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Abstract

In this note we show that the worst case solutions of the weak
linear programming relaxation, the DROF heuristic sr~ the ADD

ristic for the Capacitated Flant Location Froblem are not

-

id .



The Capacitated Plant Location Problem
— Some Worst Case Analyses

Introduction

The Ipcation of plants, such as fac?ories or wa%ehauses, is an
inevitatle strategic decision for most Drganisatibns as it has a
direct bearing on the cost of supplying commodities to customers.
Transpdrtation cnsés often forﬁ ma jbr parti%ﬁ af the price f{ar
cast) of gﬁods. Equally impotrtant are the fixed costs involved
in :Dpening and operating a plant at any given location. Sueh
problems have geen widely studied in the literature under: the
names pf plant, waréhuuse,?aﬂ facility 1acatiun problems. S When

Ly

an upper bound, on

each potential 51ant has a capacity, that is,
the amount of demand that it can service, the problem is known as
the capacitated plant location problem {(CFLF). The capacitated
plant location problem, with n potential plants and m customers,

-

can be formulated as & mixed integer program, as follows.

-

Z = min 2‘., e o+ ZJf‘ y (1)
. 1) 13 ] J
subjeqt to .
Sex o= 1, i =1, ... ,m3 (2)
d id
2.d x <= sy 4 3 =1, ... a3 (D
i 0ij J o3
" L=y for every i,J. (4)
iJd J
¥ © »= 0O far every i,j. (5)
ij '
y = £0,13  § = 1y we. 0. (&)
J 1

The constraints (2) guarantee that the demand of every client is
-saﬁisfied, and constraints (3) guarantee that sach open plgnt
daes not supply more than its capacity, and that the clients "are

supplied oﬁly from open plants.



The 1literature on CFLF is very rich; see Magnanti and Wengl?3,
Francis and Goldsteinlél, Salkinfllld, and Wongl12] for
bibliographies on CFPLF. Researchers have worked on both
heuristic ' solution methods and exact algorithms to solve CFLF.
The heuris%ic solutions primarily bélong to the category of ADD
heuristics, see Fuehn and Hamburger[8] and.the DROF  heuritics,
see Feldman, Lehifer and Ray r41. The exact algoarithms for EFPLF
worlk  with various relaxatgons o% the problem. The relaxations
considered in the literature were Linear Frogramming relaxations
or  Lagrangian Pelaxa?iona. A linpear pfngramming relaxation of
CFLF without constraints ' (4) is called the Weak Linear*
Prmgra&ming relaxation. Salfl103, Ellwein and Gray[31, and Rhkinc
and Fhumawalalll work with this Peféxation. When constraints (4)
are also ingluded in the formulation, tﬁe relaxation is known as
the S;POHQ Linear Frogramming relaxation. In this note we will

study” the worst case behaviours of the Weak Linear Frogramming

Pelaha%imn, the ADD heuristic and the DROF heuristic.

'wdrst Case Analysis

We give ;Dme worst case examples for the Weak Linear Frogramming
relacation, the DROF and the ADD heuristics for CPLP. The Weak
Linéar Frogramming relaxation has been explainéd in the previous
sectiaon. The DROF heu;istic starts with all plants open and, in
pach iteration of the application of the protedure, cfnﬁes a
plaht‘ that gives the maximum Eavings'(dEcrease in the objective
function) and stops when no more savings can be obtained. The ADD

.

heuristic starts with no blants open: and, ‘at each iteration, adds



@ plant that gives the maximum savings and stops when no more
savings can be obtained. S5ee Jacobsen[7] for a complete

description of these methods.

-,

The performance of the relaxations or the® heuristics: can be
analysed using different measures. FERefore we look at these

measures let us define 2 to Be the objective wvalue of any
. * N H - )

heuristic Hy Z  the optimal solution; Z the objective value of a

relaration; and Z a reference value. LThe value I is an upper

bound on - the maximim value, see FisheriS5l. A populgr performance

measure for a heuristic value is (Z -~ Z*)/Z*. A major drawback

with such a measure is that it 12 subject to the ‘“scaling®

problem. That is, we*could.add or subtract a positive constant

to each of the costs in every element of row in the c matrix
ij
without affecting the execution of the heuristic or the optimal

solution. Although this does not affect the solutions, it does
L
atfect the performancg measure (Z -~ Z )/Z so that it could be
H
made smaller or larger by scaling the data. Another problem with

r

this measure is that we need to impose some. restrictions on ¢ =1

, 13
*
and f ‘s so that Z does not become zero. In order to circumvent

J .
these problems we will use the following measures. For any

gresdy heuristic H, (ADD and DROF heuristics are greedy

heuristics) the measure G is given by
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and for the relaxation L the measure R is given by
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Z -1

- L

O = ——————rr— e ——

Z> - 1

R L

*
When 2 = 7 in 6 (or Z =2 1in R) the heuristic (or the
R R L

relaxation) gives the Dptimal solution and therefore we define

G =0 (R=0), Ingeneral 0 <=6 <= 1, and 0 <= K <= 1.
A heuristic is "gpod" if sup G is-smaller than 1 where the sup is
taken over all possible data. A relaxation is "good" if sup R is

smaller than 1, for all possible data.

Now we show that the weak linear program, the DROF heuristic and

the ADD heuristic are not good.

‘Weak Linear Program

Froposition The weak linear program is not good.

Proof Consider the subfamily of problems with f =1, s = m,
s o j '
i =1y, weey ny and d =41, ..., m3 m->= 2 and

i .
O 1 1 . .. 1

i ¢ 1 . . . 1

c = . . .

. . 1

1 . . s i 0
The weak LF 'solution isy = 1/n, j = 1, ...y n and x =1

_ 3 ij
giving Z = 1. Clearly Z = m (the upper bound on all
[ L R .

solutions). We can see that the optimal solution is'tm - 1.

a



oE e ———— = e — ——
m-1 m -1
Thus sup R = 1,
The DROF Heuristic
Froposition The DROF heuristic is not good.
Froof Consider the subfamily of problems with n = m + 1 >=2,
= =1, f =1, j =1, ..., n~land f =2, s =my d’ '=1, i =
J J n n i

. . . 0
c = . . . 0
. -1 o
1 . a . 1 O O
*
We have 12 = mand Z = 2. At the first iteration, * DROP

R .
‘heuristic will eliminate plant n, as savings for plant n is 2,
|

and for all other plants 1 to n—-1i, the éaVings is 1. Then,  no
other plant is deleted since deleting any other plant will lead

.,
to infeasibility. Therfore, the heuristic value Z = m. Now,

) ) H
m - 2
G & ———————— = 1.

m ~ 2
The ADD Heuristic
Propositipn Tpe ADD heuristic is not good.
Proof . Take a.subfamily of problems with n = m + 1 %= 2y 8 = m,

. S

J =1y ..., N3 f =1, i =1, vuay n-13 f =K, d = i,

hg n i



: /r-:: [« T o S O 0
O kOO Q O

. . . 0
c = . . . 0
. . 0 0
O 0 K 0
* ‘
Clearly, Z =K, and Z = 2. Now, at the firet iteration, the

R
ADD heuristic will "add" plant n, as the savings for adding plant

n is M - K, and the savings for adding any of the plants 1, .«..,
n-1, is M - K - l‘where M is a very large number (since, when no

plants.are open, we do not have a feasible solution and we start
L)

with ‘the objective function being M). We cannot "add" any more

plants as we do not get any further savings. € = K. Hence
H
K- 2 ‘
G = e = 1.
b - 2

Conclusion

As a consequence of these resulte, we can expect to have
instances of the problem where the DROF and ADD heuristics, and
the linear programming Pelaxatinn' can perform very poorly.
‘Duﬁschke and DrexllZ] suggest starting‘procedures for AbD type
' heuristics showing that the performance of the heuristics improve
with the starting procedures. We feel that such starting
procedures will also . improve the performance of the DROF

[}

heuristics.
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