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ABSTRACT )
In this paper we characterise the Orlovsky solution and what we refer to as the family of
threshold solfutions. Our family of threshold solutions are somewhat larger than the
family of solutions which select only those alternatives that secure a certain
prespecified proportion of the votes against all other alternatives.Our family of
threshold solutions also include ones which select only those alternatives that exceed a
certain prespecified proportion of the votes against all other alternatives.This is the
price we pay for ommitting continuity from our axiomatic chracterizations.

Key Words:Fuzzy Relations,Decision analysis,Multiple criteria evaluation,Group
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Introduction: The gist of what is known as the Condorcet Paradox is the following
phenomenon: given three alternatives x, y, z, it is possible to find rankings of these
three alternatives such that a weak majority (i.e. at least half the total number of
voters)prefer x to y,a weak majority prefer y to z and a weak majority prefer z to x.This
obviously put the mathematical theory of electoral processes in a hopeless bind, since
there does not exist in the above situation an alternative which is preferred to all others
by a weak majority. However,it was also realised that in situations such as above, there
was no obvious basis to discriminate among alternatives.

Subsequently the focus of voting theory shifted to enumerating the number of voters
who preferred one alternative over another and selecting alternatives on the basis of
such information.Although implicitly such a procedure has been popular for sometime
now,a formal study of similar methods seems to be available for the first time in Arrow
and Raynaud [1] in the guise of outranking matrices.These matrices simply tabulate the
number of voters who prefer one alternative to another,with the entries being made
appropriately in order to form a matrix.Subsequently Dutta and Laslier [7] refer to such
procedures and call them comparison functions. The important thing to be noticed is
that no analysis using compromise functions depends on any information other than the
proportion of voters who prefer one alternative over another. The exact number of such
voters is immaterial.Hence,in this paper we call the rule which assigns to each ordered
pair of alternatives, the proportion of the voters who prefer one alternative to another,a
comparison function.With this understanding a comparison function is simply what is
known in the literature of fuzzy set theory, as a fuzzy binary relation or a valued binary
relation (see Roubens [12]).

With decision rules now depending completely on comparison functions instead of, on
individual preferences,there is clearly a need to reformulate voting theory.This has
been done to a great deal in the paper by Dutta and Laslier [7] in situations,where an
alternative which is preferred to all others by a weak majority does not exist.It is worth
considering what the theory would look like if situations such as the Condorcet Paradox
were prevented from arising by suitably restricting the domain.This is what we do in this
paper.The solution to choice problems when preferences are such that they exclude
the paradoxical situation mentioned above is what is known as the Orlovsky [10]
solution in fuzzy set theory.

The axiomatic theory of choice rules with fuzzy preferences has a modest and yet
rapidly growing literature as for instance [2], [3], [4], 5], [6], [8].[9], [10], [11], [13] and
[14], to mention a few.Of particular interest are the axiomatic characterisations
appearing in [14]of the Orlovsky solution and solutions which select only those
alternatives that secure a certain prespecified proportion of the votes against all other
alternatives.In this paper we axiomatically characterise these same solutions for
compromise functions using almost the same assumptions that have been used by
Sengupta in [14] except one,i.e.continuity.Continuity may be a meaningful assumption
for fuzzy binary relations but is definitely not so if we restrict ourselves to compromise
functions along with its intended interpretation as scores obtained in pairwise
voting.Continuity would require the possibility of a comparison function to assume any
value in the closed unit interval, where as such can never be the case if we consider
proportions.Proportions such as those discussed above must always be rational



numbers.While we do not exclude the possibility of other interpretations to our
comparison functions,we do not deny it the possibility of representing an outranking
matrix.Thus we have characterised the Orlovsky solution and what we call in this paper
as the family of threshold solutions, using axioms similar to the ones in [14],but without
using continuity at all.Our family of threshold solutions are somewhat larger than the
family of solutions which select only those alternatives that secure a certain
prespecified proportion of the votes against all other alternatives,as suggested by
Sengupta in [14].Our family of threshold solutions also include ones which select only
those alternatives that exceed a certain prespecified proportion of the votes against all
other alternatives.This is the price we pay for ommitting continuity from our axiomatic
chracterizations.lt is worth pointing out that the entire analysis reported in this paper
goes through if instead of considering real valued comparison functions, we considered
only those that assumed values from among the set of rational numbers in the closed
unit interval, as is likely to be the case in voting theory.

The Framework: Let N denote the set of natural numbers and let X be a non-empty
finite set .Let [X] denote the set of all non-empty subsets of X.Let D(X)={(x,x)/xeX}
denote the diagonal of X.Given a binary relation R on X (i.e.R is a subset of XxX ) let
P(R)= {(x,y)eR/(y,x) R} be the asymmetric part of R and let I(R) = {(x,y)eR/(y,x)eR} be
the symmetric part of R. A binary relation R on X is said to be:

reflexive if D(X)c R

complete if V(x,y)e(XxX)\D(X):either (x,y)eR or (y,x)eR,;

transitive if vx,y,zeX: [(x,y).(y,2)eR] implies (x,z)eR;

quasi-transitive if P(R) is transitive;

acyclic if vke N and x(1),...,x(k) e X:[(x(i),x(i+1))eP(R) Vle{'l, ., k-1}] implies
[(x(k),x(1))eP(R)].

Let G(X) denote the set of all reflexive and complete bmary relations on X.Elements of
G(X) are also referred to as abstract games.Let U(X)={ReG(X)/R is transitive}, Q(X)=
{ReG(X)/R is quasi-transitive} and let A(X)={ReG(X)/R is acyclic}. Given (A,R)e [X]x
G(X), let B(A,R) = {x €A/ (x,y)eR VyeA}.B(A,R) is known as the set of best elements of
R in A. The following result is well known:

Proposition 1: Given ReG(X): [B(A,R)#$ whenever Ae[X]] if and only if ReA(X).

A comparison function g on X is a function g:XxX-» [0,1] such that vx,yeX:g(x,y)+g(y.x)
= 1.Hence ¥xeX:g(x,x) = 1/2. Let R denote the set of all comparison functions on X.
Given g R, the binary relation R(g) ={(x,y)eXxX / g(x,y)=> g(y,x)} is called the Orlovsky
relation generated by g. Clearly R(g) eG(X) whenever g e®R. Further if R eG(X) then R
= R(g), where g eR and is defined as follows:g(x,y) = 1 if (x,y) € P(R), g(x,y) = 0 if (y,x)
e P(R) and g(x,y) = 172 if (x,y) € I(R).

Note:(x,y) € R(g) if and only if [(x,y)e XxX and g(x,y) > 1/2].

Let H(A)={ g eR/ R(g)eA(X)}, H(Q)={ g eR/ R(g)eQ(X)} and H(U)={ g eR/ R(g)eU(X)}.
Following [14] we say that a comparison function g is transitive if ¥x,y,zeX: g(x,z) >
min {g(x,y),9(x,z)}, and weakly transitive if Vx,y,zeX: [(X,y).(Y.Z) € R(g)] implies [g(x,2)
2 min {g(x,y).g(x,2)}].Let H(T) denote the set of all transitive comparison functions and
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let H(W) denote the set of all weakly transitive comparison functions.Clearly, H(T)c
H{W) and H(U)c H(Q)c H(A).

Proposition 2: H(W)c H(U). Hence, H(T)c H(W)c H(U)c H(Q)c H(A).

Proof : Let g € H(W) and suppose (x,y) , (¥,2) € R(g). Thus, g(x,z) > min {g(x,y).g(x,z)}
> 1/2. Thus (x,z) € R(g).Hence g € H(U). v
Proposition 3:Let g € H(U) and suppose x,y,z € X.Then:

[ g(x.y)>a(y.x)]&[g(y.2)2g(y,z)] implies [g(x,2)>a(z,X)};

[ a(x,y)=g(y.x)]&[g(y.z)>g(y,2)] implies [g(x,2)>g(z,X));

[ 9(x.y)=g(y.x)]&[a(y.2)=g(y.2)] implies [g(x,2)=g(z,%)].

Proof : Follows obviously from the transitivity of R(g) whenever ge H(U). v

Let R’ be a non empty subset of R.A solution on R’ is a function C:[X]x R'—>[X] such
that v (A,g)e [X]x R’: C(A,g) c A. R’ is called the domain of the solution C.

If C is a solution on R’ such that v (A,g)e [X]x R': C(A.g) = B(A,R(g)), then C is said to
be an Orlovsky solution.

By proposition 1,[ B(A,R(g))=¢ whenever (A,g)e [X]x R’] if and only if [R(g)eH(A)].
Hence the domain of any Oriovsky solution must be contained in H(A).

Given (A, g)e [X]x R’ (:where ¢=R'cR)and xeA, let R(g,A x)=min{g(x,y)/yeA}.The
following family of solutions is due to Sengupta ([14]): given a €[0,1/2] a solution C:[X]x
R'—[X] is said to be an a- threshold solution if ¥ (A,g)e [X]x R’: C(A,g) =
M((A.g),a)={xeA/ R(g,A,x)=a}.

The following proposition is easy to establish:

Proposition 4:V a €[0,1/2] and V (A,g)e [X]x R’: (i) M((A,g),1/2)= B(A,R{(g)) c
M((A,g),a);(ii) if a,b €]0,1/2] with a<b, then M((A,g),b) = M((A,g),a).

Proof ; (i) It is easy to see that V (A,g)e [X]x R’, M((A,g),1/2)= B(A,R(g)).Hence let
(A.g)e [X]x R’ and let a €[0,1/2].Suppose x € B(A,R(g)).Thus,R(g,A,x)= 1/2 >a.Thus x
e M((A.g),a).Thus, B(A,R(g)) = M((A,g),a).

Let x € M((A,g),b) where a,b €[0,1/2] with a<b.Thus, R(g,A,x)>b >a.Hence, x
M((A.g),a).Thus, M((A,q).b) = M((A.g).a). v
Proposition 5: Let a €[0,1/2] and g eH(A).Then M((A.g),a)=¢ whenever Ae[X].

Proof : It has been observed earlier, that as a consequence of proposition 1,
[M((A.9),1/2)=¢ whenever Ae[X]] if and only if geH(A).The proposition now follows from
(i) of proposition 4. v
Note: It is not necessary for g to belong to H(A) in 6rder to ensure the non emptiness of
M((A,g).a) for A in [X],when a is less than 1/2.This is shown in the following example:
Example 1: Let X={x,y,z} with x # y # z # x and let g(x,x)=g(y.y)=9(z,z)=1/2,9(x,y)= g(Y,2)
=g(z,x) =3/4, g(y,x)= g(z,y) =g(x,z)=1/4.Clearly, (x,y).(v.z).(z.x} eP(R(g)).Hence g ¢

. However M({(A,g),1/8) = A for all A in [X].

We now propose the following family of solutions which slightly modifies the family due
to Sengupta [14]: given a €[0,1/2] a solution C:[X]x R'—[X] is said to be a strict a -
threshold solution if ¥ (A,g)e [X]x R': C(A,g) =M"((A.g9),a) = {xeA/ R(g,A,x)>a}.

Axioms For Solutions: Let C:[X]x R'—>[X] be a solution.|t is said to satisfy:
Chernoff's Axiom (CA) if ¥V (A,g),(B.g)e [X]x R': [A < B] implies [ C(B,g)nA < C(A.g9)];




Expansion (E) if V (A,g),(B.g)e [X]x R’: C(B,g)"C(A.g) c C(A U B,g).

An interesting consequence of CA and E is the following:

Proposition 6: Let C:[X]x R’—[X] be a solution satisfying CA and E .

()Suppose that for some g € R’ there exists a €[0,1/2] such that [Vx,y eX: C({x,y}.g) =
M(({x.y}.).a)l. Then, V Ae [X]: C(A.g) = M((A.g),a).

(il)Suppose that for some g € R’ there exists a €[0,1/2] such that [vx,y eX:
M'(({x.y}.9).a) = C({x.y},9)]. Then, ¥ Ae [X]: M"((A,g),a) = C(A,9).

Proof :(i)Suppose that C:[X]x R'—[X] be a solution satisfying CA and E and for some g
€ R’ , there exists a €[0,1/2],such that that ¥x,y eX: C({x,y}.9) = M({({x.y}.g).a).Let,
Ae[X]. Suppose x € C(A,g).By CA, [Vy eX: x eC({x,y},g9) = M(({x.y}.g),a)]. Thus [Vy eX:
g(x,y)>a).Thus R(g,A,x)> a. Thus, x € M((A,g),a).Hence, C(A,g)= M((A,g),a). Now
suppose, x € M((A,g).a).Thus x € A and R(g,A,x) > a. Thus, [ xeAl& [Vy eX: g(x,y)> a}.
Thus, [ xeAl& [Vy €X: x € M(({x.y}.9).a) = C({x.y}.g) ]1.By E, xeC(A,g).Thus, M((A,g),a)
c C(A,g).Thus, C(A,g) = M((A,g),a). This proves (i).

is proved similarly. v

Let C:[X]x R®'—[X] be a solution.It is said to satisfy:

Neutrality (N) if (A,g).(B,h)e[X]xR":[ : A— B is one to one]&{Vv(x,y) e AxA: g(x,y) =
h(o(x),5(y))] implies [C(B,h) = {c(x)/xeC(A.9)];

Monotonicity (M) if vV x,y e Xand g, h eR’, if [ h(x,y) = g(x,y) ] then :

x € C({x,y}.g) implies x e C({x,y},h);

{x} = C({x.y}.g) implies {x}= C({x,y},h).

Characterising the Threshold Solutions: A oonsequence of the above axioms is the
following proposition:

Proposition 7: Let H(T) ¢ R’ < H(A) and let C:[X]x ®’ a[X] be a solution satisfying N
and M . Then there exists a €[0,1/2] such that : either (i)[vx,y eXand V g € R":
M’(({x.y}.9).2) = C({x.y}.9)], or (ii)[vx,y eX and V g e R': M(({x.y}.9),a) = C({x.y}.9)].
Proof : Let a = inf {g(x,y) / x € C({x,y}, g € R’ and x,y €X}. Since the set {g(x,y) /x €
C{{x.y}, g € R’ and x,y X} is bounded below by zero, the infimum exists and is non
negative. Since, g(x,x) = 1/2 for all x in X and g in ®’,a < 1/2. Let x,y eX such that
g(x,y) >a. Since a = inf {g(x,y) / x € C({x,y}, g € R’ and x,y X}, there exists X'y’ eX
and he R’ such that X’ e C({x’,y’}, h ) and g(x,y)>h{X'.y’) > a. Let o : X —» X be defined
by o (X)=x,0 (Y')=y, o (X)=X,c (Y)=y' and o (2)=z if zeX\{x,y,X',y'} .Let fe R’ be defined
thus: f(c (z),6 (W)) = h(z,w) whenever (z,w) eXxX. By N, x € C({x,y}, ). By M, x e
C({x.y}, g ).Thus, M"(({x.y}.9).a) c C({x.y}.9).

If there exists (x,y,g) € XxXx®R’ such that g(x,y) <a and yet x € C({x,y}, g), then we
would be contradicting our definition of a. Hence V¥ (x,y,g) € XxXx®R': x € C({x.y}, 9)
implies g(x,y) = a, i.e. V (x,y,g) € XxXxR": C({x,y}.g) c M({{x,y}.g).a@) .Thus, V (x,y,g) €
XxXxR": M(({x,y},9).a) = C({x.y}.9) < M(({x.y}.9).a).

Suppose that for some (x,y,g) € XxXx%R’,g(x,y)=a and x € C({x,y}, 9).By N, [V (x,y,9) e
XxXxR’: g(x,y)=a implies x e C({x,y}, g)].Combined with the fact [V (x,y,g) € XxXx®R’:
M*(({x.y}.8),a) « C({x,y},9) = M(({x,y}.g).a)], this yields the conclusion : [vx,y eX and ¥
g € R": M(({x,y}.g9).a) = C({x,y},9)]. This proves the proposition. v




We are now in a position to state the following:

Theorem 1: Let H(T) c R’ < H(A) and let C:[X]x ®’'—[X] be a solution on R’. Then C
satisfies CA, E, N and M, if and only if there exists a €[0,1/2] such that

either(i)l v (A,g)e [X]xR’': C(A,g) = M((A,g),a); or(ii) V (A,g)e [X]xR': C(A,g) =
M'((A9).a) .

Proof :It is easy to verify that if C is either an a-threshold solution or a strict a-threshold
solution, then C satisfies CA, E, N and M.The converse assertion follows from
propositions 6 and 7. v
However to obtain an axiomatic characterisation which uniquely characterises the
Orlovsky solution we need a further axiom.

Axiomatic characterisation of the Orlovsky Solution : We now consider the
following axiom:

Let C:[X]x R'—>[X] be a solution. It is said to be non trivial if whenever a compromise
function g in R’ is non constant,then there exists A €[X] such that C(A,g) # A.

A non empty subset R’ of R is said to be a rich domain if whenever a is a rational
number in [0,1/2] then there exists f,g eR’ and x,yeX:x #y and g(x,y) = a = f(x,y).

Note : If H(T) c R’ < H(A) then R’ is a rich domain.

Proposition 8 :Let %’ be a rich domain and let C:[X]x R'—[X] be a non trivial solution
on R’ satisfying CA,E, N and M. Then, V (A,g)e [X]xR': C(A.g) = M((A,g),1/2).

Proof: Letf,g e®R’ and X' \y'eX: X' =y’ and g(x',y') = 1/2 = f(x',y').By N, C({X'.y'}.9) =
C{{x.y'1f) = {x.y’}. Hence, by M, if g eR’ and g(X',y’) > 1/2, then x’' e C({x".y'},9).By N, if
(h,x,y) eR’'xXxX with x 2y and h(x,y) > 1/2, then x € C({x,y},h).If x =y, then h(x,y) =1/2
and x € C({x,y},h).Thus,[ (h,x,y) e R'xXxX with x zy and h(x,y) > 1/2 implies x ¢
{x,y},h).Thus Vh e®R’:(x,y) eR(h) implies x € C({x,y},h).

Now suppose that g eR’ and towards a contradiction suppose that there exists x',y’ eX
such that x' e C({x',y'},g) and yet (X',y’) ¢ R(g). Thus g(x,y) < 1/2. Let a be any rational
number strictly greater than g(x,y) and strictly less than 1/2.By M, if h e®R’ and h(X'.y’) =
a, then X’ e C({X'.y’},h). Further 1-a>a and the fact (y',x') eR(h) implies by the previous
partthaty' € C({X',y'}.h).Hence, if h e®R’ and h(X',y’) = a, then {x',y'} = C({X',y’},h). Let X
={z(1),2(2),....,z(m)} and h eR’, with h(z(i),z(j))=a if i<j, h(z(i),z(j))=1/2 if i=j,
h(z(i),z(j))=1-a if i>j.By N, [Vx,y eX: C({x,y},h) = {x,y}]. Let A €[X]. It follows as a
consequence of E that C(A,h) = A.Since h is non constant this contradicts the non
triviality of C. Thus,vh e®R’: [x,y eX and x € C({x,y},h)] implies [(x,y) € R(h)]. In
conjunction with what we have obtained earlier,it follows that Vvh eR’: [x,y eXand x e
C({x,y},h)] if and only if [(x,y) € R(h)].The proposition now follows as a consequence of
proposition 6. v

Theorem 2: Let R’ be a rich domain and let C:[X]x R'—[X] be a non trivial solution on
R'.Then C satisfies CA, E, N and M if and only if C is the Orlovsky solution on R’'.
Proof :That the Orlovsky solution on R’ satisfies CA, E, N and M follows from theorem
1. The converse follows from proposition 8. v
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