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1. Introduction :- An abiding problem in choice theory has been one of
characterizing those choice functions which are obtained as a result of some
kind of optimization. Specifically, the endeavour has concentrated largely on
finding a binary relation (if there be any) whose best elements coincide with
observed choices. An adequate survey of this line of research till the mid
eighties is available in Moulin [1985].

The idea of a function which associates with each set and a binary relation a
non-empty subset of the given set has a long history whose exact origin is very
difficult to specify and in any case is unknown to the author. In Laslier [1997]
can be found a very exhaustive survey of the related theory when binary
relations are reflexive, complete and anti-symmetric.

In Lahiri [2000], we extend this set of binary relations to include those which
are not necessarily anti-symmetric. Such binary relations are known as
abstract games. An ordered pair comprising a non-empty subset of the
universal set and an abstract game is referred to as a subgame. A
(game)solution is a function which associates to all subgames of a given
(nonempty) set of games, a nonempty subset of the set in the subgame. An
important consequence of this framework is that often, a set may fail to have
an element which is best with respect to the given binary relation. To
circumvent this problem the concept of the top cycle set is introduced, which
selects from among the feasible alternatives only those which are best with
respect to the transitive closure of the given relation. The top cycle set is
always non-empty and in Lahiri [2000],we provide an axiomatic
characterization of the top-cycle solution. It is also observed there that the top
cycle solution is the coarsest solution which satisfies two innocuous
assumptions. In the same paper we also provide an axiomatic chracterization
of the uncovered solution (where ‘covering’ is defined as a ‘menu-based’
concept: as in Sen [1997]).The concept of the uncovered solution has been
analyzed in great detail in Dutta and Laslier [1999].Our axiomatic
characterization is different from the ones available there.

Among the many different solutions which have been prescribed for problems
of choice, one of the most significant is the solution related to the (von



Neumann-Morgenstern)stable set. Lucas [1994] surveys the very large
literature dealing with this concept, particularly in the context of co-operative
games. A recent abstract approach to stable set theory and its connections to
other solution concepts is given in Greenberg [1989,1990].

In this paper we characterize the maximal set of abstract games which admits
a solution which always selects a stable set from every admissible subgame.
This set is obviously the same as the maximal set of abstract games such that
each subgame has atleast one stable set. It is proved in this paper that the
maximal set of abstract games to satisfy this property are those which do not
admit any strict preference cycle of length three and satisfy what we call stable
set property. The stable set property is equivalent to the requirement that all
subgames with exactly five elements have atleast one stable set. We also
prove that these two properties are logically independent.

. Game Solutions :- Let X be a finite, non-empty set and given any non empty .
subset A of X, let [A] denote the collection of all non-empty subsets of A. Thus
in particular, [X] denotes the set of all non-empty subsets of X. If A e [X], then
# (A) denotes the number of elements in A. Given a binary relation R on X, let
PR)={(x,y) e R/(y,x) ¢ Rtand I(R) = {(x,y) € R/ (y, x) € R}. P(R) is called
the asymmetric part of R and KR) is called the symmetric part of R. Given a
binary relation R on X and A e [X], let R| A = R ~(AxA).

A binary relation R on X is said to be (a) reflexive if ¥ x € X : (x, X) € R; (b)
complete if V x, y e X with x # y, either (X, y) € R or (y, X) € R;(¢c) quasi-
transitive if V x, v,z € X :[(x, y) € P(R) & (y, z) € P(R)] implies [(x, 2) € P(R)].
Let I'T denote the set of all reflexive and complete binary relations. If R € IT,
then R is called an abstract game. An ordered pair (A,R) e [X]xIT is called a
subgame. Given a binary relation R on X and A ¢ [X], let G(A,R) ={ x ¢ A/ vy
e A :(xy) € R}. Given A € [X], let A (A) denote the diagonal of A i.e. A
(A)={(x,x)/xe A}.

Given a binary relation R on X and a positive integer K, R is said to admit a K-
cycle if there exists x,...,.X« in X, all distinct such that (i) (x, X+1) e P(R) Vi €
{1,...K-1}; and (ii) (xx, x1) € P(R). A binary relation R on X is said to be acyclic
if given any positive integer KR does not admit a K-cycle. Of particular
interest to us in what follows is the set I'(3) which is defined to be the set {R ¢
I/R does not admit a 3-cycle}.

Any non-empty subset A of I1 is called a domain. In the sequel whenever we
mention A, it will be implicitly assumed that it is a domain.

A (game) solution on A is a function S: [X]xA —[X] such that:

(i) V(A,R)e [X]xA:S(AR) c A ;

(i) V(AR), (A,Q)e [X]xA:R|A=Q | A implies S(A,R)=S(A,Q);

(iii) vx,ye X and Re A:xeS(A,R) if and only if (x,y) eR.



If v(A,R)e [X]xA, G(A,R) is non-empty valued then the associated solution is
called the best solution on A.

Rational choice theory till the mid eighties has concentrated on the following
problem : given a domain A, specify a finite minimal set of (reasonable axioms)
on solutions on A such that whenever a solution on A satisfies those
properties it coincides with the best solution on A.This theory has been
adequately surveyed in Moulin [1985].The following result is well known in the
relevant literature:

Theorem 1:-Let R belong to Il.Then V(A R)e [X]xA, G(A,R) is non-empty
valued if and only if R is acyclic.

Given R eIl let us say that G is well defined at R if YAe [X], G(A,R) is non-
empty valued.

Let (A,R) be a subgame. A set Be[A] is said to be a (von Neumann-
Morgenstern) stable set for (A,R) if:()vx,yeA: (x,y)el(R) (i.e. B satisfies
internal stability);(ii) ¥xeA\B, there exists yeB:(y,x) eP(R).Given a subgame
(AR),let ¥(A R)={ Be[A]/B is a stable set for (A,R)}. Given R eIl let us say
that ¥ is well defined at R if YAe [X], ¥(A R) is non-empty.

Observation 1:-Let Ae [X] and suppose #(A) < 2. Then,VReIL[G(A,R)#$
&¥(A,R)=$).

A solution S:[X] xA —[X] is called a stable solution if V(A,R)e [X]xA:S(A,R)
Y(A,R). A is said to admit a stable solution if there exists a stable solution on
A.Clearly, A admits a stable solution if and only if V(A,R)e [X]xA: W(AR) is
non-empty. The following example shows that there are domains which do not
admit any stable solution:

Example 1 : Let X={x,y,z} and let R=A{(x,y),(y.2),(z.x)}. Then ¥(X,R)=¢.Thus
¥ is not well defined at R. Hence any domain which contains R does not admit
a stable solution.

In view of Example 1, the following question derives relevance: What is the
largest domain which admits a stable solution? We try to answer this question
in the following sections of this paper.

. Preliminary Results :-In this section we obtain some preliminary results about
stable sets.

Theorem 2:- Let (A,R) be a sub game such that G(A,R)s¢p. Then, ‘F(A,R)=¢.

Proof:- Suppose G(A,R)=¢ and towards a contradiction suppose ¥(A,R)= ¢.
Thus G(A,R)e ¥(A,R).Hence there exists y; eA\G(A,R) such that ¥Yxe G(A,R):
(y1, x)eR. Now, y; eA\G(A,R) implies that there exists z; e A\G(A,R) such that
(z1, y1)eP(R).Let B, = G(A,R){ y,4}.Since ¥(A,R)= ¢, B ¢ ¥(AR).Suppose



that finite sequences { B, ,..., B} and { vy, ,..., y,} have been obtained such that
(i) Vie{1...8)[B=B. Uy} if i>1, B = G(AR) Uy} if i = 1]

(ii) vi € {1,...,8}); there exists z, €A\ B, :(z, y;) € P(R).

(iii) (y1, X) € R V xeB,, if i>1 and (y1,X) € RVxeG(A,R).

Since ¥(AR) = ¢, B, ¢¥(AR) whenever i € {1,...,s}. Thus there exists Y.
eA\B,.(Ys+1, X) €R ¥V xeB,. Since A is finite, there exists a positive integer K:
A=G(A R)U{y1,...,.yx} with {yi,....yi} cA\G(A,R).

However (yx,X) eRvxeG(A,R) U{ys,.-..¥k1} and (yx,yx) €R since R is reflexive.
Thus yke G(A,R) contradicting {y;,...,yx} cA\G(A,R). Hence ¥(A,R)= ¢.

Q.E.D.

Example 2 :- Let X = {x,y,z} and R = AU{(x,y), (¥.2), (x,2), (z.X)}. G(X,R) = {x}
and ¥(X,R) = {{x,z}}. Thus G(X,R) is a proper subset of the only stable set of
(X,R).

Example 2 shows that G(A,R) can be a proper subset of a stable set. In fact
the following example shows that it is quite possible for G(A,R) to be empty
and ¥(A,R) to be non-empty.

Example 3 :- Let X = {x,y,z,w} and let R = AU{(x.w), (v.2), (W,y), (z,x), (X.y),
(v.x), (zw), (w,2)}.Now G(X,R) = ¢, but P(X,R) = {{xy}, {w,z}}).Further,
G({x,y.w},R) = {x} but ¥({x,y.w},R) = {x,y}; G({x,y.zZ},R) = {y} but ¥({x,y,z},R) =
{xyyG({xy.z}R) = {y} but ¥({xy.z}R) = {xy}G({xwz}R) = {z} but
¥({x,w,z},R) = {w,z} ;G({y,w,z},R) = {w} but ¥({y,w,z},R) = {w,z}. Thus G is not
well defined at R but ¥ is.

Theorem 3 :- Let (A,R) € [X] x IT and suppose B € ¥(A,R). Then G(A,R) cB.

Proof :- Let Be¥(A,R) and towards a contradiction suppose x €G(A,R)\B.
Thus xeA\B. Since BeW¥(A,R), there exists yeBcA:(y,x)eP(R). This contradicts
xeG(A,R) and proves the theorem.

Q.E.D.

The following result is of immense significance for quasi-transitive rational
choice. Lahiri [1999] (and references there in) contain related results.

Theorem 4 :- Let Rell. Then [¥(A R)={G(A,R)}VAe[X]] if and only if R is
quasi-transitive.

Proof :- Suppose R is quasi-transitive. Clearly vV A¢[X]:G(A,R)e¥(A,R). Let
BeW¥(A,R). Towards a contradiction suppose xeB\G(A,R). Then there exists y
eG(A,R) such that (y,x)eP(R). Since Be¥(A,R), yeA\B. Since yeG(A,R) there



does not exist z in A (and hence in B) such that (z,y)eP(R). This contradicts
BeW¥(AR). Thus BcG(AR).

Now suppose xeG(A,R)\B. Thus there does not exist zeB:(z,x)eP(R). Thus
Be¥(A,R). Thus G(A,R)cB. Hence B=G(A,R).

Now suppose P(A, R) = {G(A, R)} V A e [X].Towards a contraction suppose R
is not quasi-transitive. Thus there exists x, y, Z € X : (x, y) € P(R), (y.2) € P(R)
and (x,z) ¢ P(R). Since, ¥({x,y.z}, R) = {G({x,y.z}, R)}, G({x,y.z}, R) = . Hence
(z,x) ¢ P(R). Thus (x,z) € I(R). Thus ¥({x,y,z}, R) = {{x,2}} # {G({x,y,2}, R)} =
{x}. Thus R must be quasi-transitive.

Q.E.D.

. Three Cycles and Stable Set Property :- In this section we define two

logically independent properties that all elements of a domain need to satisfy
for it to admit a stable solution. These two properties are both necessary and
sufficient for our desired result.

Lemma 1 :- Let R € I1\I1(3). Then ¥ is not well defined at R.

Proof :- Let R e IT\TI(3). Then there exists x,y,z € X such that (x,y), (y,2), (2,y)
€ P(R). Clearly ¥({x,y,z}, R) = ¢. Thus ¥ is not well defined at R.

Q.E.D.
In what follows, for (A, R) e [X] x IT, let W(A,R) = {xeA/VyeA : (y,X)eR}.
Lemma 2 :- Let R € IT\TI(3) and let A € [X] with # (A) <4. Then ¥Y(A,R) = ¢.

Proof :- For # (A) equal to 1 or 2 there is nothing to prove and for # (A) equal
to 3, R e IT\TII(3) implies G(A,R) =¢. Thus, by Theorem 2, ¥(A,R) #$. Hence
suppose # (A) = 4. If G(A,R) # ¢, then by Theorem 2, ¥(A,R) = ¢. If G(A,R) = ¢,
W(AR) = ¢, then let y ¢ W(AR). Thus #(A{y}) = 3 and by the above
Y(AYy},R) = ¢. Let BeW(AXy},R). If there exists x € B : (x,y) € P(R), then B ¢
¥Y(AR). If ¥ xeB : (x,y) € I(R), then B U {y} € ¥(A,R). Thus ¥(A R) = ¢. Finally
suppose G(A,R) = W(AR) = ¢. Let A = {x,y,z,w} where all elements are
distinct. Since G(A,R) = ¢, there exists a € A : (a, x) € P(R). Without loss of
generality suppose (y, x) € P(R). Since W(A,R) = ¢, there exists a € A : (x, a)
e P(R). Without loss of generality suppose (x,z) € P(R). By the same
reasoning as above and since R e IT\ II(3) (: and hence (z,y) ¢ P(R)) we
must have (z,w) € P(R). Since G(A,R) = ¢, and since (y,x) € P(R) and (z,y) ¢
P(R) we must have (w,y) € P(R). If (w,x) € P(R) then along with (x,z)eP(R) and
(z,w)eP(R) we get a 3-cycle. Hence (w,x)gP(R). If (x,w)eP(R) then along with
(wy) € P(R) and (y,x) € P(R) we get a three cycle. Thus (w.x) € I(R). By
identical reasoning we must have (y,z) € I(R). Thus ¥(A R) ={{w,x},{y,z}}. Thus
W(A,R) = ¢. This proves the Lemma.



Q.E.D.
However the conclusion of Lemma 2 does not hold if # (A) > 4.

Example 4 - Let X = {x,y,z,w,u} with all the five elements distinct. Let R = A
U{(xy), (v, (x2), (ux), (y.u), (Wy), (W.x), (xw), (uz), (z,u), (wu), (uw),
(z,w)}. Clearly R € IT - T1(3). Towards a contradiction suppose ¥(X,R) = {B}.
Suppose x e B. Thus z ¢ Band u ¢ B. Thus y € B. Thus w ¢ B. But B contains
no element ‘a’ such that (a,w) € P(R). Thus x ¢ B. Hence u € B. Thus y ¢ B.
Thus w € B. Thus z ¢ B. But then B contains no element ‘a’ such that (a,z)
P(R). Thus ¥(X,R) = ¢.

Let R € IT. R is said to satisfy the stabie set property (SSP) if there does not
exist u,w,x,y,z in X such that :

() (xy). (zy) € (R);
(i) {(x.2), (u.x), (y.u).(zw), (w.y)} c P(R).

Lemma 3 :- Let R € IT \ I1(3) and suppose R does not satisfy SSP. Then ¥ is
not well defined at R.

Proof :- Example 4.

Q.E.D.

Lemma 4 :-Let R be an abstract game and suppose that Vv A e [X], ¥(A.R) #
¢, if # (A) = 1,...,n for some positive integer n. Let A e [X] with #(A) = n+1 and
suppose that W(A,R) # ¢.Then, ¥(A,R) = ¢.

Proof - Let x € W(A,R). By the induction hypothesis, ¥(A{x}, R) = ¢. Let B
¥(AYx}, R). If there exists y € B such that (y,x) € P(R), then B € ¥(AR).
Otherwise V y € B, (xy) € (R) (: since x € W(A,R)) and so B U {x} € ¥(AR).
Thus W(A,R) # ¢ implies ¥(A,R) = ¢.

Q.E.D.
LetIT° = {R e IT\II(3) / R satisfies SSP}.
The following Lemma is rather enlightening :

Lemma 5 :- Let R e IT°. Then ¥ is well defined at R.

Proof :- We have already seen in Lemma 2 that if R € II° < IT \ [1(3) then V A

e [X] with # (A) <4, ¥(AR) = ¢. Suppose R e IT°and V A e [X], ¥(AR) = ¢, if
# (A) = 1,...,n for some positive integer n > 4. Let A e [X] with #(A) = n+1.
Towards a contradiction suppose, ¥(A,R) = ¢.
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Since W(A,R) = ¢, by Theorem 2 G(A,R) = $,and by Lemma 4, W(A,R) = ¢.

Let x € A. By the induction hypothesis, W(A \ {x}, R) # ¢. Let B € W(A \ {x}, R).
Step 1:If va e B; (ax) € I(R), then B U {x} € ¥(AR). If there exists a € B :
(a,x) € P(R), then B € ¥(A,R). Since W(A,R) = ¢, it must be the case that Vv a
e B, (a,x) € R and for some a € B, (x,a) € P(R).

Step 2:Let B, = {aeB/(a,x) € I(R)} and B; = {a € B/ (x,a)eP(R)}. Since ¥(A,R) =
¢, Bou {x} ¢ ¥(AR). Hence there exists b e AB: Va e Bou {x}: (b,a) e R.
Let A\B = C;uC2UC; where Cy = {beA\B/(x,b)eP(R)}, C.={beA\B/(b,x)eP(R)}
and C; = {beA\B/b=x & (b,x)el(R)}. Since G(A,R) = W(AR) = ¢, C, # ¢ and C;
# ¢. Letb e C,. Since B € ¥(A\{X}, R), there exists acB:(a,b)eC,. If acB,, then
a,b and x form a 3-cycle contradicting ReII\[1(3). Thus aeB,. If Cs=¢, then
Bou{x} is a stable set for (A,R) contradicting W(A,R)=¢. Thus Cs=¢.

Step 3:If ¥ beC;, there exists aeBy{x}:(a,b)eP(R) then again By {x}e¥(A,R)
contradicting W(AR)=¢. If Vv beC; and VaeByu{x}:(a,b)el(R) then
BouCau{x}e'P(A,R) contradicting W(A,R)=¢. Hence there exists
beCayVaeByu{x}, (b,a)eR and (b,a)eP(R) for some acBy{x}. Let Bbe a
maximal subset of A containing Bou{x}:Va, be B, (a,b) € I(R). Since A is finite,
B exists. Thus if beC3\B then (b,a)eRvae B and (b,a)eP(R) for some acB .
Further B;uC{UC,cA\B . Hence B is a proper subset of A.

Step 4:Let B \{x} = BB, where B;={ac B /vbe C;\B: (ab)  I(R)} and B, =
(B\{x})\Bz Suppose [ueC,, acB and (a,u)eP(R)] implies [acB.]. Then B, U
(C3\B )e¥(A,R) contradicting ¥(A,R)= ¢. Hence there exists ueC,, ye B and
weC; \B such that (y,u)eP(R) and (w,y)eP(R). Since, (w,v)eRvveB and
since,weA\B, there exists zeB, such that (z,w)eP(R). This contradicts ReIT’.
Hence ¥(A,R) = ¢. It follows by induction that ¥ is well defined at R.

Q.E.D.
In view of Lemmas 1,2,3 and 5 the following theorem stands established:

Theorem § :- Let A be a domain. Then A admits a stable solution if and only if
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