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1 Introduction

In recent years, the Canadian textile maustry has experienced upheaval. Imports have
captured more than half of the market for apparel in Canada, and they seriously threaten
other large segments of industry. The question of what should be done for the textile
industry in Canada has been hotly debated in recent years. One view holds that this sort of
labor-intensive, “sunset” industry should be allowed to wither away as resources and capital
are shifted to more promising “sunrise” industries. The opposing view recommends that
trade barriers be strengthened to protect the industry while it automates some production
operations. However, researchers (Dertouzos, Lester and Solow, 1989) have revealed serious
flaws in these popular views of the causes of the decline. The research concluded that
this aging, labor-intensive indusiry can be revived by adjusting structure, strategies, and
technology.

Motivated by the observations described above, in this paper, we provide an analysis
of the productivity (efficiency) performance of 28 Canadian textile companies in 1994 by
using the Data Envelopment Analysis (DEA) approach developed by Charnes, Cooper and
Rhodes (1978). The DEA results provide us with the efficiency scores, the efficiency frontier
and the returns-to-scale. We then focus on the returns-to-scale and address the alternatives
of reducing inefficient inputs in order to be DEA efficient. For the decision making units
(DMUs) in increasing returns, we propose to increase the output further by increasing the
inputs. For the DMUs in decreasing returns, we develop & vertical integration strategy to
utilize the inefficient inputs. To find the optimal expansion or integration level, we develop
models to solve the problems. Although the data we have is limited, the results derived from
this research do provide some interesting insights.

DEA has gained increasing popularity as a tool for evaluating effciency of a DMU
relative to its peers. Applications have been numerous and most applications can be found
in. pubhic sectors such as health care, education, transportation and bank institutions Un-
like parametric models, DEA does not require specification of any functiona! relationship
between inputs and outputs, or aprior specification of weights of inputs and outputs. It
provides an efficiency score for each DMU based or observed input-output data for a set
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While the literature that addresses the returns-to-scale is sparse, research on using
DEA to evaluate productivity performance in manufacturing sectors is also limited. Charnes,
Cooper and Li (1989) used DEA as a tool to evaluate the economic performance of 28
Chinese cities from 1983 to 1984. Their results show that the cities that play a critical
role in the economic development of China did make significant economic progress after
the reform. Banker, Datar and Kemerer (1991) extended the stochastic DEA approach
to estimate a production frontier and to study the effects of several productivity factors.
They also performed sensitivity analyses to alternative forms of the production function to
exarnine the quality of the production function proposed in the research. Ahn et al. (1991)
provided an initial study on the effects of the economic reforms in the textile industry in
China. Cooper et al. (1995) reports the results of a study on the impact of the 1978 Chinese
economic reforms for the period of 1986-1988 in Chinese textile, chemical and metallurgical
industries.

In this research, we examine the usefulness of the returns-to-scale obtained from the
CCR model. Considering the difficulties in reducing inefhicient inputs in reality, we develop
alternatives for the DMUs in increasing or decreasing returns for them to be DEA efficient.
Although the purpose of this research is not to provide direct guidance to the DMUs, the
results of the research are quite useful for planning purposes.

3 CCR Input Model and Its Computational Results

In this section, we provide & brief introduction of the CCR input mode! and discuss the
application of the CCR model. In the CCR input model, we assume that there are n
decision making units (DMU) to be evaluated. Each DMU consumes varying amounts of m
different inputs to produce s different outputs. Specifically, DMU, consumes amounts X;
= {z,,} of inputs (1 = 1,...,m) and produces amounts Y, = {y.,} of outputs (r = 1,..., 8).
The CCR mode! evaluates the eficiency score of each DMU called DMU, (0 = 1,2,...,n)
relative to other DMUs. The model can be described as below:



=1 =1
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J=1
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where 6 is an efficiency ratio, z,; represents the amount of input 7, (i = 1,...,m) used by
DMU;, (j = 1,...,n), and y,; represents the amount of output r, (r = 1, ..., s) used by DMUj.
z;, and y,, are the amounts of input i and output r obtained from DMU, respectively.
The objective function is to minimize the efficiency score, 6, and to maximize input
and output slacks (also called input surplus and output slack} of DMU,. Constraint (2)
specifies that the optimal input of 1 for DMU, should be equal to the linear combination
of the inputs of a set of efficient DMUs plus an input surplus of ¢ consumed by DMU,.
Constraint (3) states that the optimal output r of DMU, should be equal to the linear
comnbination of the outputs of the same set of efficient DMUs minus an output slack of

DMU,

3.1 Using CCR to Evaluate 29 Canadian Textile Companies

In this section, we discuss the application of the CCR input model to evaluate the produc-
tivity {efficiency) performance of 29 Canadian textile companies We collected various data
from the Canadian Textile Companies with € in the spinning process, 10 in the weaving
process and 13 in the dyeing process for the year 1994. The initial input data collected for
each DMU is: the number of employees, the hourly wage rates (in dollars), the percentage of
time of machine breakdown, the average annual investment (in dollars) in the last 10 years,

the plant size per worker, the percentage of absentees, the product diversities, the number
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of process stages, the job classification, and the raw material inventory (in dollars). The
initial output data for each DMU is: the defect rates, the average finished goods inventory,
the annual sales and the work-in-process. Obviously, we could not use all the collected data
since we have only a small number of DMUs for each process. Thus, we conducted statisti-
cal tests to examine the correlations among the input and the output data and chosed the

following as the output and inputsfor our research:

Output:

e Annual sales values (in 00,000 dollars) — a measure of annual sales volumes in produc-
tion in 1994

Inputs:

e Number of employees - number of staff and workers employed in each DMU in 1994

o Average annual investment over last 10 years (in 00,000 dollars) - annual amount of

additional money used for acquisition of facilities or technologies

Since the 29 textile companies are in three different processes, we divide the 29
DMUs into three sets and evaluate their efficiencies separately. Following the CCR model,
" a DEA efficient DMU, 7, can be defined to satisfy the following two conditions:
(1) 6 = 1.0; and
(1) all s, and s} =0 Vi, 1

If 6 is less than 1.0, it means that to achieve DEA efliciency, the inputs of DMUj
should be reduced to at least 8% of the amount originally used. Note that in DEA, efficiency
is only a relative measure, which means that efficient DMUs perform relatively better than

the other DMUs. If a DMU is inefficient, the CCR model identifies the input surplus and
the output slack as below:

Input surplus: s7 = 6z, — ‘2 TijAj Vi
j=1
Output slack: sT = i Yridy — Yro Vr
=1



The optimal inputs and outputs (also called virtual inputs and virtual output) of
DMU, are represented by jgi:l Zig); and ¥ y.;);, which are the linear combinstions of the
inputs and outputs of a set of efficient DMUs identified by the CCR model.

For the selected inputs and output, we then use the CCR model to evaluate the
efficiency of the 29 Canadian textile companies. For security reasons, we can not disclose
the real names of the 29 textile companies. Instead, we represent 6 DMUs in the spinning
process by S01 to S06, 10 DMUs in the weaving process by W01 to W10 and 13 DMUs in
the dyeing process by D01 to D13. In Tables 1a, 15 and lc, we present the DEA results from
the CCR model for the 29 textile companies in the spinning, weaving and dyeing processes
respectively.

In Table la, the number of companies in the spinning process is only 6, and 3 out
of 6 DMUs are DEA efficient and the efficiency scores of the three inefficient DMUs are well
below 0.5. This indicates that the performances of the 6 DMUs in the spinning process are
split into two extremes. Further investigation might be required to find the causes. In Tables
16 and le, the results show that 3 DMUs (W01, W08 and W(Q9) in the weaving process and
2 DMUs (D05 and D06) in the dyeing process are DEA efficient. For the weaving process,
except 1 DMU with a score as low as (.19 and 1 DMU with & score of 0.973 (See Table
1b), the rest of the inefficient DMUs have efficiency scores around 0.5. This implies that the
performances of the majority of DMUs in the weaving process are only 50% as efficient as
the best performers. In Table lc, we find that the efficiency scores for the inefficdent DMUs
in the dyeing process range from .392 to .876 with only two inefficient DMUs whose scores
are below 0.5. Probably we can conclude that the DMUs in the dyeing process perform
relatively more uniformmly than those in the spinning and weaving processes. Variations in
the efhiciency performances among the DMUs in the three different processes may be due
to various reasons such as the differences in process technologies, employee skills and others

that might be worth studying.

Note that the above results are obtained through the CCR input mode] which also
provides informatior on returns-to-scale. In the next section, we focus on the returns-to-scale

and discuss its implication.



4 Returns-to-Scale

As we mentioned earlier, a production unit characterized by the constant returns-to-scale
reaches its totaJ efficiency. A production unit characterized by increasing returns-to-scale
may improve its efficiency by increasing its output since its output will increase more pro-
portionally with the increase of its inputs. A production unit characterized by decreasing
returns-to-scale may improve its efficiency by reducing its output because its output will in-
crease less proportionally with the increase of its inputs. Banker and Thrall (1992) provided
the following theorem to identify the returns-to-scale through the CCR model:

Theorem 1 The conditions for returns-to-scale are as follows:

If 3 A =1 in any alternate optima, the constant returns-to-scale prevail.
=1

If )E A} > 1 for all alternate optima, the decreasing returns-to-scale prevail.
i=1

If _}n:l A} <1 for all alternate optima, the increasing returns-to-scale prevail.

J Fare, Grosskopf and Lovell (1985) proposed another approach to examine the returns-
to-scale. Banker, Chang and Cooper (1995) show that these two models are equivalent. In
this paper, we employ the model in Banker and Thrall (1992) to identify the returns-to-scale
of all DMUs in the three processes and Tables 2a, 2b and 2¢ present the results. The efficient
DMUs, as is well known, are characterized by constant returns-to-scale. From Tables 2a, 2b
and 2c, we notice that 3 in the spinning, 3 in the weaving and 2 in the dyeing processes are
identified as the constant returns-to-scale. In addition, 3 in the spinning, 3 in the weaving
and & in the dyeing are in increasing returns. We also notice that no DMUs in the spinning,
5 in the weaving and 3 in the dyeing are in decreasing returns. In the next section, we
will present a model used to consider the trade-off between the increase and the decrease in

inputs for the DMUs in increasing returns.

4.1 DMUs with Increasing Returns

The CCR models (both input and output models) suggest that all ineficient DMUs should

reduce their inputs or increase their outputs. In reality, we know that most inputs might be
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difficult to reduce. A ty'pical example is the number of the employees in each DMU. Even
with downsizing, the company may find it extremely difficult to lay off its workers. In this
section, we examine the possibility of improving inefficiency by taking the returns-to-scale
into account. Since increase in the outputs is always desirable for any DMU in increasing
returns, we suggest that the DMU should increase its output by increasing the inputs or
reducing the inputs less. For example, purchasing more advanced process technology or re-
training existing workforce can greatly increase the productivity of DMUs. Thus, a company
may want to weigh the trade-off between removing the input surplus to maintain the current

output level or adding more inputs to achieve an even higher output level.

To find an optimal output level for the DMU in increasing returns, we locate the best
projection of the DMU in increasing returns onto the efficiency frontier. The best projection
is defined as follows: it (i) maximizes the increase in outputs, and (i1) minimizes the increase
in inputs (or maximizes the reduction in inputs). Tables 2a,2b and 2¢ provide information
about the facets that form the efficiency frontiers for the three processes. For example, the
efficiency frontier of the weaving process is formed by two facets. One is the combinastion of
W01 and WOS and the other is the combination of W01 and W09 The efficiency frontier of

the dyeing process consists of only one facet, 8 combination of D05 and D06.

We now present a model (called P1) to find the best projection of DMU, in increasing
returns onto the efficiency frontier. The objective of P1 is difierent from that of the DEA
models including the CCR model. The objective of the DEA models is to find the best
efficiency score for each DMU. P1 assumes that the efficiency frontier has been identified by
the CCR model and its objective is to find 8 projection of DMU, in increasing returns onto
the efficiency frontier such that the output can be further increased at & minimal increase of
the inputs. In other words, in P1 we consider the trade-off between the increase and decrease
in inputs by measuring the amount of the output that can be increased. Figure ! provides
an example which shows the differences in the projections of 2 DMU in increasing returns
onto the efficiency frontier by the CCR model and model P1. In Figure 1 {see also Page 38,
Charnes, Cooper, Lewin and Seiford 1994), D1 to D6 represent 6 DMUs and the two values
in the brackets represent the input and the output of the 6 DMUs respectively. Following

the CCR model, D1 (represented by D1) is projected to the efficiency frontier formed by D2
10



and is required to reduce its input. Qur model P1 would project D1 to the point of D2 and
require D1 to increase its input to reach constant returns-to-scale. We now introduce some
potation before we present model P1:

K : the number of facets in an efficiency frontier

Ji 1 is the set of the efficient DMUs that form kth facet of the efficiency frontier
I { 1 if kth facet is chosen
k =

0 otherwise

80, : 1s the increase in output r if kth facet is chosen for projection
si}, - is the increase in input 1 if kth facet is chosen for projection
sig @ is the decrease in input 1 if kth facet is chosen for projection
Model P1 can be described as below:
[P1]
K s m
max y_ Ii (Z SOp + Z(si; - sij;)) {5)
k=1 =1

r=1

subject to:
K
I, Zz,-j,\,-k=:zw+si$-si; fori=1,2,..m (6)
k=1 jeJ,
K
S Ik S Yridjk = Yro + SOrk forr=1,2 s (7)
=1 el
K
STLY A =1 (8)
k=1 JEJL
Tk
Y =1 (9)
k=1
I, € {0,1} fork=12 .. K (10)
SOrk, STy, Sig, Aje > 0 Vr1, 5,k (11)
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The objective of (5) is to select a facet that maximizes the increase in output and
minimizes the increase in inputs (or maximizes the reduction in inputs). Constraints (6) and
(7) provide the optimal virtual inputs and outputs for DMU, by projecting it onto a facet
obtained from the CCR model. Constraint (8) states that the chosen facet is the convex
combination of the DEA efficient DMUs in that facet. Constraint (9) guarantees that only
one facet is chosen. Note P1 is used separately for each of the three processes. To solve
P1, we need to examine all the facets in each efficiency frontier and find the best one. P1
is & nonlinear integer program and is difficult to solve. Since the number of facets in each
efficiency frontier is quite few, we propose to solve P1 K times with K as the number of
facets in an efficiency frontier. Then, it becomes straightforward to solve P1 as a linear
programming model.

In solving P1, we eliminate 6 DMUs in the spinning process due to too few DMUs.
Hence, Tables 3a and 3b provide the results of P1 for the weaving and the dyeing processes
respectively. The first column provides the DMUs identified as increasing returns by the
CCR model. The second column provides the best “facet” on the efficiency frontier of the
projection obtained from P1. Columns 3 to 7 provide the increment of the output and the
increment (or reduction) of the inputs required by P1. The last three columns indicate A
values in P1, representing a convex combination of the efficient DMUs in that particular
facet. It is interesting to notice that in Table 3a, although the DMUs in increasing returns
in the weaving process are all projected to the same facet formed by W01 and W08 in the
CCR and P1 models, they are projected to different points. For example, in the CCR model,
W10 has an efficiency ratio of 0.513 and following the CCR model, W10 should reduce its
inputs to 51.3% of the amounts originally used in order to achieve an output of 2.8. The
results of Pl show that W10 should be projected to the point of W08 on the same facet
with an increment of 167.2 in output and increments of 12.0 and 65.8 in inputs. Clearly,
P1 provides a8 much better alternative for W10. In other words, following the example of
W08, W10 will achieve much higher labor productivity with a total labor input of 15.0 and
an output of 170. Probably, the result of P1 will motivate W10 to invest in more advanced
technologies to improve its labor productivity.

For the dyeing process, all DMUs in increasing returns are also projected to the
12



same facet of D06. Similarly, P1 specifies that the DMUs are projected to different points
from those obtained by CCR model. For example, in the CCR model, D01 is projected to
a point on the facet of D06 and indicates that at efficiency, D01 should reduce its labor
from 12.0 to 6.432 and its capital from 5.0 to 2.68 to obtsain an output of 10.0. The results
from P1 indicate that DOl is projected to the same facet of D06 but to the point where
D06 is located. Instead of reducing its inputs, D01 should increase its output from 10.0
to 140.0 and increase its input of labor from 12.0 to 90.0 and input of capital, from 5.0 to
30.0. As we can see, the output increases 14 times but inputs only increase by 6 to 8 times.
Clearly, this is a much better alternative for D01 to improve its efficiency. Of course, how to
accomplish the improvement will become a very challenging task for the managers in those
DMUs. As mentioned in Section 1, one major issue facing the Canadian textile industry
is how to restructure the infrastructure and to develop new manufacturing strategies for
its technology and workforce. Instead of laying off its workforce, retraining and purchasing
highly advanced new process technologies probably could revamp the performance of the
Canadian textile industry.

In summary, in this section, we propose a model to find the best point on the
efficiency frontier for each DMU in increasing returns. The results show that instead of
the projected point specified by the CCR model, other points on the efficiency frontier may
provide more attractive alternatives in terms of output increase. In the next section, we

discuss the benefits and costs when the output and the inputs are increased or reduced.

4.1.1 Projection Considering Cost and Revenue Parameters

In this section, we discuss the impact of the incorporation of cost and benefit parameters in
P1. As we know, the inputs and the oﬁ;put.s may not have equal importance to all DMUs in
reality. An increase in one output may provide more benefit to 8 DMU than the other inputs
A typical example would be sales revenues in contrast to defect ratios. Similarly, reduction in
one input may also save more money than other inputs such as investment versus the number
of employees. Such costs and benefits can be found in increasing or decreasing labor, sales

volumes and investments. For example, the benefit of reducing labor input may be savings
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in annual salary and the cost can be firing costs and/or compensations. To increase labor
input through hiring, the related cost can be salary plus hiring cost (administrative and
training cost etc.). On the other hand, increasing capital input may result in opportunity
costs in terms of interest rates. Similarly, increasing various outputs could lead to different
benefits. In our study, we treat unit revenue as the benefit of the output. As a result of
this, we propose to modify P1 to find a new projection of the DMU in increasing returns by
considering the costs and benefits. We first introduce the following notation:

p; : the revenue per unit of the output in DMU j
f; : the cost of firing an employee in DMU j
h; : the cost of hiring an employee in DMU j
w, : the salary per employee in DMU j
b; : the opportunity cost per dollar in the investment in DMU j
so; : the increase in output if the DMU, is projected to kth facet
sif, : the increase in labor input if the DMU, is projected to kth facet
siz, : the reduction in labor input if the DMU, is projected to kth facet
sif, : the increase in capital input if the DMU, is projected to kth facet
stz © the reduction in capital input if the DMU, is projected to kth facet
We then calculate the costs and benefits in increasing or decreasing outputs and
inputs as below:
The revenue generated from increasing so units of output: p,so,
The cost associated with hiring si] units of labor: (h, + w,) 17,
The savings from reducing the workforce by siy units: (w, — f,) sig,
The benefit from reducing the investment by siz units: bys1,
The cost of increasing the investment level by s1f units: b,sif,
The objective function of P1 can be revised as below:

[P1’]

14



K
max Y _ i [p,,sok + (Wo — fo) 5igx — (ho + W) sif, + b, (3:‘5,c - sfé,,)] (12)
k=1

Subject to

(6), (7), (8), (9), (10) and (11)

Similar to the solution procedure for mode! P1, in P1’, we run the model for each
DMU in increasing returns as many times as the number of facets in an efficiency frontier.
Tables 4a and 4b show the results of P1’ for the DMUs in the weaving and dyeing processes
with the following given parameters: p, = 1, w; = 27, f; = 25,h; = S and b; = 5. It
is interesting to note that with the inclusion of the costs and benefits in P1’, being DEA
efficient may not be the best choice. As shown in Table 4b, for the given cost and benefit
parameters, D01, D02, D12 and D13 will incur loss by being DEA efficient. The reason can
be explained as follows. Since all four DMUs are in small scale (see Table 1c), the DMUs
have to either reduce or increase significant amounts of inputs in order to be DEA efficient.
However, the costs incurred due to increasing or reducing the inputs can not be made up
by the benefit resulting from the increment of the output. Note that D01, D02, D012 and
D013 are now projected to the point where D05 is located instead of D06 as shown in Table
3b. This is because between D05 and D06, D05 has a smaller scale than D06 so that D01,
D02, D12 and D13 probably will incur less cost by becoming efficient. For the given cost and
benefit data, our results, in general, show that most DMUs (see Tables 40 and 4c} benefit
from becoming efficient. It is interesting to notice that the best projection also changed

when costs and benefits are considered.

Clearly, P1’ adds a planning feature to DEA models. The CCR model and the
DEA mode! identify DEA efficient DMUs and the efficiency frontier formed by those efficient
DMUs. P1 provides an alternative to the DMUs in increasing returns to be DEA efficient. P’
considers the benefit and cost in increasing or decreasing inputs and outputs and computes
the most profitable way for the DMU in increasing returns to become DEA efficient. By
incorporating the costs and benefits, P’ also provides the fiexibility of considering various
alternatives. For example, if management feels it difficult to lay off employees, we can impose

a very high value to the firing cost. This does not necessarily mean we would like to exclude
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the possibility of laying off employees. It means that management has to lay off employees
at a high cost in order to become an efficient DMU. For example, Table 4b shows that for
the given cost and benefit parameters, D07 has to reduce its employees by 42 in order to be
DEA efficient.

4.2 DMUs with Decreasing Returns

In this section, we focus on the strategic utilization of input surplus for the DMUs in de-
creasing returns. For those DMUs, increasing their outputs by increasing inputs obviously is
not an attractive strategy since the outputs increase less proportionately with the increase
‘of the inputs. Following the CCR model, DMUs in decreasing returns should reduce their
inputs. However, as stated before, in reality it may not always be possible to bring down the
levels of inputs due to some practical reasons (say, a labor union). Thus, we propose that
the DMUs in decreasing returns could expand vertically to fully utilize their input surplus.
In fact, the weaving and dyeing processes in the textile industry are closely related (the
output of the weaving process can be the input of the dyeing process) and the infrastructure
and skills required are very similar too. The DMUs in decreasing returns could shift their
inefficient inputs to a new upstream or downstream process. In other words, by utilizing
its inefficient inputs, the DMUs in the dyeing process may extend to the weaving process
and vice-versa With the two related processes combined together, we refer to it as vertical
integration. We believe that diversifying vertically into the other process is a good strategy
because not only the inefficient inputs can be utilized but also more inputs will be added if
necessary. Then the key issue is the appropriate level to vertically expand. We now discuss
how to use the DEA cone ratio model (see Charnes, Cooper, Wei and Huang (1989)) to
address this issue. One of the major featitres of the DEA cone ratio model is to enforce addi-
tiona! restrictions bounds on ratios of multipliers and require multipliers to belong to given
closed cones. To illustrate the general approach, suppase we wish to incorporate additional

inequality constraints of the following form:
pal + va; <0, k=1,. K
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where a2 is the s-vector of coefficients for the output multipliers, y, and &} is the m-vector

of coefficients for the input multipliers, v.

Such constraints, of course, may be included in any of the DEA models including
the CCR model. In our study, we assume that the ratios between the two inputs of all the
DMUs in one process must fall in a specified range. When a new DMU is created for that
process, the ratios between the two inputs of that new DMU should also be satisfied.

From Tables 1b and lc, we notice that the weaving and dyeing processes use 8
different input mix. It seems that the dyeing process is more labor intensive than the
weaving process. Tables 5a and 5b provide the ratios between the two inputs in the weaving
and the dyeing processes respectively. In Tables 5a and 5b, labor to capital ratios range from
0.22 to 4.71 in weaving, and from 1.00 to 8.00 in dyeing. Hence, for any DMU in the dyeing
to extend to the weaving process, the ratio of the inputs should fall within the proposed
ranges of 0.22 to 4.7, as indicated in Table 5a. Tables 6a and 6b provide the initial results
from the CCR model. Columns 2 to 4 provide the original input data and DEA efficiency
ratios. Columns 5 and 6 provide the amount of inefficient inputs that should be reduced and
Column 7 provides the ratios between the two inefhcient inputs. Columns 8 and 9 calculate
the amounts of inputs to be added to meet the ratio ranges specified in Tables 5a and 5b.
As we can see, all the ratios in columns 8 and 9 in Tables 6a and 6b fall within the ratio

ranges indicated in Tables 5a and 5b.
We now propase to use the DEA cone ratio output model to find an optimal vertical
integration level. The procedure is briefly summarized as below:

Step 0: Obtain the DEA results from the CCR mode! and identify the amounts of inputs to
be removed, s_, (V 1) for each DMU in decreasing returns for one process (either weaving or
dyeing). -

Step I: Create a new DMU with the inputs of 5] and assign a value (Note: Any arbitrary
value could be used.) as the output to the new DMU. Include the data of the new DMU to

the data set in the other process.

Step 2 Use the cone ratio model to find the best input and output levels for the new DMU.
(Note that the DEA cone ratio model obtains the DEA results by comparing the data of the
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new DMU with the performances of DEA efficient DMUs in the other process.)

Tables 7a and 7b provide the results from the cone ratio model. Columns 2 and
3 provide the amount of inputs to be reduced based on the results from the CCR model.
Columns 4, 5 and 6 provide the optimal amounts of the inputs and output specified by
the cone ratio mode! in order to be an efficient DMU in the other process. For example,
D09 is identified as in decreasing returns (see Table 2¢) by the CCR model. The amounts
of labor and capital for D09 to be reduced are 11.87 and 2.32 respectively (see Table 6b).
Considering 11.87 and 2.32 as the inputs of 2 new DMU in the weaving process, we assign an
z;xbitrary value (say, 1.0) as the output to the new DMU. Then we add the new DMU to the
original data set of the DMUs in the weaving process. The DEA cone ratio model provides
the best output and input values for the new DMU to be DEA efficient (by referencing the
performance of the efficient DMUs in the weaving process). That is, to start & pew weaving
process, the desired inputs for D09 in the new weaving process are 10.92 and 2.32 and the
desired output is 13.65. However, D09 has 0.95 units of labor out of 11.87 units that still
have to be reduced even adding a new weaving process. This means that although vertical
integration can not help utilize all the inefficient inputs, it does open & way to effectively
utilize the inefficient inputs. In the case of D09, 10.92 out- of 11.87 inefficient inputs from
the dyeing process can be further utilized by launching a vertical integration.

5 Conclusion

DEA has been widely used as a tool to evaluate relative performance of DMUs. While
DEA models are extremely helpful in identifying efficiency performance, the results of the
DEA models suggest removal of inefivient inputs without considering their quality and
potential usages. In this paper, we recognize that returns-to-scale is the key factor that
helps companies tc better utilize their inputs (resources). Thus, we focus on returns-to-scale
to explore the alternatives to reducing inefficient inputs. For the DMUs in increasing returns,
we consider the trade-off between an increase or non-increase in inputs by evaluating the
amount of the output that can be increased. We develop a8 mathematical model to find the

best expansion plan in terms of increments in outputs and inputs. We then modify the model
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to incorporate the costs and benefits in expansion. For the DMUs in decreasing returns, we
suggest that they should explore vertical integration to utilize inefficient inputs that might
still be valuable to them. The data of the 29 Canadian textile companies in 1994 show that
most Canadian textile companies did not perform well, with a few being DEA efficient and
the rest very poor performers. Due to the big gap in efficiency scores, we suggest that the
inefficient DMUs need to revamp their performance by initiating significant changes in their
structure, strategy and capacity plans.

As an extension of this research, we are in the process of studying the performance
of the textile industry in Pakistan. We have collected extensive data from about 60 Pakistan
textile companies. Unlike Canada, the textile industry in Pakistan is ranked as the first
important industry and has been developing very fast in recent years. Thus, we are very
interested in studying the performance of Pakistan industry and comparing their performance
with their counterparts in Canada.
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Figure 1: An Example of DEA Projection and P1 Projection



Table 1. Results of DEA runs

DMU INP UTS OUTPUT | INPUT SURPLUS | OUTPUT EFFI-
NO LABOR | CAPITAL | (SALES) | LABOR | CAPITAL | SLACKS | CIENCY
S01 35.00 40.00 40.00 0.000 0.000 0.000 0.279
S02 103.00 500.00 1000.00 0.000 0.000 0.000 1.000
S03 75.00 20.00 80.00 0.000 0.000 0.000 0.438
S04 200.00 6.00 150.00 0.000 0.000 0.000 1.000
S0s 61.00 20.00 175.00 0.000 0.000 0.000 1.000
S06 150.00 71.00 62.35 0.000 0.000 0.000 0.199
1b. Weaving
DMU INP UTS OUTPUT | INPUT SURPLUS| OUTPUT EFFi-
NO | LABOR | CAPITAL | (SALES)" [LABOR | CAPITAL | SLACKS | CIENCY
W01 31.00 40.00 140.00 0.000 0.000 0.000 1.000
w02 72.00 60.00 135.00 0.000 0.000 0.000 0.599
W03 56.00 120.00 180.00 0.000 0.000 0.000 0.507
W04 110.00 150.00 500.00 0.000 0.000 0.000 0.973
W05 165.00 135.00 300.00 0.000 0.000 0.000 0.589
W06 56.00 200.00 100 00 0.000 0.000 0.000 0.190
w07 48 00 80.00 130.00 0.000 0.000 0.000 0.509
wO08§ 15.00 67.00 170.00 0.000 0.000 0.000 1.000
w09 4.00 0.85 5.00 0 000 0.000 0.000 1.000
W10 3.00 1.20 2.80 0.000 0.000 0.000 0.513
lc. Dveing
DMU INP UTS OUTPUT | INPUT SURPLUS| OUTPUT EFFl-
NO LABOR | CAPITAL | (SALES)’ [ LABOR | CAPITAL | SLACKS | CIENCY
DO 12.00 5.00 10.00 0.000 0.536 0.000 0.536
D02 8.00 1.00 6.00 1.200 0.000 0.000 0.800
D03 129.00 45.00 120.00 0.000 1.196 0.000 0.598
D04 95.00 60.00 87.50 0.000 15.341 0.000 0.568
D05 52.00 '8.00 60.00 0.000 0.000 0.000 1.000
D06 90.00 36.00 140.00 0.000 0.000 0.000 1.000
D07 132.00 80.00 +«100.00 0.000 17.432 0.000 0.487
D08 191.00 45.00 187.50 0.000 0.000 0.000 0.734
D09 92.00 18.00 100.00 0.000 0.000 0.000 0.871
Di0 150.00 35.00 175.00 0.000 0.000 0.000 0.876
D1) 41.00 30.00 25.00 0.000 6.402 0.000 0.392
DI2 15.00 15.00 20.00 0.000 8571 0.000 0.857
Di3 29.00 30.00 30.00 0.000 13522 0.000 0.665

" Number of employee

" Annual sales (in 000,000 §)

" Average annual investment (in 000,000 $)




Table 2: Returns to Scale

a. in
DMU Retums-to- | DMUs in
NO -Sca'e Facet
S0l 0.148 |Increasing | S02, S05
S02 1.000 | Constant S02
S03 0.462 [Increasing [ S04, SO5
S04 1.000 | Constant S04
S0s 1.000 | Constant S05
S06 0.483 | Increasing S02, S05
2b. Weaving 2¢. Dveing
DMU TA, Returns-to- | DMUs in DMU Th, Returns-to- | DMUs in
NO -Scale Facet NO -Scale Facet
w0l 1.000 | Constant W0l D01 0.071 {Increasing | D06
w02 5.371 | Decreasing | W01, W09 DaO2 0.100 | Increasing DOs
W03 [.177 | Decreasing | W01, W08 2 0.857 |increasing DO¢
w04 3.537 | Decreasing | W01, W08 D04 0.625 | Increasing D06
W05 | 12.411|Decreasing | W01, W09 D03 1.000 | Constant DOs
W06 | 0.606|Increasmg | WO, W08 D06 1.000 | Constant D06
w07 0.887 | Increasing W01, W08 D07 0 714 |Increasing D06
w08 1.000 | Constant W08 D08 2.179 |Decreasing | DOS, D06
W09 }.000 | Constant w09 D09 1.390 | Decreasing | DOS, DO
WI0 | 0.327|Increasing | W01, W08 D10 2.055 |Decreasing | DOS. D06
D 0.179 | Increesing D06
D12 0.143 |Increasing D06
D13 0.214 |Increasing D06




Table 3: Projections for inefficient DMUs with Increasing Returns

Ja. Weaving
DMU | DMUs in |Increase in | Increase in Inputs | Decrease inlnputs | Obj Fin 2
NO Facet Output Labor | Capital Labor Capital Value (W01 | W08 |W09
wo6 [ W01, Wos 70.00 0.00 0.00 41.00 133.00| 24400 0.0| 1.0| 00
W07 | W01, W08 40.00 0.00 0.00 33.00 13.00 86.00| 0.0 10| 00
W10 (W01, W08 167.20 12.00 65.80 0.00 0.00 89.40J 0.0 10| 00
3b. Dyeing
DMU| DMUs in |Increase in | Increase in Inputs | Decrease inlnputs | ObjFin |
NO Facet Output Labor | Capital Labor Capital Value (D05 |D06
D01 |D05, DO6 130.00| 78.00 25.00 0.00 0.00 27.00( 00| 1.0
D02 (D05, DO6 134.00 82.00 29.00 0.00 0.00 23.00f 00| 1.0
D03 | DO0S, DO6 20.00 0.00 0.00 39.00 15.00 74.00| 00| 1l.0
D04 | DO0S, DO6 52.50 0.00 0.00 9.00 13.00 91.50| 00| 1.0
D07 |DOS, DO6 40.00 0.00 0.00 42.00 50.00 132.00| 0.0 10
Di1 |DO0S, DO6 115.00 49.00 0.00 0.00 0.00 66.00| 00| t.0
D12 |D05, DO6 120.00 75.00 15.00 0.00 0.00 30.00| 00| t.0
D13 |DO0s, DO6 110.00 0.00 0.00 0.00 0.00 4900 0.0( 1.0
Table 4. Projections for Inefficient DMUs with Increasing Returns in presence
of cost and revenue parameters.
4a. Weaving
DMUT DMUs in |Increase in | Increase in Inputs | Decrease in Inputs | Obj Ftn 5
NO Facet Output Labor | Capital Labor Capital Value |WO01 (W08 |W09
W06 | W01, W08 70.00 0.00 0.00 41.00 133.00| 1727.00| 00| 10| 00
W07 (W01, W08 40.00 0.00 0.00 33.00 13.00| 691.00| 00| 10, 0.0
W10 (W01, W08 167.20 12.00 65.@ 0.00 0.00| 1627.00| 0.0| 1.0/ 0.0
4b. Dve)
DMU | DMUs in |Increase in | Increase in Inputs | Decrease in Inputs Obj Ftn
NO Facet Output | Labor | Capital Labor | Capital | Value [DO0S [D06
D01 | D0S, DOS 50.00 40.00 3.00 0.00 0.00| -59500( 10| 00
D02 |DOs, DO¢ 54.00| 44.00 7.00 0.00 0.00| -687.00| t.0| 0.0
D03 (D05, DOS 20.00 0.00 0.00 39.00 15.00] 433.00| 00| 1.0
D04 | DOS, DO6 52.50 0.00 0.00 900 1300 497.00| 00| 1.0
D07 | D3, DO6 40.00 0.00 0.00 42.00 50.00| 89400| 0.0]| 10
D1l | D0S, DO6 35.00 11.00 0.00 0.00 22.00| 24800 1.0 0.0
D1z |DO0S, DO6 40.00 37.00 0.00 0.00 7.00| -589.00( 1.0| 0.0
D13 |D0s, DOs 30.00 23.00 0.00 0.00 22.00| -206.00| 1.0/ 0.0




Table 5. Ratio between Inputs (Labor/Capital)

S5a. Weaving

DMU| Labor | Capitai | Ratio
wol 31.00 40.00| 0.78
w02 72.00 60.00( 1.20
W03 56.00| 120.00( 0.47
W04 110.00| 150.00| 0.73
W05 165.00| 135.00( 122
W06 56.001 200.00( 0.28
wo7 48.00 80.00] 0.60
w08 15.00 67.00| 022
W09 4.00 0.85| 4.71
W10 3.00 126 2.50

b. Dyeing

DMU | Labor | Capital | Ratio

D01 12.00 5.00 2.40
D02 8.00 1.00 8.00
D03 129.00 45.00 2.87
D04 95.00 60.00 1.65
191053 52.00 800 6.50
D06 90.00 30.00 3.00
D07 132.00 80.00 1.65
D08 191.00 45.00 424
D09 92.00 18.00 5.11
D10 150.00 35.00 4.29
Dtl 41 .00 30.00 1.37
Di2 12.00 15.00 1.00
D13 2500 30.00 0.57

Table 6. Amounts of Inputs to be invested in the other process for
mefficient DMUs with Decreasing Returns to Scale

6a. Weaving

DMU | INPUTS IN USE EFFI- TO BE SAVED RATIO | MORE NEEDED
NO [ LABOR |CAPIAL | CIENCY | LABOR | CAPITAL LABOR |CAPITAL
w02z 72.00 60.00 0.599 28 87 24 06 1.20 0.00 0.00
W03 56.00| 120.00 0.507 27.61 59.16 047 0.00 0.00
W04 110.00| 15C.00 0.973 297 405 0.73 0.00 0.00
Ww0oSs ]65.00| 135.00 0.589 67 .82 5549 1.22 0.00 0.00

6b. Dveing

DMU |INPUTS IN USE EFFI- TO BE SAVED RATIO t MORE NEEDED
NO [ LABOR JCAPITAL | CIENCY | LABOR | CAPITAL L ABOR |CAPITAL
D08 191.00 45.00 0.754 50.81 11.97 424 000 0.00
D09 92 00 18.00 0.871 11.87 232 St 0.00 000
D10 150 00 3500 0.87¢ 18 60 43¢ 429 0.00 0.00




Table 7. New Process for inefficient DMUs with decreasing returns

DMU |INPUTS AVLBL [INPUTS REQD |EFFCNT [ EXTRA INPUTS
NO [ LABOR |CAPITAL| LABOR |CAPITAL |QUTPUT | LABOR |CAPITAL

w02 28.87 2406 2887 9.62 4491 0.00 14.44
w03 27.61 5916 2761 9.20 4295 0.00] 4996
w04 297 4.05 297 0.99 462 0.00 3.06

Wwo0S 67.82 55.49)| 6782 2261 105.50 0.00 32.88

/b. Dveing

DMU | INPUTS AVLBL |INPUTS REQD | EFFCNT | EXTRA INPUTS
NO [ LABOR |CAPITAL| LABOR |CAPITAL| OUTPUT| LABOR |CAPITAL

D08 50.81 11971 5081 11.97 67.07 0.00 0.00

D09 11.87 232 10.92 232 13.65 0.95 0.00
D10 18.60 434 18.60 4.54 24.42 0.00 0.00
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