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Abstract

The uncapacitated facility location problem is one of choosing sited among a sct of can-
didates in which facilitics can be located, so that the demands of a given sct of clients are
satisfied at minimum costs. Applications of neighborhood scareh methods to this problem
have not been reported in the Literature. In this paper we first deseribe and compare sev-
cral ncighborhood structurcs used by local scarch to solve this problem. We then deseribe
ncighborheod scarch heouristics based on tabu scarch and complete local scarch with memory
to solve large instances of the uncapacitated facility location problem. Qur computational
experiments show that on medium sized problem instances, both these heuristics return so-
lutions with costs within 0.075% of the optimal with cxccution times that are often several
orders of magnitude less than those required by cxact algorithms. On large sized instances,
the heuristics generate low cost solutions quite fast, and terminate with solutions whosc costs
are within 0.0345% of cach other.

Keywords: metaheuristics, tabu search, complete local search with memory, facility location.

1 Introduction

Location problems arc some of the most widely studied problems in combinatorial optimization
{scc Mirchandani and Francis [15] for a detailed introduction). The basic sctting of the probletns
is the following. We have a sct of sites in which facilitics can be located, and a sct of clicnts
who have roquircments that arc to be satisficd by the facilitics to be sct up. The objective is
to determine the sites in which facilities must be sct up to satisfy the elicnt requircments at
- minimum cost. Based on additional assumptions, location problems can be classified into four
basic categorics: p-median problems, p-center problems, uncapacitated facility location preblems,
and capacitated facility location problems. In the p-median problem, the cost to be minimized is
simply that of transporting commoditics from facilitics to clicnts. In the p-center problem, the
cost of a solution is defined as the maximum cost incurred in order to satisfy any single client.
For both the problems deseribed above, facilitics can be located in cxactly p sites. In the last two
types of problems, the cost of satisfying the client requircments has two componcnts — a fixed
cost componcent of setting up a facility in a given site, and a transportation cost component of
satisfying the cliont requirements, The uncapacitated problem assumes infinite capacitios for all
the facilitios, while the capacitated: problem assumes a finite capacity for cach facility. In this
paper we study the uncapacitated facility location problem (UFLP). Formally defined, the UFLP
is the following:



Problem: Uncapacitated Facility Location {(UFLP)

Instance: Scts I = {iy,i2,...,im} of sitcs in which facilitics can be located, | =
{ir,iz,.-. ,in} of clicnts, a vector F = (fi) of fixed costs for sctting up fa-
cilitics at sites i € I, and a matrix C = [¢y;] of transportation costs from i € |

tojel.
Output:  argmin{F(5) = 3 ;s fi + 2 ;c;minfeislie S} CSCI
The size of a UFLP instance is denoted by m x n, where m and n arc the cardinalities of the
scts [ and ] respectively. Each set § (@ € § € @) represenis a solution to the instance according
to the rule: 1€ S & a facility is located at site i in the solution represented by S.

The UFLP forms the underlying model in several combinatorial problems, like set covering,
sct partitioning, information retricval, simplification of logical Boolcan cxpressions, airline crew
scheduling, vehicle despatching (Christofides [5]), assortment (among others, Beresnev et al. [3],
Goldengorin {10], Pentico [16,17]), and is a subproblem for various location analysis problems
{Revelle and Laporte [18]). The function F{$) is called the cost or the ebjective function of the
solution 5. The UFLP is known to be A'P-hard (Cormucjols et al. [6]), and many exact and
heuristic algorithms to solve the problem have been discussed in the literature. An annotated
bibliography of scveral exact solution approaches appears in Labbé and Louveaux [14]. Mcthods
for gencrating challenging data scts of large instances of these problems have been suggested in
Karkel [12].

Neighborhood scarch based methods have been overlooked for the UFLPF, although a tabu
scarch based method for solving the related p-median problem has been studied (sce Rolland et
al. [19]). A tabu scarch procedure for the location-atloeation problem has also beon reported in
Tuzun and Burke [20]. Our aim in this paper is to study ncighborhood scarch based mothods
for the UFLP. In the next section we study the performance of the steepest descent local scarch
heuristic using various ncighborhood structures. We choose the neighborhood structure among
these that performs best on test problems, and discuss implementations of tabu scarch and com-
plete local scarch with memory in Section 3. We report our computational experience with these
heuristics on randomly gencrated large instances of the UFLP in Section 4, and summarize the
paper in Section 5.

2 Local Search and Choice of Neighborhoods

Local scarch is perhaps the simplest among neighborhood search methods. It starts with a given
initial solution and cheeks its ncighborhood for a better solution. If such selutions exist, then local
scarch designates the best solution found in the neighborhood as the current solution and repeats
the process. In case the neighborhood of the current solution does not contain any solution bettor
than it, local scarch returns the current solution and terminates.
This method docs not guarantce globally optimal solutions to most combinatorial problems,
but generally returns relatively good quality solutions. Of course, the effectiveness of the method
" depends on the ncighborhood structure used. In this scction we test the performance of local
scarch on UFLP instances using throe neighborhood structures, the Add-Swap ncighborhood, the
£-Swap neighborhood, and the Permutation ncighborhood.

2.1 Neighborhood Structures

Add-Swap Neighborhood This ncighborhood structurc was used in Tuzun and Burke [20] to
solve location problems, and seems to be motivated by local scarch heuristics for the p-median
problem. The neighborhood is defined by two different kinds of moves: swap moves and add
moves. A swap moves removes a facility from onc of the sites where it was located in the current
solution and simultancously opens a facility in a sitc that had none. This kind of move keeps the
number of open facilitics in the solution constant. An add move, on the other hand, simply opcns
a facility in onc of the sites where no facility was open in the current solution. Thus it incrcascs
the number of open facilitics located by one. The local scarch procedure on which the tabu scarch
procedure described in Tuzun and Burke [20] is based starts by opening a facility in one of the
locations on the instance. It then cnters a swap phase in which swap moves are exeeuted until



no morc swap moves improve the solution. After that local scarch enters an add phase in which
add moves are exceuted until no more add moves improve the solution. The swap and add phases

alternate until a local optimum is reached.

2.Swap Neighborhood This is a very common neighborhood structure used in combinatorial
optimization problems. In this neighborhood, a move from a solution to another can be exceuted
by one of three ways — either by cxccuting an add move, or by cxccuting a swap move, or by
removing a facility from one of the sites where it was located in the current solution.

Permutation Neighborhood Since the objective function value of the UFLP is supcrmodular,
the following result holds true.

Result 1 (Cherenin {4]) Consider solutions 51, Sz, ..., Sm, where |Sxl =k and @, 5; C 52 C
v.. C S = L. Assume that F(@) = co. Then there ezmists p, 1 <p < m such that

F(0) =3(So) > F(S1) = 2 FSp) £ -+ < F{Sm) = F(D).

This result allows us to define the greedy heuristic GREEDY of Figurce 1 that runs in O(mn)
time,

Heuristic GREEDY

Input: I, ], F, C, and a permutation [T ={m,... , 7] of I
Output: A solution to the instance.
Code:
begin
S=#&
fori:=1to mdo
begin
gain := (S Ufin,}) — 5(S);
ifgain > 0
S=8ufin}
clsc return S;
cnd;
return 55
cnd.

Figurc 1: The GREEDY algorithm

Now consider the sct & of all possible solutions to an UFLP instance obtained by running
_ GREEDY on it using various permutation vectors. Clearly, all optimal solutions to the instance
arc present in this sct, so that we can restrict local scarch to its members. Again, since cach of
the solutione in & i defined by a permutation TT of the clements of I, (although not uniquely,
gince more than onc permutation can result in the same solution) we can construct a permu-
tation ncighborhood based on these permutation vectors. In this neighborhood structure, two
solutions Sa and Sg, (Sa,Ss € ©) obtaincd by running GREEDY with permutations ITa and
TTg respeetively, are neighbors if and only if T4 and Mg differ in exactly two positions. A similar
ncighborhood structure has been used in Ghosh and Chakravarti [7] on subsct-sum problems.

2.2 Performance on Test Problems

We implemented local scarch using cach of the three ncighborhood structures mentioned in the
previous subecction. In order to test their relative performance, we used test instances sirnilar
to thosc described in Korkel [12]. The problems had size m = n = 100, and were of two types,
symmetric and asymmetric. The symmetric problems were identical to the “small-scale” problems
deseribed in Korkel [12). They were divided into four classcs, SYM-1 through SYM4. SYM-1
and SYM-2 containing 45 instances cach, and SYM-3 and SYM-4 containing 15 instances cach.



The asymmetric problems closcly mimicked the symmetric problems, but the initial choice of
the transportation costs was random, chosen from a uniform distribution supported on [0, 2500].
The performance of the focal scarch heuristics wore cvaluated using two paramcters — their
suboptimality, defined as

cost of the solution returned by local scarch — cost of an optimal solution
cost of an optimal solution

Suboptimality =

1

and the cxecution time roquired by local scarch on a computer with a 650 MHz Intcl Mobile
Ccleron Processor.

Table 1: Performance of local scarch on symmetric smali Kérkel instances

Avcrage suboptimality Average exocution time (CPU scconds)
Problem Neighborhoods Problem Neighborhoods
Set Add-Swap 2-Swap Pcrmutation Set “Add-Swap 2-Swap Pormutation
SYM-1 0.004 0.002 0.003 SYM-1 0.267 0.267 6.289
SYM-2 0.020 0.623 0.019 SYM-2 0.089 0.044 2,756
5YM-3 0.006 0.004 0.005 SYM-3 0.200 0.200 2.133
SYM-4 0.015 0.014 0.016 SYM-4 0.067 <0.001 1.400

Tablc 2: Performance of local scarch on asymmetric small Kdrkel-type instances

Avcrage suboptimality Average cxccution time (CPU scconds)
Problem Ncighborhoods Problcm Ncighborhoods
Set Add-Swap 2-Swap Permutation Sct Add-Swap 2-Swap Permutation
ASYM-1 0.018 0.014 0.014 ASYM-1 0.222 0.067 6.022
ASYM-2 0024 - 0.029 0.026 ASYM-2 0.156 0.067 3.400
ASYM-3 0.008 0.010 0.016 ASYM-3 0.200 <0.001 3.467
ASYM-4 0.034 0.032 0.031 ASYM-4 0.133 0.067 2.467

Tables 1 and 2 surmmarize our computational cxpericnce with local scarch using various neigh-
borhood structiures on the test instances. The results tabulated is the average of the results for
all the instances in a particular set, We see that the use of different neighborhood structures do
not result in markedly different solution qualities, either for the symmetric problems or for the
asymmctric problems. However, the exccution times required by Iocal scarch using the 2-swap
ncighborhood is clearly less than thosc required by the other two, capecially for the asymmetric
problems. Thercfore we will usc the 2-swap ncighborhoods in the implementations of tabu scarch
" and complete local scarch with memory discussed in the next soction.

3 Advanced Neighborhood Search Procedures

In spitc of the advantages of the local scarch procedure described in the previeus section, it is
rarcly used to solve large problems. The main disadvantage of the procedure is that it gots stuck
at local optima, which may be far from a global optimum in terms of the solution quality. Popular
cnhancements to local scarch generally include strategics to move out of such local optima. In
this scction we describe two such enhancements for local scarch applied to the UFLP — a tabu
scarch procedure, which makes usc of tabu lists to guide the scarch, and a complete local scarch
with memory procedure that backtracks out of local optima onec it rcaches them.

3.1 Tabu Search

Tabu Search (TS — see, e.g., Glover and Laguna [9]) is one of the most effective improvements
on local scarch known in the litcraturc. It follows the basic principle of local scarch, moving
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at cach iteration from the current solution to the best solution available in the neighborhood.
The neighborhood of all solutions change contimionsly depending on the scarch history, thereby
guiding the scarch to regions in the gearch space that it has not visited carlicr. This helps the
scarch to move out of local optima. The TS procedure desceribed in this subsection closcly follows
the TSpMP procedure described in Rolland et al, [19]. It uses the 2-swap neighborhood structure,
which we found to be effective for the UFLP (see Scction 2), incorporates recency and frequency
based memory, and an aspiration criterion to guide the scarch.

Recency based memory The recency based memory nsed in our implementation discourages
sites that were involved in recent moves to participate in a move at the current iteration. This is
done by maintaining a tabu list. After cach iteration, the sites involved in the move at the current
iteration arc put in the tabu list, (they arc said to achicve a tabu status), and stay there for & pre-
defined number of iterations (called the tabu tenurc). Sites with a tabu status cannot participate
in moves during their tabu tenure, except if they satisfy an aspiration criterion described later.
Once the tabu status of a site is removed, it can participate in futurc moves, and no permanent
record of its past tabm status is maintained. This kind of memory is thus called short-term or
recency based memory.

The length of the tabu tenurc can be sct using onc of throe approaches: fixed, dynamic, and
random. We usc a random tabu tenure, very similar to the one used in Rolland et al. [19]. In
our implementation, the tabu tenure is sct to a randomly sclected number within a pre-specified
interval.

Frequency based memory Frequency based memory is onc of the tools used for diversification
in TS implementations. The raticnalc behind using this kind of memory is to discourage the
scarch from being restricted to a small region of the solution space by discouraging frequently
made moves. In our implementation, we maintain a list freq that koeps a record of the number of
times & cortain site has participated in a move during the history of the scarch. We then construct
a penalty function which penalizes the use of sites that have a high valuc in the list. Following the
implementation described in Rolland et al. [19], we construct the ponalty function TI(i) for a site
i of the form TH{i) = k x freq{i), where k is a pre-dcfincd constant. The penalized cost function
for a solution S, rcached from a solution Se to the instance is thus

Fe(S,S0) =Fe(S)— X T

iE(5\50)U(S0\5)

The freq list is maintained and updated throughout the history of the scarch. This type of
memory is thus also called long term memory.

Aspiration criterion Aspiration criteria arc cmployed in TS implementations to ensure that
" moves which are cxceptionally promising arc not ignored duc to the tabu status of some component
clement. Sophisticated TS methods usc aspiration criteria that arc dependent on the the portion
of the solution space that the method is scarching, or usc multiple criteria. Our implementation
uscs the following simple rule:
A move is said to sabisfy the aspiration criterion if if results in a solution with a cost lower than
that of the best solution found thus far.

The pseudocode for our TS implementation is presented in Figure 2. We performed computa-
tional experiments to compute the valucs of the various paramcters of the algorithm. Our results
arc basced on cight instances with various values of fixed and transportation costs. These instances

were generated using the guidelines in Korkel [£2] and had 400 locations and 400 clients cach. We
observed that a small value of k for the penalty function TT(-) resulted in the best solution costs.
Therefore k was set to 10. Scveral combinations of the valucs of maxtabu and maxiter (refer
Figurc 2) were used to solve the cight instances in order to find the best combination. Table 3
summarizes our findings.

The most surprising finding from these cxperiments was that short tcrm memory did not help
to improve the performance of TS for the UFLP. In fact the existence of a tabu list worscned the



Heuristic TS
Input: I, ], F, C, and an initial solution Sg to the instance.
Output: A solution to the instance.

Code:
hegin
best ;= Sg;
for iteration := 1 to maxiter do
hegin
remove all sites from the tabu list whose tabu tenure is complete;
Sns = argmin{Fe($, So) : a move from Sp to S is non-tabu};
S¢ := arg min{Fp (S, So) : & move from Sp to § is tabu};
if Fp(Sne) < Fr(Se)
begin
if F{5n1) < Fibest)
F(best) = F{(Sn1);
if F{Snt) < F(So)
F(So) = F(Sns); :
sct the tabu tenure for cach site participating in the
move from $p to S to a random number between 1 and maxtabu ;
end;
clsc
begin
if F(S¢) < F(best)
begin
§(best) == F(5:);
F{So) = §(S¢);
end;
sct the tabu tenure for cach site participating in the
move from Sy to § to a random number between 1 and maxtabu ;
cnd;
cnd;
return best;
cnd.
Figure 2: Our TS implemcntation
Table 3: Choice of parameters for our TS implementation
Avcrage solution costs Avcrage cxocution time (CPU scconds)
maxiter maxiter
maxtabu 50 75 100 maxtebu 50 T 100
0 TI0629.88 72394013 723153.88 1] 30.19 44,77 61.43
R 735204.38 732275.00 731502.38 3 3030 4531 60.32
10 735204.38  732275.00 731502.38 10 30.49 45.09 60.19




quality of the solution, and increased the exccution time slightly. Therefore in our implementation,
we set maxtabu at 0. This means that we do not make usc of short term memory. The second
observation we made is that the solution cost decreased with an increasc in maxiter but the
solution time increased. We thercfore decided to allow T8 iterations to continue until a pre-
specified execution time is execeded.

3.2 complete local search with memory

complcte local scarch with memory (CLM — sce Ghosh and Sicrksma [8]) is a8 new variant of local
scarch. This heuristic uscs a graph scarch based approach to scarch the neighborheod graph for
the UFLP. It docs this by manipulating three scts, called LIVE, DEAD, and NEWGEN. LIVE
containg solutions that arc available for the heuristic for futurc cxploration. DEAD contains
solutions that have been already considered by the heuristic. This ensures that no solution is
explored by CLM more than once. The third tist, NEWGEN temporarily stores solutions that
arc gencrated by CLM during the current itoration.

CLM starts by defining cmpty scts LIVE, DEAD, and NEWGEN, and putting an initial solu-
tion P into LIVE. It then performs itcrations until a pre-specified stopping condition is reached.
Each jteration starts by choosing a pro-specified number k of solutions from LIVE. In our im-
plemcentation k = 1. The neighborhood of these solutions is then searched (the solution is said
to have been explored), and cach ncighbor that has a cost better than a given threshold value
T is added to NEWGEN. In our implementation we fix 1 to the cost of the solution currently
being explored. When all k solutions have been explored, then the solutions in NEWGEN that
are not alrcady present in cither LIVE or DEAD arc moved to LIVE and the remaining solutions
discarded. This is because, if a solution is present in LIVE, then it is already under consideration
by CLM, but has not been cxplored since other more attractive solutions arc present in LIVE. If
it is present in DEAD, CLM has alrcady cxplored it, and knows the outeome of the exploration.
This transfer of solutions from NEWGEN to LIVE marks the end of an itcration. If LIVE#
when the stopping condition is reached, then a postprocessing operation is carried out. In our
implementation, the postproecssing operation involves carrying out local scarch using the t lowest
cost (clitc} solutions present in LIVE. If any solution in LIVE is cncountered while performing
local scarch on an clite solution, then that solution is not considered while choosing the remaining
clitc solutions. This is done to increase the possibility of choosing good solutions from diverse
arcas of the solution space for the postproccssing operation. The heuristic returns the lowest cost
solution it cncounters.

The pscudocode for our CLM implementation is presented in Figure 3, We stop itcrations
either if LIVE is empty at the beginning of an iteration, or if we have already stored a sufficient
mmber (maxnode ) of nodes in LIVE, DEAD, and NEWGEN. We performed prefiminary com-
putational experiments to choose the values of maxnode and 1. The computations were carried
out on the same sct of UFLP ingtances the same sct of instances that we used for sclecting the
paramcters for our TS implementation. Table 4 summarizes our findings.

Table 4: Choice of parameters for our CLM implementation

Average solution costs Average execution time {(CPU scconds)

maxnode maxnode
T 100 200 500 1000 T 100 200 500 100G
1 T23068.13 7T23068.13 T22068.13 72444225 1 63.71 69.37 63.79 69.73
3 T20578.63 T20768.38 722995.63 724370.75 3 141.97 14572 138.28 14055
5 TI4877.88 T14607.50 714799.75 7T22726.25 5 211.65 206.21 209.45 209.01
10 714784.00  714513.63 7Y13270.75 717915.50 10 38509 391.38 38441 37744

Note that the cost of the solution returncd by CLM did not improve appreciably when value
of maxnode was increased. In fact the solutions returned when maxnode was sct at 1000 were
consistently worse than when maxnode was set at 500, For our implementation thercfore, we set
maxnode at 500. The cost of the solution returned by the CLM heuristic improved significantly



Heuristic CLM
Input: I, ], F, C, and an initial solution Sg to the instance.

Output: A solution to the instance.
Code:
begin
best := So;
LIVE == {55}
DEAD := #; NEWGEN := B;
while LIVE # @ do
begin
choose solution P from LIVE;
for cach ncighbor P, of P such that §(P,.) < &(P) do
begin
NEWGEN := NEWGEN U {P.};
if [LIVE] + |DEAD| 4+ [INEWGEN| > maxnode
begin
transfer all solutions in NEWGEN that arc not already in LIVE
or DEAD to LIVE;
NEWGEN := 9;
go to postproc,;
cnd;
ond;
LIVE := LIVE\ {P}
DEAD :=DEAD U {P};
transfer all solutions in NEWGEN that are not alrcady in LIVE or DEAD to LIVE;
NEWGEN := ¢;
end;
if LIVE =@ go to complete;
postproc:
for count:=1 to r do
begin .
perform local search on a lowest cost solution P in LIVE to obtain a locally
optimal solution Py,;
if §(Pio) < Fibest)
best := Pyy;
remove all solutions visited in the previous step from LIVE;
cnd;
complete;
rcturn best;
end.

Figure 3: Our CLM implementation



when the value of r increased. This ig intuitively clear since a larger valuc of 1 allows the heuristic
to check diverse arcas of the solution space for good solutions. However, the ratio of the rate of
improvement of the solution cost and the rate of increase in exceution time was observed to be
the maximum at r =5, Thus we fix the value of r to 5 for our computational experiments,

4 Computational Experience

The TS and CLM implementations discussed in the previous section were used to solve 180 UFLP
instances, of sizes varying from 75x 75 to 750 x 750. The clements of the transportation cost matrix
C for cach of these instances were chosen from a uniform distribution supported on [1000, 2000].
Two typces of transportation cost matrices were considered, symmetric and asymmetric. In the
symumetric type of matrices, €ij = Cji, but no such restrictions were imposcd for the asymmetric
matrices. The clements f; of the fixed cost vector F were also chosen from uniform random
distributions. Three different intervals were used as supports in our experimentation:

e [100,200] to simulate instances with low valucs of fixed costs,
e [1000,2000] to simulate instances with medium values of fixed costs, and
» {10000, 20000] to simulatc Instances with high values of fixed costs.,

We generated five instances for any given type of instance (specificd by the sizc of the instance,
the nature of the transportation cost matrix, and the support for the fixed cost distribution).
Since the costs of the solutions returned by both the heutistics for different instances of the same
type were not found to be significantly different, we use the average of the costs of the solutions
for presentation and comparison purposcs.

The initial solutions for both the TS and CLM implementations are constructed using the
GREEDY algorithm described in Figure 1. We observed that this initial solution gives rise to
very good quality solutions for small sized instances within reasonable time, and so we did not
experiment with other methods of generating initial solutions. We aiso did not use any special data
structures to make the swap process efficient. We used an array implementation of the memory
structures used in TS, and a binary trec to store the solutions of LIVE, DEAD, and NEWGEN
in our CLM implementation. We allowed the two heuristics to run for the same duration in order

100, and 125. These instances are small cnough to be solved by cxact algorithms (for cxamplc, an
adaptation of the data correcting algorithm in Geldengorin et af, [11]), and are yot large cnough to
occupy TS and CLM for more than 0.01 CPU scconds. We saw that TS returns optimal solutions
%o 67 of the 90 instances solved, while CLM returns optimal solutions to 59 of the instances. We
proscat the details of the porformance of the heuristics on these problems in Table 5. Each of

- F(SH) — &(8*)
Suboptimality of SH =222 -~ ¢l }
prmatly 3(5%)
and is expressed in Table 5 as a percentage.
The results show that the solutions returned by both CLM and TS arc very close to optimal
for all the medium sized instances studicd here. In general, the quality of solutions returned by

trend was clear for CLM. The best quality solutions for both the heuristics were for instances with
high f; valucs. The quality of solutions returned by TS werc worst for instances with medium f;



values, while the quality of solutions returned by CLM were worst for instances with low f; values.
The exceution time taken by the heuristics were often several orders of magnitude less than the
time taken by the exact algorithm. Both the cxact algorithm and the heuristics normally required
longer exceution times to solve instances with low f; values, although the effect was much more
pronounced for the oxact algorithm than for the heuristics. Both the exact algorithm and the
heurigtics required longer execution times for symmetric instances than for asymmetric instances.
In sum, both TS and CLM gencrate high quality solutions to medium sized UFLP instances within
relatively short cxceution times. TS however, returns marginally better solutions than CLM for
these instances.

Three scts containing 30 large sized UFLP instances cach, with m = n = 250, 500, and
750 respectively, wore also solved using TS and CLM. These instances are too large to solve
within reasonable time using cxact algorithms, so we cannot comment on the suboptimality of
the hewristic solutions. Tablc 6 presents the results of our experiments with these instances. As
with Table 5, the figures presented arc average values over the results for the five instances in
cach problem type. The relative performance of TS and CLM is measured by the gap between
the solutions returned by them. The gap is defined as

_ leost of the solution returncd by CLM — cost of the solution returned by TS|

Gap cost of the solution returned by CLM

and is expressed in Table 6 as a percentage. We sce that the gap between the solutions returned by
TS and CLM remain small for all instances (the average gap over all the instances being 0.0345%).
In most cascs, the gap is scen to reduce when the problem size increases.

The last throe cohumns in Table 6 respectively present the number of instances (out of 5) in
which TS returned a better solution than CLM, in which they both returned identical solutions,
and in which CLM rcturned a better solution that TS. We sce that the solutions returned by
TS rcturns better solutions in 51 of the 90 instances, and CLM rcturns better solutions in 16
instances. In the other 23 instances they return identical solutions. TS is scen to out-perform
CLM for most instanccs with low values of fixed costs. CLM however performs better on instances
with high valucs of fixed costs.

We also sce that for all throe problem sizes, the time required to solve instances in which
the clements of the fixed cost vector were drawn from L1000, 2000] were usually casicr to solve
than the other types of instanees. The instances in which the clements of the fixed cost vector
were drawn from L[100, 200] usually required the longest exceution times. Exceution times were
scen to increasc rapidly with problem sizes. But since the logarithm of the exccoution times is an
increasing function of problem sizes with decreasing slope, the inecrease in exccution times with
problem size is not likely to be exponential. However the high rates of increase indicate that these
heuristics would require very long exccution times on larger sized instances.

The variation of solution quality with cxecution times is also interesting for both the heuristics.
Figurc 5 shows this variation for onc asymmetric UFLP instance with m = n = 500, but the graph
is quitc characteristic. Notc that relatively high quality solutions arc achicved quite carly into
the search by both the hcuristics. The subscquent time is spent scarching for relatively minor
improvements. Thercfore, cven if the available execution time is limited, both the henristics would
be able to generate high quality solutions.

5 Summary

In this paper, we study the performance of generie local search, tabn search, and complete local
scarch with memory on the uncapacitated facility location problem. Generic local scarch was
implemented with three different types of neighborhood structures, the add-interchange neigh-
borhood, the 2-swap ncighborhood, and the permutation neighborhood. We obscrved that local
scarch returned almost similar quality solutions with cach of these ncighborhood structures, but
took the least amount of cxccution times with the 2-swap ncighborhoods. We used the 2-swap
ncighborhood structure in our implementations of tabu scarch and complete local scarch with
memory. Our tabu scarch implementation closely follows the TSpMP implementation in Roiland
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Solution Cost Vs Time
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Figurc 4: Variation of the cost of the best solution observed with time

et al. {19]. We decided to use tabu lists to implement short term memory structures, and chosc to
fix the tabu tenures randomly. Our preliminary computations with this implementation however
showed a surprising result. We saw that sctting a positive tabu tenure actually worsened the
quality of solutions rcturncd by tabu scarch. In our implementation we thercfore ignored short
term memory structures. Our implementation alse included a long term memory structure to
" help diversification, in which we penalized moves involving sites that have been components of
large numbers of previous moves, and an aspiration criterien that overrides the tabu status of 2
move if it results in a solution better than any obtained thus far. Our complote local scarch with
memory implemontation closcly follows the implementation in Ghosh and Sierksma [8]. However
the postprocessing operation performed local scarch on a few ‘clite’ solutions in LIVE rather than
on all of them.
We used our tabu scarch and complete local scarch with memory implementations to solve
180 instances of the uncapacitated facility location problem with sizes varying from 75 x 75 to
750 x 750, covering a wide variation in fixed and transportation costs. Qur results indicate that
for instances with sizc not more than 125 x 125, both tabu scarch and complete local scarch with
memory perform very well. They return solutions with costs within 0.075% of the optimal, often
within onc hundredth of the time required by cxact algorithms. For larger instanees, the solutions
returned by our tabu scarch and complete local search with memory implementations are of very
-gimilarcosts (being, on an average, within 0.0345% of each other). Howcver, our cxperimentation
.. b that tabu scarch returns marginally better solutions on an average. The execution times of
both the implementations increase rapidly with increasing problem size. In genceral, high quality
solutions arc often found quite carly in the scarch process.

In summary, both tabu scarch and complcte local search with memory offer effective ways of
generating high quality solutions for large instances of uncapacitated facility lgcation problems.
Further research needs to be done to design more efficient tabu search and complete %)caj gearch
with memory implementations that would help to solve larger sized problems. e
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