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THE DATA-CORRECTING ALGORITHM FOR THE MAXIMIZATION OF
SUBMODULAR FUNCTIONS: A MULTILEVEL SEARCH IN THE HASSE
DIAGRAM

BORIS GOLDENGORIN AND DIPTESH GHOSH

ABSTRACT. The Dats-Correcting Algorithm (DCA) = a recursive branch and bound type algo-
rithm, in which the data of a given problem instance is ‘heuristically corrected’ at each branching
in such a way that the new instance will be as close as passible to polynomially solvable and the
optimal solution to the corrected instance satisfies a prescribed accuracy condition (the difference
between optimal and current solution). Recently (see {14]) we have applied the DCA to the min-
imization (maximization) a supermodular (submodular) function and can solve Quadratic Cost
Partition Problem (QCP) instances on dense graphs with up to 100 vertices to optimality. In this
paper we improve the above mentioned DCA for the submodular functions by searching the Hasse
diagram more thoroughly at each subproblem. We study the behavior of the DCA with respect
to the number of search Jevels of the Hasse diagram for the case of the QCP. Our computational
experiments with QCP instances similar to those in [23] show that searching three levels of the
Hasse diagram is an optimal strategy for QCP instances. Computational experimenta with the
improved DCA allow us to solve QCP instances on dense graphs with pumber of vertices up to
500 within 10 mimrtes on a standard personal computer.

Keywords: Data Correcting, Hasse Diagram, Multilevel Search, Quadratic Cost Partition
Problem

1. INTRODUCTION

Many combinatorial optimization problems have as an underlying model the maximization of
a submodular (or, equivalently, minimization of a supermodular) function, amotfs them being the
simple plant location (SPL) problem, generalized transportation problems, the Quadratic Cost Par-
tition Problem (QCP) with nonnegative edge weights, set covering and other well known problems
involving the minimization of pseudo-Boolean functions (see [26], {24], [2]).

Although the general problem of the maximization of a submodular function is known to be NP-
hard, there has been a sustained research effort aimed at developing practical procedures for solving
medium and large-scale problems in this class. Often the approach taken has been problem specific,
and submodularity of the underlying objective function has been only implicit to the analysis. For
example, [2| have addressed the max-cut problem from the point of view of polybedral combinatorics
and developed a branch and cut algorithm, suitable for applications in statistical physics and circnit
layout design. {1} applies Lagrangean heuristics to several classes of location problems including SPL
problems and reports results of extensive experiments on a Cray supercomputer. (23] have studied
the quadratic cost partition problem (QCP) of which max-cut with nonnegative edge weights is a
special case, again from the standpoint of polyhedral combinatorics. Recently [14] have applied the
DCA to the minimization (maximization) a supermodular {(submodular) function by which we can
solve to optimality, for example, Quadratic Cost Partition Problem (QCP) instances on dense graphs
up to 100 vertices. [10] reported their computational experiments for binary quadratic programs
(BQP) with edaptive memory tabu search procedures. They assumed that the so called “c” instances
with the number of vertices n = 200 and n = 500 “to be the most challenging problems reported
in the literature to date - far beyond the capabilities of current exact methods and challenging as
well for heuristic approaches”. Since the BQP and QCP are equivalent (see, for example, [3], {16])
and Glover et al.’s BQP instances on dense graphs are defined, the “c” instances with n = 200 and
n = 500 are ‘statistically’ equivalent to the corresponding QCP instances with n = 200 and n = 500
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2 GOLDENGORIN AND GHOSH

from Lee et al. To the best of our knowledge, the known algorithms solve to optimality the QCP
instances on dense graphs with the number of vertices being at mast 100. The purpose of this paper
is to present an improved DCA which solves the QCP instances on dense graphs with number of
vertices up to 500 within 10 minutes on a personal computer with 64MB RAM running at 300MHz.

The approach we take is to develop the class of Data-Correcting Algorithms (DCA). This class of
algorithms was introduced in [11] and [12] to solve NP-hard problems. Crucial in these algorithms is
the fact that the data of a given problem instance is “corrected” to obtain a new problem instance
belonging to a polynomially solvable class. The polynomially solvable classes that we use in this
paper are algorithmically determined.

For example, let us consider the DCA applied to an arbitrary function z defined on a set S and
let y belongs to a polynomially solvable class ) of functions which is a subclass of a given class of
functions z € Z defined also on S, and let p{z,y) = max{|z(s) — y(s)| : s € S} be the prozimity
measure. We use the proximity measure p(z,y) in the framework of the DCA for finding, by means
of a heuristic procedure, an instance y € Y that is as “close” as possible to z. Usually, this heuristic
can be easily constructed by a simple modification of a polynomial algorithm by which we define a
polynomially solvable class. In case of the minimization of a supermodular function we have used
the so called Preliminary Preservation Algorithm (PPA) for determining the relevant polynomial
solvable class of supermodular functions ( PP-functions, see [14]). In the following theorem, which is
first published in [14] (see also examples of this theorem for the Simple Plant Location and Traveling
Salesman Problems in [12]), it is forrmlated that the proximity measure is an upper bound for the
difference of the optimum values of z and y on S, denoted by 2*(S) and y°*(S), respectively. Then
the following holds: [2*(S) — y*(S)| £ p(z,¥). If p(z,y) is smaller than the value of prescribed
accuracy £o, then the problem of finding z*(S) with the given prescribed accuracy e is solved by
y*(S). Otherwise, the DCA decreases the current value of p(z, y) by means of a branching procedure.
More information about data-correcting algorithms (general scheme, comparison with branch and
bound type algorithms, steps of construction, methods, ete.) can be found in {11} and {12].

The main difference between our previous algorithm [14} and the algorithm proposed in this paper
is an extension of the used solution space more than one level deep in the Hasse diagram (see, for
example, [15}). Our previous DCA [14], is based on the PPA at each step of which we use just two
neighboring levels in the Hasse diagram. We call such PPA the PPA of order zero. The PPA of
order zero is based on the following Theorem 1 (see (14]).

Theorem 1. Let [S,T] = {I|S C I C T} be the whole set of subsets defined by any pair of embedded
sets S and T such that S C T (the Hasse diagrom is spanned on these sets S and T) and let z be a
submodular function on |S,T]| withk € T\ S. Then the following assertions hold.

(a) z’[S+k,T)—z"[S, T —k| < (S +k) — 2(S) = &] (S5).

(8) 2°[S,T~k|—z*[S+k,T| < 2(T — k) — 2(T) = d_ ().

Here, 2*(S,T] = max{z({) : I € [S,T]}. As is easy to see, the differences d; (S) and d; (T) are
used just for two neighboring sets each of which can be obtained by adding to S (or deleting from 7T°)
a single element k € T\ S. In {14] these differences are used for “correcting” the current data (values
of z) in the DCA. In this paper we will use differences z(P) — z(S) and z(Q) — z(T") defined not only
for the neighboring sets but also for any pair of embedded subsets, say S C P and Q C T, such that
max{|P\ §|,|T\Q|} < r < |T\ S|, and generalize the above mentioned assertions (see Theorems 6,
8. and 9 and Corollaries 7 and 10). Based on these new assertions we present a generalization of the
PPA of order zero which is called the PPA of order r, and the corresponding DCA which is based
on the PPA of order r (the DCA(PPAr)).

We have organized our paper as follows. In Section 2 we briefly review old results about the PPA
(see Theorem 2 and Corollaries 3 and 4), which we use for determining the relevant polynomially
solvable class of submodular functions (PP-functions). In Section 3 we present a new generalization
of the PPA, called the PPA of order r (PPAr) (based on Theorems 6, 8, and 9 and Corollaries
7 and 10). We then describe a DCA based on the PPAr (the DCA(PPAr)) in Section 4. Sections
3 and 6 present the computational aspects of the paper. In Section 5 we briefly review different
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formulations of the Quadratic Cost Partition Problem (QCP) inchiding the Quadratic Zero-One
Programming statement of the QCP and the corresponding computer experiments with random
QCP instances which are ‘statistically’ similar to those studied in [23]. Since the QCP and the
Quadratic Zero-One Programming Problem (QZOP) are equivalent, i.e. for each QCP instance
we can easily construct a corresponding QZOP instance (see e.g., [3] and [16]), our computational
experiments with the QCP instances are comparable to the computational experiments with the
QZOP instances. In Section 6 we solve hard and large instances of the QCP with DCA(PPAr) and
demonstrate an improvement upon published results from [23] and [14], particularly when the data
corresponds to dense graphs including instances of the QCP with 200 to 500 vertices (see, [10]).

Section 7 concludes the paper. -

2. A POLYNOMIALLY SOLVABLE CASE OF THE MAXIMIZATION OF A SUBMODULAR FUNCTION

In this section we introduce a polynomially solvable case for the maximization of submodular
functions. In order to do this, we use the Preltminary Preservation Algorithm (PPA) (see [9]) which
helps to construct the polynomially solvable case of submodular functions, called PP-functions.
Details about the PPA and PP-functions can be found in [14] (see also [12]).

Let z be a real-valued function defined on the power set 2¥ of N = {1,2,...,n}; n > 1. For each
S,T €2V with S C T, define

ST ={Ie2V|ScICT).
Note that [, N] = 2¥. Any interval [S,T] is a subinterval of @,N]if 8 C SC T C N. We
denote this using the notation [S,T] € [@, N]. In this paper an interval is always a subinterval of
{8, N]. Throughout this paper, it is assumed that z attains a finite maximum value on [8, N] which
is denoted by z*[@, N], and 2*(S, T} = max{z(J) : I € [S,T}} for any [S,T] C [8, N] . The function
z is called submodular on (S.T) if for each I, J € [S, T] it bolds that
z(I)+z(J) 2 2z(TUJ) + z(INJ).

Let us construct a polynomially solvable case of the maximization of a submodular function.
We determine this case by the so called Preliminary Pr&)engion Algorithm (PPA). The following
theorem and corollary (from [14]) form the basis of the PPA?

Theorem 2. Let z be a submodular function on [S,T] C [0, N] and let k € T\S. Then the following

assertions hold.
(a) {S+kT}—2*[S,T— k] < z(S+k) — z(S)) =d} (S).
() z[ST—-k-2"[S+kT)< z2(T — k) — 2(T) = d (T).

Corollary 3. (Preservation rules of order zero). Let z be a submodular function on [S,T) C [0, N]
and let k € T\S. Then the following assertions hold ®
First Preservation Rule (FPR)
(a) Ifd}(S) <0, then 2*[S, T} = z*[S, T - k| > z*(S + k,T).
Second Preservation Rule (SPR)
() Ifdg(T) <0, then 2*[S,T) = z*[S + k,T] > 2*[S, T ~ k.
The following corollary exterds the rules in Corollary 3.
Corollary 4. Let z be a submodular function on [S, T] C [8, N] and letk; € T\S,ie R={1,...,r}.
Then the following assertions hold.
First Extended Preservation Rule
(a) Ifdf(S)< 0 for all i € R, then z°(S,T] = z°[S, T\(Uieaks)]-
Second Ertended Preservation Rule
(b) Ifd(T) <0 foralli € R, then z°(S,T| = z*[SU (Uscrk:), T).

Proof. We prove only part (a) since the proof of (b) is similar. Applying the FPR does not change
the values d,::(S) since only the set T changes and not the set S. Let us apply the FPR with
d{ (8) < 0, then the interval [S. T} will be reduced to the interval [5,T ~ k1). The values df(S),
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i € R— k; have not changed for the new interval [S, T — k;] and hence after applying the FPR with
df (8) <0, then the interval [S,T — k] will be reduced to the interval {S, (T — ki) — k3]. Repeating
t.he application of the FPR (r — 2) times completed the proof. @

Based on Corollary 4 it is often possible to exclude a large part of [, N] from consideration when
determining a global maximum of z on [8, N]. The PPA determines a subinterval [S, T} of [8, V]
that certainly contains a global maximum of z, whereas (S, T] cannot be made smaller by using the
preservation rules of Corollary 4. In case the PPA stops with § = T then an optimal solution has
been found, i.e. S € argz*[, N].

The Preliminary Preservation Algorithm
Procedure PPA(X,Y;S,T)
Input: A submodular function z on interval [X, Y] of [8, N]
Output: The subinterval (S, 7] C [X, Y] such that z°[S,T] =

2"[X, Y] and min{d} (5),d; (T) | i € T\S} > 0.

Stepﬂ: S»X,T«-Y.Su-ﬂ,Tle-O.
Stepl: Si—{keT\S|d(T)<0},S—SUS:.
Step2 Ti—{keT\S|d{(S)<0}, T~ T\T..
Step 3: 1fS =T, then end.
Step 4 If 7} # 9, then go to Step 1.
Step 5: If S; # 0, then go to Step 2, else end.

Every time the interval (S, T] is updated the conditions of Corollary 4 are satisfied. Each new
interval contains a global maximum because at each step z°(S,T] = z°[X,Y]. Since the PPA
continues the calculation if and only if at each stage, at least one of S and T is updated, the
correctness of the PPA is clear. In [12] it is proved that the time complexity of PPA is O(n?).

Any submodular function z on [X,Y] for which the PPA returns a global maximum for z is
called a PP-function. Theorem 5 states an interesting property of PP-functions in terms of strict
component of local maxima

A subset L € [0, N] is called a local mazimum of z if for each i € N

z(L) > max{z(L — 1), z(L + )}
A subset S € B, N] is called a global mazimum of z if 2(S) > z(I) for each I € (8, N]. We will
use the Hasse diagram (see e.g., [15]) as the ground graph G = (V,E) in which V' = [, N] and a
pair (I,J) is an edge if and only if either I C Jor J C I, and I\ J| +|J\ I| = 1. The graph
G = (V, E) is called z-weighted if the weight of each vertex I € V is equal to z(I); and is denoted

G = (V,E,z). A local maximum L € [0, N] (L € [8, N] ) is called a lower (respectively, upper)
mazimum if there is no another local maximum L such that L C L (respectively, L C L).

If an interval {L, I} with L € T has lower and upper maxima as its end points, then the submod-
ular functiom is constant over this interval. We can use such intervals to obtain a representation of
connected subgraphs of local maxima.

Let V5 be the subset of V" corresponding to all local maxima of z and let Hy = (Vp, Ep, z) be the
subgraph of G induced by Vj. Note that this subgraph consists of at least one connected component.
We denote the connected components by Hj = (VJ, EJ, z), with j € Jo = {1,...,r}. Note that if
L, and L, are vertices in the same component then z(L,) = z(L2).

A component H is called a strict local mazimum component (STC) if for each I ¢ V{, for which
there is an edge (7, L) with L € VJ, we have z(I) < z(L). A component H} is called a saddle local
mazimum component (SDC) if for some I ¢ V7, there exists an edge (I, L) with L € VJ such that
2(I) = z(L).

[20] has observed that any global maximum belongs to an STC. The following Theorem 5 can be
found in {12] and [14].

Theorem 5. If z is a submoduler PP-function on [X,Y] C [0, N|, then [X,Y] contains exactly one
STC.

Note that not each submodular function with exactly one STC on {8, N} is a PP-function. For
example, let N = {1,2,3} and consider the submodular function z defined by z(I) = 2 for any
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Ie[9{1,2,3]\((}u{1,2,3}) and z(I) = 1 for I € ({8} U{1,2,3}). The vertex set of the
unique STC defined by this function can be represented by [{1}, {1,2}JU[{1}, {1,3}U[{2}, {1,2}] U
{2}, {2,3}] U [{3}, {1,3}]U [{3}, {2, 3}]- The PPA terminates with (S, 7] = [0, {1,2,3}] and %0, z is
not a PP-function.

In case of the QCP, the PPA does not decrease the interval [S,T) if d} (S) =px — Y ;o >0
and & (T) = Y ;cr@x —Pe > 0. If there is a sequence such that 9 C $; C S2 C --- C 5 =
Tn_p C Tacpts C -+ € Tay C N with d} (S;) < 0 and dg (Tu—¢) <O forall i =1,...,p and some
p < |T\S| the PPA solves the QCP. Therefore the corresponding class of submodular functions can
be expound as PP-functions.

In the next section we determine a generalization of the PPA, called the PPA of order v (PPAr).

3. PPA OF ORDER T

The preservation rules in the PPA examine solutions that are only one level deeper in the Hasse
diagram than the current solution. The following statements allow us to explore a larger portion of
the solution space. This may be useful because we obtain additional possibilities for narrowing the
original interval (see [13]).

Theorem 6. Let z be a submodular function on [S,T] C [, N] and let k € T\S. Then the following
assertions hold.

(a8) For any t (k) € argmax{d;} (S +1t): t € T\(S+k)},

2°[S + k, T] — max{z*[S, T — k], z(S + k)} < max{d;} (S +t5 (k)),0}.

() For any t; (k) € argmax{d, (T —t) : t € T\(S+k)},
2*(S, T — k| — max{z*[S + k, T, 2(T — k)} < max{d, (T - t5(k)),0}.

Proof. We prove only part (a) since the proof of (b) is similar. Let
t} (k) € argmax{z*[S+k+1,T]: t € T\(S+k)}
We may represent the partition of [S, 7] by means of its subintervals as follows:
[ST)=5u |J S+, T}
teT\S
Applying this representation on the interval [S + k, T] we have
2°[S + k, T] = max{z(S + k), 2°[S + k + t7 (k), T]}.

We distinguish now the following two cases:
Case I: 2(S + k) < z*[S+k +t] (k),T]. Then z*[S + k,T] = z°[S + k + t}(k),T]. For any
k € T\[S + t{ (k)] Theorem 2(a) on the interval [S + ] (k), T states that:

2 |S+tH(k) + 5, T) — 2*[S + t] (), T — k] < &} (S +t] (k)),

i.e., after substituting z*{S + k, T} instead of z*[S + k + ¢ (k), T] this inequality can be written as
follows:

SIS +kT] - 25+t (), T — k) < dF (S +8 (k).
and taking into account that 2°(S + tf (k), T — k} < 2*(S, T — k] we have
2 [S+ Kk, T| - 2*[S, T — k| < d}F (S +tF (k).
Adding two maxirnum operations leads to the following inequality
2*(S + k,T] ~ max{z°{S, T — k}, 2(S + k)} < max{d} (S + ¢} (k)),0}.

Finally, df (S + t] (k) < df (S + tF(k)) since d} (S + t) was maximal for t3 (k). This gives the
required result.
Case 2 z(S+k) > z*[S + k + t] (k), T).
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Then z°|S + k,T] = 2(S + k). Consider the inequality
z(S + k) ~max{z*[S, T - k], 2(S+k)} < 0.
Since z(S + k) = z°[S + k,T] we have

2[S+ k, T) — max{z*[S, T — k|, (S + k)} < 0.
Adding a maximum operation with d} (S + t} (k)) gives the required result
2*[S + k,T) ~ max{2*[S, T — k], 2(S + k)} < max{d}} (S +t$(k)),0}.
]

Corollary 7. (Preservation rules of order one). Let z be a submodular function on [S,T) C [@, N]
and let k € T\S. Then the following assertions hold.
First Preservation Rule of Order One
(a) Ifmax{df(S+t):t€T\(S+k)} <O, then
2°(S, T] = max{z*{S,T — k|, 2(S + k)} > z*[S+k,T|
Second Preservation Rule of Order One
() Ifmax{d (T):t € T\(S+k)} <0, then
2*[S, T| = max{2*[S + k, T}, z2(T — k)} > z*[S, T - k|

If the current interval (S, T] cannot be narrowed by preservation rules of order one then the same
interval cannot be narrowed by preservation rules of order zero (defined in Corollary 3). Moreover,
if the interval [S, 7] can be narrowed by preservation rules of order zero then this interval can be
narrowed by preservation rules of order one. We prove this in the following theorem.

Theorem 8. Preservation rules of order one are not weaker than preservation rules of order zero.

Proof. We compare only first preservation rules of order one and order zero because the proof for
case of second preservation rules is similar.

Assume that the preservation rule of order one is not applicable, i.e., max{d} (S +1t) : t €
T\(S + k)} = d}(S + to) > 0. The definition of submodularity of z implies d} (S) > df (S + o).
Hence, d: (S) > 0 and the first preservation rule is not applicable. In case when the first preservation
rule of order zero is applicable, i.e., d} (S) < 0 we have 0 > d} (S) > df (S +t) for all t € T\(S+k),
i.e., max{d}(S+1t):t€T\(S+k)} <0 which leads to a contradiction. B

Not.e that the computational complexity for rules of order one and order zero is different not only
in their time complexdties but also in their space complexities. This is because, together with the
preserved interval either (S+k, T) or [S, T — k] we should preserve exactly one additional value either
z(T — k) or z(S + k), respectively. This property is also valid for preservation rules of order r > 1.

Instead of looking one level deep we may look r levels deep in order to determine whether we can
include or exclude an element. To simplify the presentation of the following theorem, we need some
new notations describing certain subsets of the interval [S, T). Let

MF[S,T| = {I €[S,T}: |N\S| < r},

MZ[S,T)={I€|ST]:|T\I| <r}.

The set M(S,T] is a collection of all sets representing solutions containing more elements than
S, and which are no more than r levels deeper than S in the Hasse diagram. Similarly, the set
M (S, T} is a collection of all sets representing solutions containing less elements than T, and which
are no more than r levels deeper than T in the Hasse diagram. Define further the collections of sets

NF[S, T) = MFS, TI\M_,(S, T},

NO[S, T = MZ(S.T\M,_,[S.T]

The sets NF(S, T} and N[5, T] are the collection of sets which are located on the level r above
S and below T in the Hasse diagram, res'pecmvely Let v}(S,T| = max{z(I) : I € MZ[S, T},

v [S. T) = max{z(I) : I € M7 (S, T|}, wh(S, T| = max{d}(I) : I € N}[S +k,T]} and w_[S,T] =
max{d;(l) : I e NJ[S, T -k}
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Theorem 9. Let z be a submodular function on |S,T] C [8, N] with k € T\S and let r is a positive
(a) IfINY[S+KT)| >0, then
2*[S +k,T) — max{z*[S, T — k}, v} (S, T} < wax{w};[S,T}],0}.

() IfIN-[S, T —k|| >0, then
2°[S, T — k| — max{z*(S + k, T),v;"[S, T]} < max{w,_,[S,T},0}.
Proof. We prove only part (a) since the proof of the part (b) is similar. We may represent the
partition of interval (S, T| as follows:
ST =MHsTIv | LT
IeNF|S,TY
Applying this representation on the interval [S + k,T] we have
2°[S +k,T] = max{u}[S + k, T}, max{z"(I + k,T| : I € NJ'[S, T]}}.
Let I(k) € argmax{z*[I + k,T|: I € N}[S, T]}, and let us consider two cases of the last equality:
Case 1. 2*[I(k) + k,T) > v}{S + k, T}, and
Case 2. z*(I(k) +k,T| < v*[S+k,T).
In the first case 2*(S +k, T} = 2*[I{k) + k, T)- For I(k) € N[5, T} Theorem 2(a) on the interval
[I(k), T] states:
2*[I(k) + k, T — z°{I(k), T — k| < &} (I(k)),
i.e. in case 1
(S +k,T) ~ 2z°(I(k), T — k| < &} (I(k)).
Note for {I(k),T — k] C [S,T ~ k| we have z*[S, T — k| > z°[I(k),T — k]. This leads to the following
inequality
z*(S + k,T) — 2°[S, T — k] < &} (I(k))-
Adding two maximum operations gives
z*{S + k, T} — max{z*[S, T — k], v;}{S + k, T]} < max{d; (I(k)),0}.
Since ut}}[S, T} is the maximum of d;f (I) for I € NF[S + k, T, we have the required result.
In the second case 2*{S + k,T} = v} [S + k, T} the following equality holds:
2°[S+k,T| - v} [S+k,T]}=0
or
2*(S+k,T| - max{2*[S, T — k], v} [S+k,T|} < 0.
Adding a maximum operation with w;[S, T] completes the proof of case (a)
2*(S+k,T) - max{z"[S, T — k|, v} [S + k, T]} < max{w}[S,T],0}.
|
Corollary 10. (preservation rules of order r). Let z be a submodular function on [S,T| C [0, N]
and let k € T\S. Then the following assertions hold.
First Preservation Rule of Order r
(a) If wli[S,T1 <0, then
2*[S,T] = max{z*[S,T — k|, v} [S + k,T|} > 2*[S + k, T
Second Preservation Rule of Order r
2°(S,T| = max{z*(S+k, T}, v (S, T — k]} > 2*[S, T — k|
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Note that the analogue of Theorem 8 can be proved for preservation rules of order » — 1 and r
by induction. .

Now we can describe the PPA of order r (PPAr). The PPAr behaves in the same manner as the
PPA, ie., it tries to decrease the original interval [X,Y] in which an optimal solution is located.
The difference between the two algorithms lies in the fact that the PPA searches only one level deep
in the Hasse diagram, while the PPAr searches r levels deep. The PPAr chooses one element to
investigate further from either the top or the bottom of the Hasse diagram. We could investigate
all vertices from 7'\ S but this would cost too much time. Therefore we use a heuristic to select the
element which we investigate further. The element we choose is an element for which it is likely that
one of the preservation rules of order r will succeed in including or excluding this element from an
optimal solution. The preservation rules of order one apply if max{d}(S+t):t € T\ (S+k)} <0
or max{d (T —t) : t € T\ (S +k)} < 0. So if we want them to apply then we have to choose
an element k so as to minimize the values df (S +t) and d (T —t). According to an equivalent
definition of a submodular function (see [26}), djf (S) > d} (S + 1), if we choose d}f (S) as small as
possible, then d) (S +t) will not be large and hopefully negative for all ¢, and the first preservation
rule of order one is more likely to apply. Also if we take k with the smallest value d, (T') then the
second preservation rule of order one is more likely to apply. Our computational study (see Section
5) selects the best value of r, and therefore shows the relevance of this choice.

It is clear that if we search deep enough, the PPAr will always find an optimal solution to our
problem. We just take r = [Y\ X|, where [X,Y] is the initial interval, and at each step we will be
able to include or exclude an element of the initial interval. However, the mumber of sets we have
to examine in this case is not a polynomial function of r.

Let us define two recursive procedures PPArplus and PPArminus by means of which we can try
to include and exclude some elements of the initial interval (X, Y].

Procedure PPArplus(S,T, k, r, mazd)

begin .
Calculate 2(S+ k). If 2(B) < 2(S+ k) then B — S+ k;
For all ¢ € T\(S + k) calculate d (S + t).
If 4} (S +1) < 0or r =1 then mard «— max{mazd,d} (5 +t)}
else call PPArplus(S + ¢, T, k, r — 1, maxd)

end

Procedure PPArminus(S, T, k, r, mazd)

begin
Calculate z(T — k). If z(B) < z(T' — k) then B+ T —k;
For all t € T\(S + k) calculate d (T — t).
If & (T - t) <O or r =1 then mazd — max{mazd,d_ (T — t)}
else call PPArplus(S, T — ¢, k,r — 1, mazd)

end

The Preliminary Preservation Algorithm of order r
Input: A submodular function z on [X, Y] of |8, N]
Output: The subinterval (S, 7| and the set B such that

2°[X, Y] = max{z"(S, T}, z(B)} and
min{w} (S, T, w,[S,T]} > O for all k € T\S

Step0: S— X, TeY,B+0.
Step 1: call PPA(X.Y;S.T); go to Step 2

Step 2: d" — max{d;(S): k € T\S}, & — max{d; (T): k€ T\S};
If 4* < d~ then go to Step 3 else go to Step 4.
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Step 3: k — argmax{d}(S): t € T\S}
call PPArplus(S, T, k, r, mazd);
If mazd <0 then T « T — k, go to Step 1 else end.

Step 4&: ke— argmax{d, (T):t € T\ S}
call PPArminus(S, T, k, r, mazd);
If mazd < 0 then S — S + k, go to Step 1 else end.
Note that the PPAr finds a maximum of the submodular function iff the level r of the Hasse
diagram is “deeper ar equal” to the level on which a STC is located.

4. THE DATA-CORRECTING ALGORITHM (DCA)

In this section we briefly describe the main idea and the structure of the DCA based on the PPAr.
We will call this DCA the DCA with PPAr and abbreviate to DCA(PPAr). The description of the
DCA(PPA) can be found in [14]. In this section we will point out the main differences between the
DCA(PPA) and the DCA(PPAr).

Recall that if a submodular function z is not a PP-function, then the PPA terminates with
a subinterval (S, T} of {8, N] with S # T containing a maximum of z without knowing its exact
location in [S, T}. In this case, the post-condition min{d} (S),d; (T) | i € T\S} =6 > 0 of the PPA
is satisfied. The basic idea of the DCA is that if a sitnation occurs for which this post-condition
holds, then the data of the current problem will be eorrected in such a way that a corrected function
z violates at least one of inequalities d}f (S) =& > 0 or d, (T) =4 > 0 for some k,p € T\S. In that
manner the PPA can continue. Moreover, each correction of z is carried out in such a way that the
new (corrected) function remains submodular. If the PPA stops again without an optimal solution
to the corrected instance, we apply the correcting rules again and so on until the PPA finds an
optimal solution. For k € T\ S Theorem 11 gives upper bounds for the values z*[S, T} —z*[S, T — k|,
namely, df (S), and for z*(S, T) — z*[S+k, T|, namely, d; (T'). So, if we choose to include an element
k in the interval (S, T], then we know that the difference between an optimal solution of the original
interval and the new one will be smaller than djf (S). A similar interpretation holds for d;_(T). It
is clear that after at most n corrections we will find an approximate solution J € [8, N] such that
2°(0, N} < 2(J) +¢, where ¢ = 3", 4; with &; equal to either 4} (5) or d; (T). These arguments
lead to the following two upper bounds (see [21], [25]).

Theorem 11. Jf min{d}(5),d; (T) | i € T\S} >0, then

uby = z(S)+ Y dH(8) 2 2°(S,T]
i€ET\S
" and
uby = 2(T)+ 3y d; (T) 2 2*[S,T).
ieT\S

Before the PPA stops there are a few options. First, if we would like to allow a certain prescribed
| accuracy, say &g, of an approximate solution for the current interval (S, T}, then after each correction
§ we must check the inequalities z*[X, Y| — 2*[S,T] < £ < £o. If £ > €p then it is possible to look

deeper than one level in the Hasse diagram (see the PPAr) either to determine whether or not
an element belongs to an optimal solution or at least to reduce the current values of d}(S) and
d; (T), because w(S. T} > w],,,[S.T] and w},[S,T] > w},[S, T — 1], or w,[S,T] > w_, ,[S,T]
and w[S,T| > w;[S — t,T]. We will explore these possibilities in the DCA(PPAr). Finally, we
can divide the current problem into two subproblems by splitting the corresponding interval into
(S +k,T)] and [S, T — k| for some chosen k, and apply the PPA on each interval separately. The
monotonicity property df (S) > &7 (S + t) of a submodular function is the base of the following
branching rule (see [9]).

Branching Rule. For k € arg max{max|d} (S),d; (T)] : i € T\S}, split the interval [S, T} into
two subintervals (S +k,T). [S. T — k], and use the prescribed accuracy ¢ of [S, 7] for both intervals.



10 GOLDENGORIN AND GHOSH

To make the DCA more efficient we incorporate improved upper bounds by which we can discard
certain subproblems from further consideration. We may discard a subproblem if some optimal
value found so far is larger than the upper bound of the subproblem under investigation because the
optimal value of this subproblem will never be larger then the optimal value found so far.

Using results due to {21}, the upper bounds ub;, and ub; from Theorem 11 can be tightened. Let
us define the following sets of positive numbers: d+(S,T) = {d}(S) : d}(S) > 0,i € T\S} and
d~(S5,T) = {d,(T) : d;(T) > 0,i € T\S}. let us ako define the ordered arrays: d*[¢] is an i-th
largest element of d*(S, T) and d~[i] is an i-th largest element of d~(S, T') both for i = 1,...,|T\S|.
So, d*{1] > -+ > d*{[T\S]| and d~[1] > --- > d-[[T\S]]. Let 2'[S, T.i] = max{=(1) : N}(S,T]}
which is the optimal value of z(I). Finally, let us consider two functions which describe the behavior
of our upper bounds while we add elements to the set S or delete elements from the set T: f*(s) =
z(S) +Z;___1d“'|j] and f~(3) = 2(T) +Z:;.___l d~|j]. Hence, z*|S, T,i] < min{f*(i), f~(i)}. Since
2°[S,T] = max{2°*[S,T,i] :i = 1,...,|T\S|} we have the following upper bound

ub = max{min[f* (i), f ()] : i = L,..., [T\S|} > ="[S, T}.

Now we will describe the DCA. The DCA starts with a submodular function z on the interval
[, N] and the prescribed accuracy o . A list of unsolved subproblems (LUS) is kept during the
course of the DCA. Every time a subproblem is further decomposed into smaller subproblems, one
of the subproblems is added to the LUS and on the other one the DCA is applied. After a solution
has been found to a subproblem, a new subproblem is taken from the LUS, and so on until the LUS
is empty. First, the DCA appraximates a subproblem by using the PPA. If this does not result in
an optimal solution of that subproblem, it first tries to discard the subproblem by using the upper
bound, else the subproblem will be either corrected (if £ < o) or (if £ > £5) split up by means of
the branching rule.

Note that the corrections are executed implicitly. A correction allows the PPA to continue at least
one step since the correction makes the post-condition of the PPA is invalid. For instance, if the PPA
stops with an interval (S, T}, then after increasing (correction) the value of z on {S, T—k| by 4/ (S) > 0
the DCA may discard the subinterval (S + k, T}, because z*[S + k, T] — [z*[S,T — k] + dF (S)] < 0.
In fact, instead of correcting the function values of the preserved subinterval, the DCA increases
the current value of ¢ with d(S). In our example, if the value of the current accuracy of the
interval (S, 7] is equal to 2, then after discarding the subinterval [S + k, T} its value will be equal
to e+ d[(S). These arguments show that the DCA does not change our submodular function
explicitly. On the other hand, let I € [S + k,T), J € [S,T — k|, then the submodularity of z
implies z(I) + 2(J) 2 2(INJ) + 2(JU J). Since INJ € [S,T —k] and TU J € [S + k, T|, we have
(1) + [2(J) +dE(S)] 2 [(INJ) +&F(S)] + 2(IU J). Therefore, by correcting the values of z on a
subinterval, the DCA preserves the submodularity of z. Finally, note that using the PPAr instead
of the PPA yields two advantages: either by improving the narrowing of the current interval or by
decreasing the current value of &.

5. COMPUTATIONAL EXPERIMENTS WITH THE QCP AND QZOP: A BRIEF REVIEW OF THE
LITERATURE

The QCP can be described as follows (see e.g., {23]). Given nonnegative real numbers ¢;; and
real numbers p; with 4,5 € N = {1,2,...,n}, the QCP is the problem of finding a subset S ¢ N

such that the furction
1
AS)=) pi- 3 Y %
i=s ijes
will be maximized. The Max-Cut Problem (MCP) is a special case of the QCP, and can be described
as follows. Consider an edge weighted undirected graph U(.V, E) with edge weights wi; 20,1 € E.
Define a cut §(T) as the edge set containing all the edges with one end in T and the other end in
N\ T. Define further the weight of a cut as the sum of the edge weights in the cut. The MCP is
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the problem of finding a cut, and thus a partition, with maximum possible weight. The MCP is a
special case of the QCP, namely take

pi=) w; and gy = 2uy;.
eV
An instance of the QCP is defined by an integer positive n, a vector of real numbers P, i = 1,...,n,
and a symmetric matrix Q = ||g;;|}, 3,7 = 1, ...,n with nonnegative entries.

The QCP and the MCP arise in many real world applications (see [22] and references within)
such as capital budgeting, time tabling, communication scheduling, statistical physics, design of
printed crcuit boards and VLSI design (see also [3], [6] and [23]). Since the MCP is a special case
of the QCP, the QCP is alsoc NP-hard {19}. An c-approximation algorithm is a polynomial-time
algorithm that always finds a feasible solution with objective function value within a factor of a of
optimal ([32]). The best known a-approximation algorithm for MCP gives a = 0.87856 ([32]). On
the negative side though, [17] has shown that there can be no 0.941-approximation algorithm for
MCP unless P = NP. In other words, to solve the MCP with prescribed accuracy within 5.9% is -
an NP-hard problem.

The earliest formnlation of the QCP (see {16]) in terms of an unconstrained quadratic zero-one
programming problem (QZOP) is the following pseudo-Boolean formulation:

n 1 n n
max iTi — = iz | = € {0,1}™).
(;Pt 3 Z; ng @i52:Z; | {0,1}")
Since z7 = z; we can assume that the diagonal of Q = ||g:;]| is zero.

The equivalence between QZOP and the MCP has been pointed out in [16] (see also (3]). Since
the MCP i8 a special case of the QCP, the QZOP and the QCP are equivalent also. It means that
in quadratic time for each instance of the QZOP we can find an instance of the QCP such that
they have the same sets of feasible solutions and the same values of densities. This justifies the
comparability of our computational experiments with the QCP instances and either QZOP or MCP
instances reviewed below through the values of densities of the corresponding instances.

A mixed-integer programming (MIP) formulation of the QCP can be found in [27]. In this
formulation the quadratic term i replaced by a linear one and a number of linear constraints:

n n n
1
wax(y_pimi— 5D D qiths |+ T ~w S L
i=1 i=1 j=1
fori.j=1,...n; z € {0,1}", ye€ {0,1}**").
Arother MIP formulation is given in [23]:

ma.x(Zp.—x,- -AlA2 E gij{zi +z; — 1)
i=1 ijE E(TY(T)
for TC N;z€{0,1}",A >0)
where
E(T)={(,j)|ieT, j€T, g; >0}
and
J(T) = {(11]) ' 1€T, JjE€ N\T’ Q% > 0}

An advantage of the latter formulation over the former is that it uses a smaller number of variables,
although it requires an exponential number of constraints. The exponential number of constraints
makes it impossible to solve the full formulation for large instances. In order to overcome this
difficulty [23] start with only a small subset of the vertex set constraints (A > 3,.c sy Fi(Ti+

z; — 1)) and generate violated ones whenever they are needed. Therefore they need to solve the
problem of recognizing violated constraints, i.e. separation problem for the vertex set constraints
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in their branch and cut algorithm. The separation problem is a typical part of branch and cut
algorithms based on the polyhedral approach in combinatorial optimization. {5] have shown that
the corresponding separation problems are polynomially solvable for a wide class of QZOPs.

The methods of computational studies of the QZOP can be classified into the following groups
(see [22]): branch and bound methods [4], [28], linear programming based methods (branch and cut
algorithrhs [3], [23]), eigenvalue based methods, and approaches via semidefinite programming [29],
[30]. We will not discuss all of these approaches but restrict ourselves to one important remark. We
have not found any computational study of ezact optimal solutions for the QCP or QZOP for dense
graphs in which the number of vertices is at least 60. An exception is a specialized exact algorithm
for the maximum clique problem (which we consider as a special case of the general QZOP (the
stability number problem in the complementary graph) in [7]. They give computational results
for problems growing up to 100 variables with any edge density. However, the maximum clique
problem 8 a special case of the QZOP. [4] presented a comprehensive analysis of computational
results published in (3}, (7], (6], [18], [28], [31]. For example, [3] (see Table 3 therein) as well as [28]
(see Table 5.4 therein) reported computational results for dense QZOPs with up to 30 vertices; [23)]
(see Table 1 therein) reported computational results for dense QCPs with 40 vertices. [8] (see Table
1 therein) reported computational results for dense QZOPs with up to 50 vertices. For 75 vertices
their algorithm only finds the exact optimum for 5 instances out of possible 10. For 100 vertices, they
can only find the exact optimum for just one out of ten instances. Moreover, the general conclusion
of all published computational studies can be summarized as follows [30): “When the edge density is
decreased, the polyhedral bound is slightly better. On the other hand, increasing the density makes
the polyhedral bound poor.” In other words, for all above mentioned methods, average calculation
times grow as edge densities increase. Glover et al. [10] have reported computational experiments
with the adaptive memory tabu search algorithm for the QZOP on dense graphs with 200 and 500
vertices, and they conclude that this problems are very difficult to solve by current ezact methods:
“Here, however, we have no proof of optimality, since these problems are beyond the scope of those
that can be handled within practical time limits by exact algorithms” [10]. Using the DCA(PPAO)
(see [14]) an exact global optimum of the QCP instances from [23] with 80 vertices on dense graphs,
was found within 0.22 seconds on a PC with a 133 Mhz processor. In the next section we report
computational results with the DCA(PPA3) for the QCP instances from [23| including instances up
to 500 vertices on dense graphs.

6. COMPUTATIONAL EXPERIMENTS FOR THE QCP witH THE DCA(PPAR)

In [14] we have restricted our computational experiments with the number of vertices up to 80
for the QCP instances, since instances of that size have been considered in [23]. For these instances,
we have shown that the average calculation times grow exponentially when the number of vertices
increases and reduce exponentially with increasing values of the density. For example, an exact
global optimum of the QCP with 80 vertices and 100% density, was found within 0.22 sec on a
personal computer with a 133 Mhz processor but for QCP instances with 80 vertices and 10%
density 28.12 sec is required on the same computer. Therefore, the DCA(PPAG) was more efficient
for QCP instances defined on dense graphs. However, we did not answer the following questions.

1. What are the largest QCP instances from [23] defined on dense graphs that can be solved by

DCA(PPAQ) within reasonable time?
2. Is it possible to increase the sizes of the QCP instances that can be solved by data correcting
algorithms using any modification of the DCA(PPAQ)?
We answer these questions in the remainder of this section. Since most of the published computa-
tional experiments with QZOP instances restrict the maximum CPU time to 10 minutes, we also
use this as an upper limit for our computations.

For sake of completeness. we show below that the goal function of the QCP is submodular by

using the following definition of the submodularity [26]

2(S+j)—2(8)>2z2(S+k+j)—2(S+k), foral SCN.
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Lemma 12. The goal function z(S) of the QCP is submodular.
Proof. We know that 2(S) =) ,csPi — 5 ¢ jes Hj- Now
2(S+7) —2(S) — (&S + k +3) — z(5 + k))
1 1
= Ym-3 ) &-Qm-3) w
€S+l iJESH i€Ss iJES
1 1
“( Z Pi"‘é Z ai; — ( Z Pi"i‘z Qij))
i€S+Hk+l fJES+h+l i€S+k jES+k
= - Y @+ @+ Y, - Y
ijeSH TJES ijES+k+l iJeES+k
= gu+qe20,
since g;; 2 O for all 4, j € N. This completes the proof @

We have tested the DCA(PPAr) for QCPs on a Pentium processor running at 300 Mhz with 64
MB memory. All algorithms are implemented in Delphi 3.

The largest portion of the computation time is used to calculate the values of djf (S) and di (T),
since they are calculated rather frequently in the course of the algorithm. In case of the QCP we
may calculate, for example, the value of dj (S), by calculating, at the first step, the expressions of
2(S+k) =3 icseuPi— % Ee.jesu: ¢ij and 2(8) = 3", oPi — %Zi,jesqﬁ' and, at the second step,
di(S) = 2(S + k) — 2(S).

However, we can simplify the calculating of 4y (S) as follows:

dt(S) = =S+K)-=(S)

- a3 X as—(Cp—3 Y a)

icS+k i,jES+k i€s ijes
1 1 1 1
R PYLAT DI RIS IO
ijes ~1J€ES S jE€S
1 1
= P~ Ezqik - 52‘1}:_1"
i€s jes

Since grx = 0 and ¢;; = g;i the last expression can be rewritten as
(S =pc— Y -
€S
Similarly, d, (T') can be written as
& (T)=Y g —pr.
ieT
Note that values of d;f (S) and d; (T) must be calculated for successive sets such that S, S +to, S +
to+1t ete, and T, T — £, T — tg — t; etc. Hence, we can compute these values using incremental
effort as follows
dF(S+£) = d2(S) — qu nnd d5 (T — £) = d (T) - gu.
If we compare the two implementations of the DCA(PPAr), namely with the direct calculation of
differences between djf (S + t)and di (T — t), and with the incremental method above, then compu-
tational experiments show that the average computational time is reduced, on average, by a factor
of 2.
As problem instances we use randomly generated connected graphs having from 50 to 500 vertices
and densities 10-100% which are ‘statistically’ similar to [23]. The density is defined as

_ Bl
d—n——_—(n—-l)/2 100%,
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where |E| is the number of generated edges and n{n — 1)/2 is the number of edges in a complete
simple graph. The data p; and g;; are uniformly distributed with p; € [0, 100] and g;; € (1,100}. So,
we may compare our computational results (see also [14]) to those obtained by [23].

First we look at calculation times of the DCA(PPAr) needed for problems varying from 50 to 100
vertices. Since the DCA(PPAr) easily finds an optimal solution to instances for which an optimal
solution is located close to the top or to the bottom of the Hasse diagram, we use the distance

. |1 = n/2|
dist(}I|,n/2) = __ﬂ72_ 100%
between the calculated optimal solution I and the level /2 of the “main diagonal” of the Hasse
diagram in percentages as one of parameters of the “hardness” of our instances by solving them to
optimality by the DCA(PPAr).

Intuitively, it is clear that the DCA(PPAr) applied to instances with low values of distance
requires more calculation time than the DCA(PPAr) applied to instances with high values of distance.
Empirically we have found (see [14]) that for sparse instances from [23] the distance from the “main
diagonal” of the Hasse diagram is low (see Figure 1). For sparse instances with densities less than
20% DCA(PPAO) outperforms the branch-and-cut algorithm from [23], often with speeds that are
ten times faster. For non-sparse instances with density more than 40% DCA(PPAOQ) is often 100
times faster than the branch-and-cut algorithm. Figure 1 shows that the distance grows when
the density of instances increases. Therefore, we can expect a decrease in the average calculation
time [14] when the density of instances increases (see Figure 2). Figure 2 shows that the natural
logarithm of the average calculation time is approximately linear, i.e. the average calculation time
grows exponentially with the size of instances. Moreover, this increase is faster for sparse instances
than for dense ones.

We also study the effect of varying the number r of levels of the PPAr on the average calculation
time of the DCA(PPAr). Figure 3 shows that searching one or more levels deep does not decrease
the average calculation time for sparse instances (density< 1.0). The lowest average calculation time
is achieved at level 3 for instances of complete graphs (density= 1.0). This fact is explained for all
cases by the number of subproblems generated for different 7 values (see Figure 4). In Figure 4 it
can be seen that in all cases the number of subproblems decreases when we search deeper, but the
percentage of decrease in the number of subproblems is only 14% for levels 0 through 5 for instances
with density of 70% while it is 91% for instances with density 100%. Therefore the profit accrued
fromn decressing the number of subproblems is spent on the additional cost computations for PPAr
with higher r values. In particular, for dense graphs the balance is positive for search levels 3 and
4. This effect holds also for larger instances (see Figure 5).

In the second part of experiments we consider instances of the QCP with number of vertices
ranging from 100 to 500 and densities varying between 10% and 100%. We try to solve these instances
exactly, and with a prescribed accuracy of 5% within 10 minutes. Table 1 reports calculation times
in seconds for exact and approximate solutions with DCA{PPAO) and Table 2 reports the same
entries with DCA(PPA3). The entries marked with ‘* could not be solved within 10 minutes.
In all experiments of the second part, we note the exponentially increasing calculation times with
increasing of sizes and decreasing of densities. Therefore QCP instances with 500 vertices and
densities between 90% and 100% are the largest instances which can be solved by the DCA(PPA3)
within 10 minutes on a standard personal computer. The impact of the diagonal dominance (see
{14]) for instances of the QCP is similar to that in our previous experiments.

7. CONCLUDING REMARKS

In this paper we study the effect of increasing the depth of search in a Preliminary Preservation
Algorithm on the performance of data correcting for the Quadratic Cost Partitioning problem, and
by extension to the class of submodular functions. Theorems 9a and 9b, which can be considered
as generalizations of Theorems 2a and 2b form the basis of the DCA(PPAT) algorithm. Theorem 9a
states that if an interval [S.T] is split into [S,T ~ k] and (S + k.7, then the maximum value of
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TABLE 1. Average calculation times for DCA(PPAQ) in seconds for QCP instances
with 100-500 vertices and densities 10%-100% within 10 minutes
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FIGURE 2. Natural logarithm of the average calculation time (in seconds) for in-
stances of the QCP with 50-100 vertices and densities 10%—100%

TABLE 2. Average calculation times for DCA(PPA3) in seconds for QCP instances
with 100-500 vertices and densities 10%-100% within 10 minutes

~“Problem n = 100 n = 200 n = 300 n = 400 n = 500
£o=(ﬁ_‘€n=g% Eu=m &y = 174 £u=5% £n=§% €u=m €|)=5% E():G% Eo=5%—
100 0.098 0.094 2.63 2.444 18.316 17179 85.827 85.096 229.408 222.883
90 0.138 0.118 384 3.607 37.931 34.972 173.063 166.996 624.925 608.755
30 0.28 0.228 9.506 8.186 98.60 89.685 679.914 580.789 - *
70 0.393 0.304 17.643 15.693 413.585 364.48 o e hd e
60 0.731 0.517 86.33 72931 - he b - hd he
S0 1.752 1,298 345.723 267.445 - he he - - .
.m 3-.57 2'179 - - - - - - - -
30 11.032 5.88 - - - - - - - -
20 47.162 17.477 = he - e - e he he
10 70.081 12.196 * - b - - - ~ -
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FIGURE 5. The average calculation time (in seconds) against the level r for instances
of the QCP with 200 vertices and density 100%

all differences between the submodular function values z at levels r + 1 and 7 is an upper bound to
the difference between the unknown optimal value on the discarded subinterval and the maximum
of the unknown value of the preserved subinterval and the maximum value of z(I) on r levels of the
Hasse diagram. Theorem 9b can be explained in a similar manner. These upper bounds are used to
implicitly “correct” the value of z by correcting the value of the current accuracy.

We have tested the DCA(PPAr) on the QCP instances which are statistically similar to the
instances in [23]. We show that the distance of an optimal solution to the main diagonal of the Hasse
diagram is a good measure of the difficulty of a QCP instance at least for the DCA(PPAr). This
distance increases at a rate slower than linear with increasing values of the density, for a fixed size
of QCP instances. The instances with distances between 0% and 20% can be categorized as “hard”,
between 30% and 60% as “difficult”. and between 70% and 100% as “easy”. In all the instances
tested, the average calculation time increases exponentially with decreasing density values for all
prescribed accuracy values. This behavior differs from the results of the branch and cut algorithm in
23], in which calculation times increase when densities increase. This effect is also demonstrated for
all algorithms based on linear programming (see, e.g., [3], [28], and [30}). This behavior makes the
DCA an algorithm of choice for QCP instances with high densities. Our experiments with different
values of r in the PPAr show that for the QCP instances from (23], the best 7 values are 3 and
4. This effect becomes more pronounced when the density of the corresponding instances approach
100%.

Recently, Glover et al. {10] reported their computationsal experiments for binary quadratic pro-
grams with edaptive memory tabu search procedures. They showed that their so called “c” problems
with n = 200 and n = 500 (which are statistically equivalent to the [23] instances defined on dense
graphs) to be the most challenging problems reported in the literature to date “ ... far beyond the
capabilities of current exact methods and challenging as well for beuristic approaches™.

We have used the DCA(PPA3) to solve QCP instances with up to 500 vertices on dense graphs
within 10 minutes using a personal computer with 64 MB RAM operating at 300 MHz. Note that the
largest QCP instances solved by the DCA based on the two neighboring levels in the Hasse diagram
within 10 min on the same computer had 300 vertices. Since the data-correcting approach is efficient
for solving large QCP instances defined on the dense graphs, while branch-and-cut algorithms are
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efficient for solving large instances on sparse graphs, it will be interesting to investigate hybrids of
the two for solving large instances of the QCP for all densities.

Acknowledgements. The authors would like to thank Marius de Vink and A. Naivelt for their help
in the preparation of this paper.
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