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Abstract

Situations abound in the real world, where aggregate demand
fcr a commodity exceeds aggregate supply. When such situations of
excess demand occur, what 1s required is some kind c¢f rationing.
The literature on rationing problems has an interesting origin in
the Babylonian Talmud.

The purpose of this paper is to characterize axiomatically and
analyze some Talmudic solutions for rationing problems.
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Introduction:- Situations abound in the real world, where

aggregate demand for a commodity exceeds total supply. In
economice, the most common way in which such situations are
seen toO occur is when government intervenes by pegging the
price of a commodity at a level below the market egquilibrium
price (i.e. the price at which quantity demanded is egual to
quantity supplied). In management, the usual way in which such
anomalies occur is in the context of supply chain management:
there is a distributor of a commodity who is made available
the total supplies by a producer; the distributor supplies the
commodity to & finite number of retailers; 1if the orders
placed by the retailers add up to a quantity greater than the
supply available with the distributor, we are essentially
facing a situation of excess demand once again. The excess
demand problem in economics has been hiéhlighted and surveyed
lucidly, by Silvestre (1986). The excess demand problem in
management is a part of a well established lore on frequent
stock outs arising in distribution networks. In fact, the
problem has such urgency, that computer games have been
devised to highlight the merits of the problem. In the context
of fish production in India for instance, Datta, Sinha and De
[1996] forecast an excess demand of 79.39 tonnes with a 2%
annual shift in demand and concommitant supply adjustment and

an excess demand of 643.66 tonnes with a 5% annual shift in

demand and supply being suitably adjusted. Both figures are

for the year 2001.



When such situation of excess demand occur, what is
required is some kind of rationing. The literature on
rationing problems has an interesting origin in the Babylonian
Talmud (: 2000 year old document, which forms the basis of
Jewish civil, criminal and religious laws). There,
considerable attention has been devoted to the study of a
bankruptcy problem: a man dies leaving behind an estate, which
is insufficient to meet all his debts. How should the estate
be divided among the claimants? The obvious requirement is

that the method of division be perceived as being fair.

Recent attempts at giving solutions to this old
bankruptcy problem a game theoretic interpretation, can be
traced to the paper by O'Neill [1982]. The study of a
particular solution known as the contested‘garment solution

received fresh analytical impetus in the work of Aumann and

Maschler [1986].

In a paper by Curiel, Maschler and Tijs ({1985] a
solution, known as the adjustad proportional solution 1is
proposed, as a method of allocaticn for rationing problems.
The adjusted proportional solution, allews a simple
modification, which we call the modified adjusted proportional
sclution. We show that the mcdified adjusted proportional
solution agrees with the adjusted prcéértional sclution for

all two-agent ratiocning problems. Indeed, for all two-agent



rationing problems, our solution is shown to coincide with the

_contested garment solution of Aumann and Maschler (1986).

In Moulin [1985, 1988] and Young [(1987a, 1987b, 1968,
1993}, the mathematical framework of bankruptcy or rationing
problems is given the opposite interpretation of cost-sharing
or taxation problems. Whereas in rationing problems we are
interested in some measure of individual loss i.e. unsatisfied
demands, in cost sharing the relevant index is net income that
remains after taxation. Both these variables have identical
mathematical form. However, in cost sharing if we are
interested in maximizing the minimum net income, in rationing
we would be interested in wminimizing the maximum loss. We
obtain a simple algorithm in this paper, which gives an

explicit solution for the relevant min-max problem.

One of the most popular methods of allocating resources
under rationing is the constrained equal awards method, also
called the uniform rule by Benassy [1982]. This rule, gives
each low demander what he/she demands; all high demanders are
given an equal‘amount, which nevertheless exceeds what any low
demander gets. Dagan ({1996a) has a useful analysis of this
rule. We provide an axiomatic characterization of the
constrained egqual awards solution using a kind of strategy
proofness assumption and show that this rule is the only one

to satisfy the desired axiom (along with another mild



property). Results along similar lines for this and other
solutions can be found in Dagan and Volij [1993].

The above mentioned analysis takes place in a fixed
population framework 1i.e. the agent set or the set of
demanders is considered fixed. We subsequently move over to a
variable population framework and invoke properties like
population monotonicity and Consistency Population
monotonicity says that with the arrival of ‘a new agent, no
existing agent can get more. Consistency says that if some
agents leave with their share of the allocation, then the rule
should give the earlier shares to the remaining agents, when
what has to be allocated now 1is wha; remains after the
departing agents have been given their shares. Our results are
adaptations of results in Dagan [1996a] and Thomson [1995].
Their results were obtdined for games of f;ir division with
single peaked preferences. The basic difference between our
framework and the literature on fair d%vision with single
peaked preferences are that our preferences have the
diagrammatic representation of an isosceles triangle above the
horizontal axis. Further, we restrict ourselves to only excess
demand situations. With these restrictions, the proofs used by
Dagan and Thomson fail to work, since they avail of the larger

domain on which their solutions are defined.

Finally, we take up the case of the proportional solution



and provide an axiomatic characterization of the same using a
reduced game property and a property called restricted scale
invariance for two agents. In the bargaining games context,
reduced games properties have been discussed in Peters, Tijs

and Zarzuelo [1994] and Lahiri [1996].

It may be of interest to note yet another sector of the
Indian economy where excess demand leading to rationing of
resources is a very common phenomena: the capital market. It
has generally been observed, that initial public offerings of
equity by firms are characterized by significant underpricing
(:see Majmudar (1996) for a useful data base on the topic).
This naturally leads to excess demand and a common method
applied by firms in allocating shares is the proportional
rule. However, as emphasized in the paﬁ?r, the proportional
rule is grossly manipulable. Individuals, have a tendency to
overstate their true demands for the shares. A consequence of
the analysis in this paper is the suggestion that there are

other robust rationing rules, which can be applied for the

same purpose.



The Fixed Population Model:- Consider a set of agents indexed
by i=1, 2,...,n where n is a natural number greater than or
equal to two. Let N = {1, 2, ..., n} denote the set of agents.
A rationing (bankruptcy) problem is an ordered pair

(d,s) eR, xR such that S< I d.

im]

Let B* denote the set of all rationing problems(for N).

An allocation for (d,S) e BY 1is a vector x¢ R’ such

x, sd VieNand T x =S.

1«8

A solution is a function F:B*"-> R? such that F(4,S) 1in

-

an allocation for (4,S) whenever (d, S) e B".

Given (d, S) € B", the effective demand vector (fori
(d,8)) denoted d*® is the vector whose i®®  component

d* =mintd, s}

Obviously, since S is what all there is for distribution any
claim greater that S is as good as demanding the entire
supply. Hence our definition of effective demand. :

Given (d, S) € BY, the point of minimal expectation



[ - I

(denoted merely by v whenever there is no scope for

confusion) is the vector whose i'" coordinate Vv 1is equal

to max{O,S—Z d)} i.e. what every one else willingly

1wl

concedes to i.

Observation 1: v, s d VieN

Proof of observation: Suppose v, > d for some ieN

Clearly d >0-v,=S-* d

bL}

."S"Zdj>d1

je1

n » » 3 . - 0
-S> L q which 1s a contradiction. Hence the observation.

jel -

Q.E.D.

Observation 2:- Given (d,S) € B* if x is any allocation for

(d,S8), then x =v V1ie€N.

Proof of observation: Suppose 0 < x < v, for some ieN.

Then clearly v, =S- L d .

jv:

.‘.x:<S—ZdJ.

jea



:.xl+£d1<S

et
But x <d VjéN

z q < S which is a contradiction.

jer

&S ==r s X +
1 x‘ )
This proves the observation.

rvations

For all (d,S) e B*, VieN

v1=max{0,S—Ed”}.

jwL

Proof:- Let 1 €N, k» i, k€ N.

If CL)SthenS—Zdj<S—q(<O.

jw1L

Since & = Sand S-rd' < S-d' = §-5 =0, max{o,s-za;}=o.

jed

“ v =max{0,5‘—2d; }

Jet
On the other hand if d < SV ke N, Kk » i, then

d=d VkeN, k» i, so that



Y di = Y 4

Jei Jei

-This proves the observation in either case.

Observation 4:- Given (d,S) ¢ B, L v < S

1¢R

Proof of observation:- Let x € Rl with x = 4 S.

It is easy to check that x is an allocation for (4,S).

Thus the set of allocations for (d,S) is nonempty. Since

v, s x VieN by observation 3, we have, I v, sS.

1K

) Q.E.D.
We now define the adjusted proportional-solution
AP : B" > R : Given (d, S) € B*, Let
a =min{d,-V‘,S— z VQ}
J e R ’
T h e n d enoting AP(d,S) = X, w e

get, X = v, + a S-}:vj),ieN.

L d; jem

jex

In this paper we are concerned with a modified (version of

10



the) 'adjusted proportional soluti&n,

MAP : B" » B, defined thus. Let MAP(d,S) =x. Then,

Z N S-Iv,|Vien.
Z(d,'—v]) tam

Jam

This 1is precisely the solution that we discussed in the
introduction. Unlike the adjusted proportional solution, the
modified adjusted proportional solution satisfies Independence
of Irrelevant Claims, a property which says that

F(d,S) =F(d*,S) V¥V (d,S) ¢ B*. with S > 0.

The Two Agent Situation:- We are particularly interested (in
this paper) in the modified adjusted proportional solution for
two agent problems i.e. for the case n=2. Without loss of
generality, and for greater ease of exposition, let us

assume d, s d, whenever (d,S) € B'*'*' What does the adjusted

proportional solution look like in this situation?

Theorem 1:- For n=2, MAP = AP. Hence AP satisfies Independence
of Irrelevant Claims (since MAP does so always) .

Proof: - v; = max {0, S'djs}, F*i

= §-df

d =minid, - v;, S-v. - v, }

11



=n'Lin {d_, - V_{, S"S*dis‘ Vj}= dJS_ \4

it

Thus MAP (4,S) = AP (4,8).

O.E.D.,

We shall now explore the relation between v and &° whenever

(d,S) € B**. We have, v, =maxi0,S-d}, j»i.

= S-d°.

Further, 0 s v s d.

Thus the vector where i gets v, and j gets d 1is an

allocation for (4,S). Given our earlier result that v = Xx,

whenever x 1is an allocation for (d4,S), we get now that

v, =min{x / x is an allocation for (d,S) } Further,

a

max { x / x is an allocation for (d,S)}. Thus d* is

the north - eastern extremity and v 1is the southwestern
extremity of the rectangle, whose diagonal (which separates 4°
and v) is prec¢isely the set of all allocations for (d4,S).

[Insert Figure-1 here].

Clearly, MAP (d,S) is the mid-point of the set of all
allocations for (4,S). The two extreme points of the set of

all allocations for (d,S) are (v, d) and (d!, v,). Thus

12



we have the following theorem:
Theorem 2:- For n =2,

AP(d, S) = MAP(d, S) =[ Vi ;d*, V*;d’]

The proof of this theorem follows essentially from Theorem 1
and the observation immediately before Theorem 2.

Th im m f The Modified Adjusted Proportional
Solution:-

Let us revert to Figure 1 and show .among other things
that the rectangle B G C E must indeed be a square. This will

lead to several equivalences.

First note that both angles ADO and angles DAO must be 45
degrees. Thus angles EBC and ECB are 45 degrees. Hence
triangle EBC is an isosceles triangle. Thus the lenéth of the
side BE is equal to the length of the side EC. Thus the

rectangle BGCE is indeed a square.

Hence GF must be perpendicular to the line AD. Hence F

must be the point of least distance from G.

Further, it is not difficult to see that the angles FGC
and BGF are both 45 degrees. Hence F is also the point of

equal loss from G. Noting that F stands for MAP({(d,S), we have

the following theorem:

13



Theorem A: For n=2, given (d,S) € B“'*, MAP (d, S) 15 the

unique allocation which is at the point of least distance from
d*. Further, MAP (d,S8) is also the unique allocation which

equates losses among the two agents.

Given the above discussion it is easy to see that the co-

ordinates of B are given by (S-d&,d ) and the co-
ordinates of C are given by (&,S-d& ). Hence (and also
from earlier discussions), v=(S-d&, S~-d& ). Byapplying

Theorem 2 in the paper we have the following result:

Theorem B;- For n = 2,

S 5 _ 5 o
AP(d, S) = MAP(d, S) =[ ”’5 4 S*d; 4 1
This is precisely the Constested Garment Solution for the two
agent case, discussed in Aumann and Maschler (1985).

T . ] solution: -

14



Without loss of generality, we will assume that whenever we

are given a rationing problem

(d, S)eRI xR, (with 1‘5 dp>S), we have d, <d;<..... <d,. This does
-1

not affect the ensuing analysis in any way; on the contrary it

simplifies matters to a great extent.

Given (d,S) € B* let k(d,S8) € {1,...,n} be defined as

follows:

= mi 1 ® d,-

Such a k(d,S) always exists.
We define the gquasi-equal 190ss solution Q : BY -~ R} as follows:

0,(d,8) =0 if i<k (d,$)

1 2 .
=d, - -slv ,
d, P TERGYS) [j-kg,s)dj S) i>k(d, 8)

Basically, the quasi-equal 1loss solution operates by
allocating nothing to those whose demands are very small and
then allocating the total amount among the rest in such a way
that the loss experienced by each agent in the latter group is
equal. Indeed, 1individual 1loss 1in the latter group 1s

15



1 n l : I : ) .
p¥ ~S]l. A oint to be noted is that if
41’k(drs) +] ( dJ p *

=k(d,8)

k(d,S) = 1 (i.e. the set of agents whose index comes before

k(d,S) is empty) then we have the equal loss rule.
The above rule is an algorithm and as we shall see shortly,
this algorithm is the unigque solution of a well defined

programming problem.

Theorem : Given (d,S)eBY, the wunique solution to the

programming problem

min { max {dj—agﬂ..............(l)
Xy ane, X, ti=1.....n

S.t. OSXisdj Vi-....---.......-(Z) *

is Q (4,8)

The proof proceeds by a sequence of lemmas:

D
Lemma 1: If d, 2 -’13( 12 d,-S8), then the unique solution to (1)
-3

subject to (2) and (3) is given by Q(4,S).

16



Proof: Denote Q(d,S) by X. Clearly X satisfies (2) and (3).

Now max {di—xl}=— { B di—S)
“1,...,n

Towards ‘a contradiction assume that there existsxeR?

satisfying (2) and (3) such that max {di—xlk—-(.“..di S) .
a1, 3

But then

1a1

1=1

which is a contradiction.

-

Thus suppose that there exists xeR”, x#Xx, with x satisfying (2)

and (3) and max {d,-x; }——(}.‘.di—.S')

i=1,...,n

Since x#X there exists j such that dy=x;> —[}L‘ d;,-s ]
=1

contradicting max {d;-x;= -—(E d;-9) .
n

i=1,..., fa1

Hence the lemma.

17



Q.E.D.

n
Note the role played by dlz-%(}l,di-S), in the above is to
=]

— I n »
ensure, Xx,=d;-= (X d;-S)>0Vi
L =1

n

Lemma 2:- Suppose d1<—}](2di-s) and let x* be a solution to
i=1

(1) subject to (2) and (3). Then (a) x, =0 {b)

d-x7< max id;-x}), (c) S dps.
i=,...,n i=2

Proof : We prove (b) first -

Suppose d,-x;= max {d;-xj}
i=1,...,n

n
Then d.2d,-x:2d;~x; Vi implies dlz—i‘; Edi—S} which is a
=1

contradiction.

This proves (b).

Given (b) we now prove (a).

18



Suppose x>0, Clearly x;<d, . By (a) if

dj-x;=i-ina?t n{di—xf}, then je1. Let -~K={j/dj-x}=i_;nax n(di-xi'}}

Clearly K#0 and 1¢K. Let €0 be such that

d,-xj-¢,/|K| > d;-x; V jek, iex.

and x; +e/|Kl<d; VJekKk. Such an ¢, clearly exists.

Let €, > O be such that x;~ €, > 0

&

V jexX
1K

and d, ~x; v&,< dj'—x} -
Let ¢ =min (e,,e;}>0.

Define xeR? as follows

X,=X; ~€ x,=x; ViexU {1}

. | ’
X=X+ VieK

Clearly , fmax n{d‘ -xiki-{nax r’{di-.:r}} Contradicting

solves (1) subject to (2) and

19



Thus X; =0.

Finally we prove (c):

1] § 4 _

p:]
"ndl( 2 dl-s
1=1

-(n-1)d,< £ d-s

Since k (4,S) > 1 and d,>0, we get

D
z dj"S)O .
i=2

In the above lemma we made use of theifact that

max {d,-x)\>0 VxeR*
1-1,....3{ i i}

order to select an

true; for if

a
i=1

satisfying (2) and (3), in
e . This is

i=1,...,n

which contradicts that

20



[ ¢ 4
d,< E(}id‘ S).

Now we proceed to prove the main theorem.

1 o
Proof of theorem 3: If d —(Ed-S] then b
I ]7231-1 1 en by

Lemma 1 we get Q(d4,S) 1is the unique' solution to the

programming problem (1) subject to (2) and (3).

a2
1f d1<—]: d;-8|, then by lemma 2, if x* is the solution to (1)
n i-l 4

subject to (2) and (3), then x; =0 and (x,...,x;) solves

min { max {di—xi}} s.t. O0sx,<d, 1=2,...,n
%o ---. 2 \1=2, . .0 ,

We are now back to an (n-1) dimensional problem for which we
either apply lemma 1 or lemma 2. Proceeding thus we get that

Q (d,S) is the unique solutﬂion to the programming problem (1)

21



subject to (2) and (3).

¢

0.E.D
Th nstrain 1l Awar lution: -
The Constrained Egual Awards solution CEA : B~ K

is defined as follows: CEA(d,S)=x where x;=miniA, d;}, ieN

P2
and I x;=5.
i=1

It is well known that for each (d,S5)eB¥, a unique

A20 exists which defines CEA(4,S).

We now state two properties which the constrained equal

award solution satisfies.

Eqgual I;ea;mgﬁ; (ET) : - Given
(d: S)CBN; di=dj-.Pj (d: S) =Fi (d; S).
Equal Treatment is standard and simple. It says, if two

people make the same demands then they get identical awards.

As a postulate of impartiality, nothing could be more

meaningful .

22



(d,8), (d',s)eB¥ if d;=d\Vitk,d,sdi  and

Fp(d,8) < d, then F, (d,8) = P (d,S)

Insensitivity to Irrelevant Inflations is a veiled
strategy proofness type of <condition which says that
unilateral upward deviations do not affect the outcome, of the
deviating agent provided one's demand 1is ﬁot met originally.
It is not as mild a property as equal treatment; yet it
provides the required force to characterize the CEA solution.
It should be noted, that the solution for a deviatiné
individual is insensitive to inflation of demand by the
individual, if the award for the indivifiual was ‘orri’ginally
less than what was originally demanded. This is the gist of
the I' property. (I') along with (ET) does not appear to
characterize the CEA solution uniquely. If we strengthen (ET)
sliéhtly to a Weak Monotonicity (WM) property, then (I’) along “

with (WM) uniquely characterizes the CEA solution.

W M nici WM) : - Given (d,S)eB if d;sd; then

F,(d, 9 sF;(d, 5) .

This property says that higher demanders do not get
lesser amounts. It is easy to see that Weak Monotonicity

implies Equal Treatment, though not conversely.

23



Theorem 4:- The only solution to satisfy WM and I' is CEA.

Proof: - It is easy to see that CEA satisfies these two.
properties. Hence suppose F is a solution which satisfies

these two properties and towards a contradiction assume
F+CEA. Thus there  exists (d, S)eBY such  that
F(d,S)=CEA(d,S) Without loss of generality and in order to

facilitate the proof assume d,sd,., Vk=1,...,n-1. Clearly
there exists 1,jeN,i<j such that F;(d,S)<d;, F;(d,8)sd; and

F;(d,8)=*F;(d,S). By WM, F;(d,8)<F;(d,8). By WM once again
we may assume, 3 = n and i=nmin k/F,(d.58)<d} | By

WM, F,(d, 8) <F,(d, 5) .

Define deR” as follows:

di=d, Vk#i
mm 5A
dj=d, RABRA! LiBRARY

WNDIAN INSTITUTE Of MANAGEMEN]
/4N D aDy 10 nHMFI)AHA()_:gnoo)_-;

By 130F1(d’ls)=Fi(dlS)

By ET (which is implied by WM), F,(d, 8 =F;(d,h39).

Thus F,(d',8)=F,(d, &) <F,(d,8).
Clearly there exists k such that ick<n and
Px(d,ls)>Fk(dlS) .

24



But k>i implies by WM, F (d, 8) 2F(d, S) =F,(d’, 5) .

Thus P (d',8)>FP,(d’,8) which contradicts WM since k<n.

Q.E.D,

However for n = 2, (I') and (ET) uniquely characterizes the
constrained equal award solution, as the following (which is

a strengthening of the previous thecorem) reveals.

Theorem S: For n = 2, the only solution to satisfy (I’) and ET
is CEA.

Proof:- Suppose towards a contradiction, that there exists a
rationing problem (d,, d,; S) and a solution F sat'isfying (1%)

and (ET) such that F(d,,d,;S)»CEA(d,,d,;S). Let

(x,,x%)=F(d,,d,;S). Thus x,»x,. There are two possible cases:

Case 1:- If x,<d, where we have assumed without loss of

generality d sd,, then by ET, we must have d<d,. Let d; =d,.

25



By (I*),F (4, ,4d,;S)=x,.
By ET, F,(d,,d,;5)=x,. --

. 2Xx,=8=x,+x,, contradicting X *Xx,.

Case 2:- x.<x,=d,

o8 =x +x <2d,.

By ET, F (d4,, &,; S)

]
Nty
(Y[

By ET, once again d, < d,.

By I), F, (4,, 4,; S) = . Thus F, (4, 4,

N[V

X, = X, = 8§ contradicting x; < Xx,.

This proves the theorem.

The Variable Population Model:-

wn
n
Ity

Thus

There is a population of "potential agents", indexed by

elements in a set I. Let P denote the set of all non-empty

finite subsets of I. Given Me¢P, letRY (respectively RY.)

26



denote the set of all functions from M toR,

(respectively R.) . Here R, is the set of all non-negative

real numbers and R, sR, {o}.

Given MeP, a rationing problem for M is an ordered pair

(d, S)eRY.xR, such that Edps. .
i

Let BM denote the set of all rationing problems for M and

Bs|J3¥. Letx=|JR.
. J4 AP

Given (d,S)eB™,MeP, an allocation for (4,S) is a vector

xeRY such that I x,=8 and x;<d,VieM.
few

A solution is a funétion F:B~X such that F(d4,S)

is an
allocation for (d,S) whenever (d,S)eB.
The constrained equal awards solution CEA:B-~X is defined

as follows: V(d,S)eB¥ MeP,VieM, CEA,(d,S)=minfA,d;} withi20

satisfying EZminiA,dg}=5.
i

27



-en roperty:- A solution F is said to satisfy the no-

envy, property if VMeP,V(d,S)eB™Wi,jeM,d,-F;(d, S)s|d;-F,(d,S) |

The no-envy property is quite simple: between any two
_agents there should not arise a situation where any one's
unfulfilled demands exceed the deviation of the other's from
thé first agent's claim i.e. no one's excess demand should be

greater than either the excess supply or excess demand of the
other from the one's point of view. If the situation were
otherwise, then there would be an agent who would want someone
else's allotment, since that would lead to a lower loss for

him/her, where loss is measured in terms of deviation from

announced demands.

ivi 1 ! 1i ivisioh:- A solution F is
said to satisfy individual rationality from equal division if

VMeP,V(d,S)eB ™ VieM, d;-F;(d,5)x|8/4-d;|

Once again the meaning is clear: for every agent the

excess demand should not exceed his deviation from equal

division of resources.
The following theorem is immediate.

Theor2m 6: (a) CEA satisfies the no-envy property

28



(b) CEA satisfies individual rationality from

equal division.
Proof: Let CEA (d, S) =xeR! for sdme MeP, (d,S)eBY.

(a) Suppose towards a contradiction that there exists i,

with di'xi> Id_{-xﬂ
Clearly d;»x,

20 s x;, =A<dy

where Z minii,d,}=38.
=y

Since x,#x;, we have x,?A.

Thus .x:‘ = dj

. di-l> |d1-djl w‘ith dj < L(dj-
o dj"'l > di - dj
P ‘ < dj

This proves (a).

which is a contradiction.

jeM

(b) Suppose towards a contradiction that there exists ie¢M with

d,-xi> |d1'3/|~| l.

Thus x,;=A where A is as in (a) and A

~d -4 | d-8/ |
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Case 1: A < 8/,-

L 8= = F A+ 2 d <|M.2
S E’lxk lidl d‘<1 x |Ml -[E

which is a contradiction. Thus Case 1 cannot occur and we have

Ldy - Asd;- T% =] dg - -[%I | which is again a contradiction.

This proves (b).

We now invoke the following property:

Resource Monotonicity:- A solution F is said to satisfy

resource monotonicity if VMeP,
(d,S)e B¥, (d,5"YeB¥,8' > § implies F(d,8') » F(d,S).

The meaning of resource monotonicity is simple and needs no

further explanation.
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Axiomatic Characterizations of the CEA Solution In Terms of
Consistency:

Claim 1:- Let (d4,, d,; S) be a two agent rationing problem.

Suppose that solution F satisfies either no-envy or individual
rationality from equal division. Suppose d; < dy and

(xilxj) =F (di;dj:'S) o CEA(d_{:dj; S) . Then

x; < dpox; ¢ xy.

Proof : - Suppose not. Then the only another possibility is

x; < x; < d; <d,.

Since dy-x;>d;-x;=|d;- x|, F violates no-envy

(:indeed j envies i).

. X, + X
Since x; < —’—2-1 < x; < d; < dy,

X +X X, + X s
dy-x, > cI;,--#z—-z = | dj——‘-z—i |. Thus F violates individual
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rationality from equal division.

Lemma 3:- If a solution F satisfies no-envy and resource

monotonicity, then it coincides with CEA solution for all two

agent problems.

Proof:- Towards a contradiction assume that there exists
{i,7} e P and (d,,d,;,8) e B%# such that
F(d;,dy,S) # CEA (d;,d;,S) where we have that F satisfies no-

envy and resource monotonicity. Without loss of generality

assume d,; < dy. Then if (x;,x;) = F(d;,d;;S) we must have

Contradicting no-envy. Thus x>Xx .

If x<x<d, then |d-x|>|d-x| contradicting no-envy.

Thus x; < d; < x4, In fact we must have x,;<d;<2d;-x;<x; so that

no-envy is satisfied. Thus 2d;sx;+x;.

Hence if S<2d,, p(d,;,d,; 8) =CEA(d;,d;; 9) . By  resource
monotonicity, F(d,;,d;;S)=CEA(d;,d;;8) if S<2d,.
Thus for $=2d,,F(d;,d;:;:8)=(d,;, d,).
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For S$»>2d;, by monotonicity, F;(d;,d;;8)=d;. This contradicts

x,<d;.

Hence F(d,,d;:S) = CEA (d,;,d,;S).

Q.E.D,

Lemma 4:- If a solution F satisfies individual rationality
from equal division and resource monotonicity, then it must

coincide with the Constrained Equal Awards Solution for all

two agent problems.
Proof:- As in Lemma 1, let us assume that (d,, d, ; §) is a

claims problem and F satisfies the properties listed in Lemma

2. Suppose F(dildj:S) = (x_iIXj) ta CEA(d1ldj;SS-
Assuming without loss of generality d;<d;, we must have
x;<d;, x; * Xy,
Suppose x; < x; < d; s dj.
X;+X . e . .
Then dj—-—iz <dy-x; contradicting individual rationality from

equal division. Thus Xx;<x;
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X, +X . s
If x,;<x;<d;<d,, then di-—’—z—-1<d1-xi, once again contradicting

individual rationality from equal division. Thus d;<x;

X +X
Suppose —’2—1<di.

+X
Then d; - x; < di-fi—z—l

. . X;*X C o
implies xizl—zl contradicting X;>X;.

Thus x; + x; 2 2d,

Hence for 5<2d;, F(d;,d;:;8) = CEA(d,;,d;:S)

By resource monotonicity, §> 2d;. impliesF;(d,,d;;$) =d,

which contradicts x; < d;. Thus F(d,;,d,:S) = CEA(d,,d;;5).

Q.E.D.

Consistency: A solution F is said to satisfy consistency if

VMeP, (d,S)eB ¥, x=P(d, 3) ,¢¢NcM,( d,,j}.}xi )eB ¥, implies
(4]
x=Fld., Zx)

Here dy=(d,;),  and x, = (X;) jo-
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Bilateral Consistency is simply the same property as above
requiring in addition that N should be a set consisting of

exactly two members.

nverse-consi : A solution F 1is said to satisfy
converse-consistency if V MeP, (d,S)eB¥,x is an allocation for

(4,8) and VY $#NcM,N has exactly two members,

x,,=F(d,,, i!g!in), then x=F(4,8).

The following lemma is easy to prove:

Lemma 5:- CEA satisfies consistency and converse-consistency.

We need one more lemma, before we can state the results that

we promised in the introduction. i

Lemma 6:- If F is a solution which satisfies bilateral

consistency and agrees with CEA for all two agent problems,

then F = CEA.

Proof:- Essentially the proof of Lemma 4 in Dagan (1996b).

We now have the following two major characterization theorems,

by using the results obtained so far.

Theorem 6:- The unique solution on B to satisfy bilateral

consistency, no-envy and resource monotonicity is CEA.
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Theorem 7:- The unigue solution on B to satisfy bilateral

consistency, individual rationality from equal division and

resource monotonicity is CEA.

Lomatic Cl o f the CEA Soluti ]

Population Monotonigity:-

Let N be the set of natural numbers and let I = N

Resource Continuity: F is said to satisfy resource continuity

if given M ¢ P (4,S) eB¥ and ¢ > 0, there exists § > 0

-

such that |5/-8|<8, (d, 8') e B¥ -||P(d,8) -F(d, 5" ||<e where the

norm is simply the Euclidean norm.

Resource Contimiity is really a mind regularity

assumption.
Population Monotonicity: F is said to satisfy population
monotonicity if V Qe P. and

ke N-0, (d,8) eb? (d/S) eboV¥, if d =d,Viep, then’
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F,(d',8) sF,(d,5)VieQ.

Population monotonicity says that the arrival of a new agent,
shouid not increase the wards for existing agents. This

assumption seems quite reasonable.

R i ion-Invari : F 1is said to satisfy replication

invariance if VQeP and keN, if Qe Pwith || =k |Q]

and
ieQ implies (i, 1),..., (i, k) € Q' such that for

(d,S) ¢ B® and (d'.kS)eB?, dj, = d;,j=1,...,k,i€Q, then x =

F (d, §)

implies y .y =x;,VieQ, 7=1,...,k, where y = F (d', kS)

eR?’.

The meaning of replication invariance is quite simple: if
a rationing problem is replicated k times (i.e.) the available

supply 1is multiplied k times and corresponding to each
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original agent there are now k agents with the same demand)
then each replica in the replicated problem gets what the

original agent in the original problem got. This assumption

seems harmless.

We now prove the main theorem of this section, which
states that the only solution to satisfy no-envy, population

monotonicity, resource continuity and replication invariance

is the CEA solution.

Theorem 8:

The only solution to satisfy no-envy, population

monotonicity, replication invariance and resource continuity

-

is CEA.

Proof :

That CEA satisfies the above properties has been
discussed earlier. Hence, let us establish the converse. Thus,
suppose F is a solution which satisfies the desired properties

and towards a contradiction assume that there exists L ¢ P,

(d, S) € BY such that F(d,S8) » CEA (d,8). Thus there

exists i, j € L such that
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x; < dy, x4 * x4

where x = F (d, S).

By no-envy, we must have

x; < d; <2d; - x; s x;, < d,

If we keep the available supply fixed at S, and simplyé}_
replicate each agent 'k' times, then by no-envy, each agent ofs
the same type gets the same amount. By population monotonicity

and no-envy, we must have

either x{ < x; < d; s 2d,-x; s 2d;-xf s x{ s X; < d,

or xj = xj

where x{ is the common amount that a type i agent gets in

the replicated problem (where the supply remains) fixed.

If (1) holds ¥k, then
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kx§ 2 k (2d, - x;) '8

for k ¢ N sufficiently large.

Hence for a sufficiently large replication, (2) holds.

Since i1 and j € L were arbitrarily chosen, we get that

there exists k™ € N, such that if each agent is replicated

k' times and the supply is held fixed at S, then F(d4', S)

CEA (d', S') were d' is as defined in the statement of the
replication invariance property.

However, by replication invariance,

Fyqy (d,k'S) =F; (d,8) VielL, 1=1,...k* where (i,1) is the

1** agent of type i (i.e. the 1*® replica of agent i in the

original problem).

Thus, there exists i, j € L such that

xy < d;s2d; -x; 8 x5 <dy

and xf'=.x;'< d,
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As the total resources are increased form S to k*S, the

individual awards of type i and type j agents change from

x{ to x, and x," to x; respectively. By resource

continuity, there exists &> 8§, & < k*S such that if y, is
what a type i agent gets at &’ and y,, is what a type j agent
gets as S/, then y, < y; < dy

Thus no-envy is easily seen to be violated; infact, i envies
3.

This contradiction establishes the theorem.
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10.

m £ R me Pr X

The proportional solution P: B~ X is defined thus:

VIeD,V(d,S)eB~, P{d,S) =0(d, S)d, where 0(d,S8)>0 is chosen

to satisfy 120((:1,8) d;=8
eL

Clearly, ©(d,S8) <1, since 12 d;>S
eL

Thus P,(d,8) < d, VieL

We are interested in the following property:

Reduced Game Property (RGP):

Given MeP,|Q|22 and (d,S)eB¥, let x=F(d,8). Let ¢wLcM and

y=F(d,,S), where d; =(d,) . Let S'=£in. Then

s/
FL(drS) =?F(d“ls) .

A weaker version of the above property known as the Weak
Reduced Game Property, is simply the same statement with
cardinality of L equal to two i.e. |L| = 2. It is easy to see

that RGP implies Weak RGP.

In the rest of the paper we prove that the proportional
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solution satisfies RGP and that the only solution to satisfy

Weak RGP is the proportional solution provided the solution

agrees with the proportional solution for all two agent

problems .

Theorem 10: P satisfies RGP

Proof: Let

MeP, |Q|22, ¢ LcM, (d,8) eBY and x=P(d,S). Let y = P(d,.9).

Thus x =0 (d,5) d and y =8 (d,,5) d,, ' =6 (d,9 i!ldi
3

sl

~x, =8(d.S)d, = d

L £ zjcbdi t
_ s s
8 Td, 9

leL

SI
= —§ e (deS) dL

/
-,
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Since Xy, =6 (4,8 Ed; =S
feL deL

-8 (d.3) =5/%d,

ierL

Theorem 11: Suppose F:B =~ X is such that V MeP with {M| = 2 and
all (d,S)eB¥ we have F{d,S) = P(d,8). 1f F satisfies Weak

RGP, then F = P on B.

Proof: Let MeP. If |[M| =1 or 2 there is nothing to prove.

Hence assume |M]>2. Without loss of generality assume

M={,...,M for some neN with n>2.

Let (d,S)eB¥ and X = F(4,S). We have to show that
X = P(d;S) . Consider ieM, iw1. By the hypothesis of the
theorem, F,(d,,d;:S) = -—91—-.5'.

1 d,+d,

X, +X, d,
5 d.-d,

By Weak RGP, X;=

i.e. Xl(di*di) = dl(Xl*-X,) . i.e- X1 dj = _d‘ Xj
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o XJ. 2di = dlle

fo1 ie1

Adding d,x, to both sides, we get

Xl_l?”di = d1 Enxl = d1$.

 x =
X = S

led

Since instead of 1 we could have chosen any jeM and obtained,

d
-9
%= xq,%
leM
We get that F(4,S) = P (4,8).

This proves the theorem.

This theorem essentially defines the proportional

solution uniquely on the class of all claims problems, modula
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the restriction that it is already known that for all two
dimensional problem it has the explicit functional
representation of the proportional solution. Hence the only

problem is to characterise the proportional solution for two

dimensional problems.

It may be argued that for several types of problems,
notably the kind envisaged by the supply chain management
problem, the proportional rule is the natural one to apply for
two agents (i.e. two retailer) situations. Indeed, if the
distributor is impartial as far as retailers go, then what
could be more natural than dividing an amount between them in
proportion to their demands (which in effect is a proxy for
the segmented market demands). However, this reasoniﬁg is a
justification for applying the proportional rule not merely in
the two agent situation, but for situations consisting of any
finite number of agents. Thus, inspite of the fact that the
given reasoning is very convincing, from the standpoint of the
present paper it is insufficient, since it is not amenable to
any analytical expression other than the direct one. Put
simply, in this paper we want to derive the proportional

solution, not define it. Thus we suggest the following

property:

Restricted Scale Invariance for Two Agents:
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Vi, jeN,iwj,¥(d,S), (d:S)eB'? if d +d,=d|+d].

then F,(d';3) ‘=—Z—$F,(d.s) N
i

and Fy(d:9) = —2F,(d:9).

The property Restricted Scale Invariance for Two Agents is
fairly strong; it says that given two hypothetical situations
where two retailers place different demands with the
distributor, if it turns out that the aggregate demand remains
the same, then for each retailer, the ratio of the awards
should be equal to the ratio. of the demands. bbserve, this
covers the situation where the retailers swap their demands
i.e. a simple permutation. It is instructive to note that in
the>sequel no additional symmetry assumption is required to

characterise the proportional solution for two agent problems.

Lemma 7: Let |I| 2 2. Suppose F:B - X satisfy Restricted Scale

Invariance for Two Agents. Then

V MeP with |M| =2, V (d,8)e B¥, F(d,8) = P(d,3)

Proof of Lemma 7: Let M = {i, j}, i,j ¢ P and suppose
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(xi. xi) = (Pi(dl'dj;s)‘Fj (dj,dj,S)) where (dj,dj,'g) GB".

By Restricted Scale Invariance for Two Agents, there exists

functions £f;: R:.-R,, and £;: RE. - R, such that

Let @ = d;+d;. Then d,f;(d,5) +d;f,(d,S) =5
Vd;,dypo such that d;+d,=d. Let d;=d;=d/2

~£,(d,8) +£,(d,8) = 28/d Suppose towards a contradiction that

for some

-

0<8¢<d, £,(d, 5) = e%> 5/d (: the case where f,(d,8) = e%< %
is similar since in that case £,(d, S)y>s8/d).

s
+d@S+d;(2-0) S=5, Vdy,d;>0

with : di+dj=d-
AR Bdi + (2-ﬁ)dj=di+dj i.e- (e"l)d_i = (9-1)Cj

~d; =d; since 0 * 1.
But this is a contradiction since f£,(d,S) :s independent of
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.

d, and d,. Thus £4d,8) = S=£,(d,9).

(SAL

Q.E.D.

" As a corollary to Theorem 10, 11 and Lemma 7 we have the

following:

Corollary 1: The only solution on B to satisfy RGP, and
Restricted Scale Invariance for Two Agents is P .
Corollary 2: The only solution on b to satisfy Weak RGP, and

' Restricted Scale Invariance for Two Agents is P.

In the introduction we have referred to the last condition as
relatively mild. The assumption of Restricted Scale Invariance
for Two Agents is mild when viewed as a requirement applicable
only for two dimensional problems, whereas our claims problems

can entertain arbitrary finite number of agents.

The entire situation in this section, when adapted to the
supply chain management framework is riddled with the
possibility of retailers misrepresenting their demands since
they operate in a situation of rationing. The possibility of
the distributor knowing the true demands, though realistic, is

contrary to the spirit of decentralization in which this paper
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has been conceived. Thus retailers do benefit by inflating

their demands.

Let us assume that the retailers inflate their demand
uniformly and multiplicatively i.e. in each succeeding period
the previous demand is multiplied by a constant say x > 1, x
being the same for all retailers. In this case the

proportional rule remains intact and inviolable.

On the other hand if in each succeeding period they inflate
their demand uniformly but additively i.e. by adding x > 0,
then the proportional rule converges to the rule which
allocates the good equally among the retailers.

There are a host of other possibilities opén which leads to a
distortion in the proportional rule and which may be amenable
to a separate analysis. We leave such an analysis as an open

problem for the interested reader.

It should be pointed out at this juncture, that the
possibility of misrepresenting demands may defeat the purpose
of rationing when there are chronic shortages. However, if
shortages are unforeseen (which is tantamount to the retailers
being unaware of the true supply), then the effectiveness of

the proportional solution carries through in letter and

spirit.
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