number of right type of patients in NICU
L, = Expected number of wrong type of patients in NICU

By definition,
M .
LM = Z_: 1 Pi
Lin= J%J P;
N
Ln= kZ:Ok Py
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L,=31P,
[=0

Lmq = Expected number of patients qualified for MICU
Lng= Expected number of patients qualified for NICU
Lys = Expected number of patients served in MICU
Lns = Expected number of patients served in NICU
Then Lyg=Lwm + Ly

Lng=Ln+Ln
Lms=Lm + L
Lyns=Ln+ Ly
Maximize
Z =Ly + s
Subject to

Case I: Equations 1 to 10
Case I1: Equations 11 to 23

6. Computer Implementation

For both the cases, obtained linear steady-state equations are modeled in AMPL
(Fourer et al., 1993) and solved using the CPLEX solver. While this problem can also be
solved with the help of any other scientific package, we have chosen AMPL/CPLEX (version
8.0) for the following advantages it has:

1) The model is generic. If we need to extend the study to another hospital, we can use the
same model. We would only need to test the Markovian property of the arrival time and
service time.

2) The model is independent of the data and the solver. If another hospital faces a similar
problem, we can use the same model.

The AMPL model codes are given in Appendix A for case I and in Appendix B for
case I1. The expected number of patients qualified for MICU and NICU and served in MICU
and NICU are given in Table 5 with the variations in the value of M and N for both the cases.
One of the important points addressed in this study is the computational time required to

solve this model with AMPL/CPLEX (version 8.0). We found that for the largest model with
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over 19800 variables, it took about 124 minutes. The variations in solution time and

percentage increment in capacity utilization in case /I with different values of M and N are

shown in Table 6.

Table 6 Percentage increment in the capacity utilization of both the ICUs

Elapsed time in

No. of Equations Z
Values of M and N solution (in seconds)

Casel | Casell | Casel Case I Case | Casell | ”

increment

M,m=23,Nn=5 144 6300 1 134 20.01211 | 20.92745 4.57%
M,m=23,N,n==6 168 8400 1 307 20.39289 | 21.13425 3.64%
M,m=23,Nn=7 192 10800 1 733 20.66170 | 21.29540 3.07%
M,m=23,Non=28 216 13500 1 1514 20.83345 | 21.41729 2.80%
M,m=23,Non=9 240 16500 1 3740 20.93193 | 21.50663 2.75%
M,m=23,Nn=10 | 264 19800 1 8700 20.98249 | 21.57004 2.80%
M,m=24,Nn=9 250 17875 1 4142 21.13097 | 21.29544 0.78%
M,m=25 Nn=28 234 15795 1 2980 21.18266 | 21.57005 1.83%
Mm=22, Nn=10 | 253 18216 1 3660 20.72786 | 21.50663 3.76%
M,m=21,Nn=10 | 242 16698 1 2074 20.41279 | 21.4173 4.92%
M,m=20,Nn=10 | 231 15246 1 1320 20.03464 | 21.29540 6.29%
Mm=22,Nnn=9 230 15180 1 1751 20.67730 | 21.41731 3.58%
M,m=21,Nn=28 198 11385 1 582 20.26375 | 21.13422 4.30%

7. Conclusion and Extension

We found that there is an increase in the number of beds utilized, if admissions are

permitted to alternative ICUs when the appropriate ICU is full. In both the ICUs in case 11,

between 1-6% more beds are utilized as compared to case I (Table 6). For only NICU the

highest increment in bed utilization may be as much as 28%, at the loss of 1% patients

qualified for NICU (Table 5). We, therefore, recommend that when it is practicable to admit

patients into alternative ICUs, the hospital must do so.
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The work can be extended in many ways. The first one is to extend it to another
hospital and examine the results obtained. The other extension is to model different types of
possible movements of patients within a hospital.

Those patients, who are qualified for MICU (or NICU), admitted in MICU (or NICU)
only. If all the servers are busy in MICU (or NICU), a sufficiently recovered patient is
transferred to NICU (or MICU), and if an expedited transfer is infeasible, the new referral is
admitted to NICU (or MICU) temporarily and the same treatment and care is provided in
NICU (or MICU) until a vacancy is created in the MICU (or NICU). If all the servers in both
MICU and NICU are busy, a sufficiently recovered patient is transferred to the ward and if an
expedited transfer is infeasible, the new referral joins a queue.

The corresponding stochastic process is not Markovian since the future behavior of
the process depends not only on the current state but also on the time spent in the previous
ICU. As this process is not Markovian, it may not lend itself to modeling by standard queuing
models. Either a new analytical model may be developed or we could use simulation

techniques.
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Appendix A: AMPL model file codes for case I

param

param

param

param

param

param

var Prob {0.

M;
N;
m arate
n_arate
m srate

n srate

.M,

maximize exp m:

{0.
{0.
{0.
{0.

0.

sum

subject to balance

Prob[m,n] * (m arate[m]

(if m
(if n
(if m
(if n

subject to total:

.M}

LN}

.M}

N}

N}

{m

{m

>= 0;
>= 07
>= 07
>= 0;

in 0..M, n in 0..N}

in 0..M, n in 0..N}:
] + m srate]|

+ n_arate[n
= 0 then 0 else m arate[m-1]
_1]

0 then 0 else n arateln
23 then 0 else m srate[m+1]
= 10 then 0 else n srate[n+1]

sum {m in 0..M,

24

* Prob[m-1,n

* Prob[m, n-
* Prob[m+1

* Prob[m,n

1

14
+

m]
1)
1)
n]j
1]

)
) 7

_I_

n in 0..N} Prob[m,n]

m* Prob[m,n];



Appendix B: AMPL model file codes for case I1

param M1;

param M2;

param NI1;

param N2;

param ml arate {0..M1} >= 0;

param mZ2 arate {0..M2} >= 0;

param nl arate {0..N1} >= 0;

param n2 arate {0..N2} >= 0;

param ml srate {0..M1} >= 0;

param m2 srate {0..M2} >= 0;

param nl srate {0..N1} >= 0;

param n2 srate {0..N2} >= 0;

var Prob {ml in 0..Ml1, m2 in 0..M2-ml, nl in 0..N1, n2 in 0..N2-nl}
>= 0, <= 1;

maximize exp ml:sum{ml in 0..M1, m2 in 0..M2-ml, nl in 0..N1, n2 in
0..N2-nl1} ml * Prob[ml,m2,nl,n2];

subject to balance{ml in 0..Ml, m2 in 0..M2-ml, nl in 0..N1, n2 in

0..N2-nl}:

Prob[ml,m2,nl,n2]* (ml srate[ml]+ m2 srate[m2]+ nl srate[nl]+
n2 srate[n2]+ if ml+m2 20 and nl+n2 = 10 then 0 else

(ml arate[ml]+nl arate([nl]))=

(if ml = 0 then 0 else ml arate[ml-1] * Prob[ml-1,m2,nl,n2])+

(if n1 = 0 then 0 else nl arate[nl-1] * Prob[ml,m2,nl-1,n2])+

(1f m2 = 0 or nl+n2 <> 10 then 0 else m2 arate[m2-1] * Prob[ml,m2-
1,nl,n2])+

(1f n2 = 0 or ml+m2 <> 23 then 0 else n2 arate[n2-1] * Prob[ml,m2,
nl,n2-171)+

(1f ml = 23 or ml+m2 = 23 then 0 else ml srate[ml+1l] * Prob[ml+l,m2,
nl,n2])+

(1f m2 = 23 or ml+m2 = 23 then 0 else m2 srate[m2+1] * Prob[ml,m2+1,
nl,n2])+

(if nl = 10 or nl+n2 = 10 then 0 else nl srate[nl+l] * Prob[ml,m2,
nl+l,n2])+

(if n2 = 10 or nl+n2 = 10 then 0 else n2 srate[n2+1] * Prob[ml,m2,
nl,n2+17);

subject to total:
in 0..N2-nl} Prob[ml,m2,nl,n2]

sum{ml in 0..M1,

m2
= 1;
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