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1. Introduction : An abiding problem in choice theory has been one of
characterizing those choice functions which are obtained as a result of some
kind of optimization. Specifically, the endeavour has concentrated largely on
finding a binary relation (if there be any) whose best elements coincide with
observed choices. An adequate survey of this line of research till the mid
eighties is available in Moulin [1985]. More recently, the emphasis has
focused on binary relations defined on non-empty subsets of a given set,
such that the choice function coincides with the best subset corresponding to
a feasible set of alternatives. This problem has been provided with a solution
in Lahiri [1999], although the idea of binary relations defined on subsets is a
concept which owes its analytical origins to Pattanaik and Xu [1990].

The idea of a function which associates with each set and a binary relation a
non-empty subset of the given set has a long history whose exact origin is
very difficult to specify and in any case is unknown to the author.In Laslier
[1997] can be found a very exhaustive survey of the related theory when
binary relations are reflexive,complete and anti-symmetric.

In this paper we extend the above set of binary relations to include those
which are not necessarily anti-symmetric.Such binary relations which are
reflexive and complete are referred to in the literature as abstract games. An
ordered pair comprising a non-empty subset of the universal set and an
abstract game is referred to as a subgame.A (game)solution is a function
which associates to all subgames of a given (nonempty) set of games,a
nonempty subset of the set in the subgame.Lucas [1992] has a discussion of
abstract games and related solution concepts, particularly in the context of
cooperative games.Much of what is discussed in Laslier [1997] and
references therein carry through into this framework.An important
consequence of both the frameworks is that often,a set may fail to have an
element which is best with respect to the given binary relation.To circumvent
this problem the concept of the top cycle set is introduced,which selects from
among the feasible alternatives only those which are best with respect to the
transitive closure of the given relation.The top cycle set is always non-empty
and in this paper we provide an axiomatic characterization of the top-cycle



solution.It is subsequently observed that the top cycle soiution is the coarsest
sofution which satisfies two innocuos assumptions.

In Dutta and Laslier [1999] one finds the device of a comparison function,
which is basically a real valued function defined on all pairs of alternatives
satisfying the condition that the value of an ordered pair is negative of the
value of the ordered pair which is obtained by interchanging the order of the
first ordered pair. Hence, in particular the value of the function along the
diagonal (i.e. the set of ordered pairs with identical first and second
components) is zero. A comparison function simultaneously captures the idea
of preference and the intensity of preference. An alternative ‘x’ is preferred to
another alternative ‘y’ if and only if the value of the comparison function at (x,
y) is positive, and the value of the comparison function at (x, y) is meant to
convey the intensity with which ‘X' is preferred to ‘y. The device of a
comparison function is a generalization of the concept of a binary
relation.With the help of a comparison function they introduce the notion of
‘cover’: ‘X’ is said to cover 'y’ if ‘X' is preferred to 'y’ (i.e. the value of the
comparison function at (x, y) is positive) and for every other third element ‘z’
the value of the comparison function at the ordered pair (x, z) is alteast as
much as the value of the comparison function at the ordered pair (y, z). Given
any feasible sets, its uncovered set is the set of all elements in the feasible
set which are not covered by any other element in the same set. The
question that naturally arises is the following : Given a choice function ,
under what condition does a comparison function exist, whose uncovered
sets always coincide with the choice function? This question has been
discussed in Lahiri [1999], where it is observed that the binary relation ‘is
uncovered' is reflexive, complete and quasi-transitive and any reflexive,
complete and quasi-transitive binary relation can be made to coincide with
the “is uncovered” relation of some comparison function. The problem
becomes much more difficult if instead of defining the covering relation
globally, we considered the covering relation for each individual feasible set,
by simply looking at the restriction of the comparison function to that set. In
such a situation that fact that ‘x’ covers 'y’ in a particular feasible set does not
imply that ‘X’ covers 'y’ globally. In effect, we are then concerned with what
Sen [1997] calls ‘menu based’ relations.

In the final section of this paper we address the problem of axiomatically
characterizing the uncovered solution (where ‘covering’ is now defined as a
‘menu-based’ concept), by considering only those comparison functions
which can assume only three values : 1, 0 and -1. These comparison
functions are nothing but abstract games.Our axiomatic characterization is
different from the ones available in Dutta and Laslier [1999].

. Game Solutions - Let X be a finite, non-empty set and given any non empty
subset A of X, let [A] denote the collection of all non-empty subsets of A.



Thus in particular, [X] denotes the set of all non-empty subsets of X. If A ¢
[X], then # (A) denotes the number of elements in A.

A binary relation R on X is said to be (a) reflexive if v x € X : (x, x) ¢ R; (b)
complete if v x, y € X with x = y, either (x, y} € R or (y, x) € R ;(c) transitive if
Vx, y.Ze X [(xy) e R&(y, z2) € Rimplies (x, z) € R] ;(d) anti-symmetric if [
Vx yeX(xy) e R&(y, x) e Rimplies x = y]. Given a binary relation R on
X and A e [X], let R| A = R ~(AxA).

Let IT denote the set of all reflexive and compiete binary relations. If R € IT,
then R is called an abstract game. An ordered pair (A,R) e [X]xIT is called a
subgame. Given a binary relation R, et P(R) = {(x, y) e R/ (y, x) ¢ R} and
I(R) = {(x, y) € R/ (y, X) € R}. P(R) is called the asymmetric part of R and I(R)
is called the symmetric part of R. Given a binary relation R on X and A € [X],
let G(AR) ={ x € A/ ¥y € A :(x,y) € R}. Given A e [X], let A (A) denote the
diagonal of A i.e. A (A)={(x,x)/xe A}.

The following example shows that given R € IT and A e [X], G(A,R) may be
empty:

Example 1:Let X ={x,y,z} and let R =A (X)U{(x,y).(Y,2).(z,x)}.Clearly G(X,R) is
empty.

Given R ¢ IT, A € [X] .let T(R| A) be a binary relation on A defined as follows:
(x,y) e T(R | A) if and only if there exists a positive integer K and x;,...,xx in A
with (i) X = X, Xk = ¥ : (i) (X, Xi1) € RV i € {1,...K-1}. T(R|A) is called the
transitive hull of R in A.Clearly T(R|A) is always transitive.

Given R e I, A € [X], G(A,T(R|A)) is called the top cycle set of R in
A.Clearly G(A T(R| A)) is non-empty whenever R < IT and A & [X].

Let,A be a non-empty subset of IT.

A (game) solution on (X, A) is a function S: [X]xA —[X] such that:

() v(A,R)e [X]xA:S(ALR) c A ;

(i) Y(A,R), (A.Q)e [X]xA:R|A=Q | A implies S(A,R)=S(A,Q);

(iii) vx,ye X and Re A:xeS(A,R) if and only if (x,y) eR.

If v(A,R)e [X]xA, G(A,R) is non-empty valued then the associated solution is
called the best solution on (X, A).

Rational choice theory till the mid eighties has concentrated on the following
problem:given a non-empty subset A of I, specify a finite minimal set of
(reasonabie axioms) on solutions on (X, A) such that whenever a solution on
(X, A) satisfies those properties it coincides with the best solution on (X,
A).This theory has been adequately surveyed in Moulin [1985].In what
follows we will assume that A= IT,and refer to solutions on (X, IT) merely as
solutions on X.

The top cycle solution denoted TC: [X]xIT =[X] is defined as follows:
V(AR)e [XIXIT. TC(A,R) = G(A, T(R| A)).

GivenR e IT, A € [X] and x, y € X, we say that x covers y viaRin Aif:

(M x, y € A (i) (X, y) € P(R); (iii) V z € A: [(y, 2) € Rimplies (X, Z) € R] ; (iv) V
Zz c A [(y, 2) € P(R) implies (x, Z) € P(R)].



Let R(A) = {(x, y) € AxA / x covers y via R in A} and let UC(A, R) = {x A/ if
y e Athen (y, x) ¢ R(A)}. Itis easy to see that vV A e [X], R(A) is a transitive
binary relation on A. Thus UC(A,R) # ¢ whenever A e [X]. Thus (i)V (AR)
e[X]x IT: UC(A, R) c A ¥ A e [X](ii) Y(A.R), (A.Q)e [X]xIT:R| A=Q| A implies
UC(A,R)=UC(A,Q);(iil) vx,ye X and Re IT:xeUC(A,R) if and only if (x,y) eR.
The solution UC: [X]xIT-[X] is called the uncovered choice function.

Given R e I1, A e [X] and x e X let s(x,A,R)=#{ycA/(x,y) eP(R|A)}.

The Copeland solution Co: [X]xIT-[X] is defined as follows:

v (A,R) €[X]x IT:Co(A,R)={xeA/vyeA: s(x,A,R) = s(y.A,R)}.

The following proposition is available in Laslier [1997]:

Proposition 1: ¥V (A,R) ¢[X]x [T:Co(A,R)UUC(A,R)cTC(A,R).

Example 2:Let X ={x,y,z} and let R =A (X){(x,y),(Y.2).(z,y),(X,2),(z,x)}.Now
Co(X,R)={x}c = {x,z} =UC(X,R) c c X =TC(X,R).Further Co(X,R) u UC(X,R)
c c TC(X,R).

. Axioms for the Top Cycle Solution:A solution S on X is said to satisfy :

Strong Condorcet (SC) if ¥ (A,R) e[X]x IT: [xeA] and [VyeAY{x}:(x,y) eP(R)]
implies [S(A,R) ={x}];

Expansion Independence (El) if V (A,R) €[X]x IT:[xeS(A,R),yeA,(y.z) eR]
implies [xe S(AL{z},R)];

Existence of an Inessential Alternative (EIA) if v (A,R) e[X]x IT with #(A) > 2
and v xeS(A,R), there exists yeA (possibly depending on AR and x) such
that xe S(A\{y},R).

Theorem 1:The only solution on X which satisfies SC,El and ElAis TC.

Proof:lt is clear that TC satisfies SC,El and EIA.Hence let S be any solution
that satisfies SC,El and EIA.Let (A,R)e[X]xI1.If #(A) is one or two there is
nothing to prove since S(A,R)=TC(A,R) by definition.Thus suppose
S(A,R)=TC(A,R) whenever #(A)=1,...k.Let #{A)=k+1.Let xeA.lf YyeA{x}:(x,y)
eP(R)] then S(A,R) ={x}=TC(A,R).Hence suppose VYxeA there exists y eA\{x}
such that (y,x) eR.

Let x eTC(A,R).Since TC satisfies EIAthere exists z €A such that x
e TC(A\{z},R).By the induction hypothesis S(A{z} R)= TC(A\{z},R).If (x,z) eR
then by El , x eS(AR).If (x,z)¢R,then since x e TC(A,R)= G(A,T(RIA)) there
exists weA such that (x,w) eT(R|A) and (w,z) eR.Then by El once again x
eS(A,R). Hence TC(A,R)cS(A,R).

Now suppose x eS(A,R) and towards a contradiction suppose x ¢ TC(A,R).By
EIA there exists z €A such that x eS(A{z},R).By the induction hypothesis
S(A\{z},R)= TC(A{z},R). If (x,z) R then by El applied to TC, x eTC(AR).
Hence suppose (x,2)gR.Thus (z,x)eP(R). Let y eTC(AR). Clearly
yzx.Suppose y#z.Thus yeA\{z}.Thus (x,y)e T(R|A) which combined with y
eTC(A,R) gives us x eTC(A,R).Hence y=z.If for some w €A\{x,z} we had



(wz)eR, then since x eTC(A{z},R) and w eA\{z} we would get x
€TC(A,R).Thus vweA:(z,w)eP(R).But then by SC,S(A,R)={z}, contradicting x
€S(AR).Thus x eTC(A,R). Hence S(A,R)cTC(A,R). Thus S(A,R)=TC(AR).
By a standard induction argument it now follows that VAg[X]:
S(A,R)=TC(A,R).This being true whenever ReIT the theorem follows.

Q.ED.
A solution S on X is said to satisfy:
Converse Condorcet (CC) if ¥ (A,R)e[X]x IT and xeA:[VyeA\{x}:(y.x)eP(R)]
implies [xgS(A,R)];
Weak Existence of an inessential Alternative (WEIA) if v (A,R) €[X]x IT with
#A) >4 and V xeS(A,R), there exists yeA (possibly depending on AR and x)
such that xeS(A\{y},R).
Since TC satisfies EIA it also saisfies WIEA. Infact we can now prove the
following:

Theorem 2:Let S be any solution on X which satisfies SC,CC and
WEIA.Then, ¥ (A,R) €[X]x IT: S(A,R) « TC(AR).

Proof:

Step 1: Let S be any solution on X which satisfies SC and CC.Then, ¥V (AR)
efX]x IT with #(A) < 3: S(A,R) < TC(A,R).

Proof of Step 1:For #(A) < 2 there is nothing to prove since by the definition
of a solution all of them agree on such sets.Hence suppose #(A) =3.Let
A={xy,z} with xzyzzzx.Suppose without loss of generality xeS(AR).If
(x,y).(x,2) eR,then x eTC(A,R).Thus,suppose without loss of generality that
(v.x) eP(R).If (z,x) eP(R) then by CC, x¢S(A,R),contradicting what we have
assumed.Hence (x,z) must belong to R.If (z,y) eR then again x eTC(A,R).If
(v.2) eP(R),then by SC,S(A,R)={y},contradicting xeS(A,R).Thus S(AR) c
TC(AR). '

Step 2: Let S be any solution on X such that Vv (A,R) e[X]x IT with #(A) < 3:
S(A,R) c TC(A,R).Suppose S satisfies WEIA.Then, Vv (A,R) €[X]x IT: S(A,R)
c TC(A,R).

Proof of Step 2: Suppose that V (A,R) €[X]x IT with 3 <#(A) <m: S(AR) c
TC(AR).Let #(A) = m+1.Thus #(A) > 4.Let xeS(A,R).By WEIA there exists
yeA such that xeS(AY{y},R).By the induction hypothesis S(A{y} ,R) <
TC(AYy} ,R).Thus, xeTC(AYy},R).If (x,y) R, then clearly xeTC(A,R).Hence,
S(AR) < TC(A,R).Suppose (y.x) eP(R).If vzeA\y}:(y,z)eP(R),then by
SC,S(A,R)={y},contradicting xeS(A,R).Hence .there exists z €A\{x,y} such
(z,y) eR.Since, xeTC(AYy},R) and z eA\{y}, (z,y) R implies xe TC(A,R).Thus
S(AR) c TC(AR).

Step 2 combined with Step 1 and a standard induction argument proves the

theorem.
Q.E.D.



Infact,the above proof reveals the following:

Theorem 3:Let S be any solution on X which satisfies SC and EIA.Then, ¥
(AR) e[X]x IT: S(A,R) c TC(A,R).

CC is not required once we replace WEIA by EIA,since then the induction
argument can begin from #(A) > 2 .

The Uncovered Solution: A solution S on X is said to satisfy Expansion (E) if
Y (AR),(B,R) €[X]x IT: S(A,R)~S(B,R) = S(AUB,R).

It is easy to see that both TC and UC satisfy E:

(i)Let (A,R),(B,R) €[X]x IT and suppose x €UC(A,R)NUC(B,R).Towards a
contradiction suppose that xeUC (AUB,R).Hence there exists yeAUB,such
that y covers x via R in AUB.Without loss of generality suppose yeA.Since x
€A, y covers x via R in A.This contradicts x e UC(A,R).Thus UC satisfies E.
(i) Let (A,R),(B,R) €[X]x IT and suppose x eTC(A,R)N"TC(B,R).Towards a
contradiction suppose that x¢TC (AuB,R).Hence there exists yeAuUB,such
that (xy)eT(R |AUB). Without loss of generality suppose yeA.Thus
(xy)eT(R| AUB) implies that (x,y)¢ T(R | A).This contradicts x e TC(A,R).

Moulin [1986] has established the following:

Proposition 2:Let S be any solution satisfying SC and E.Then Vv (AR) €[X]x
IT1: UC(A,R) c S(AR).

A solution S on X is said to satisfy Contraction (C:Jn) if v (A,R)e[X]x IT with
#A) 2 4,[xeS(AR)] implies [ there exists a positive integer K > 2 and sets
Ay,...,Ax €[A]MA} such that (i)u{ Ac/k=1,...K} =A,(ii) xen{ S(A«,R)/k=1,.. K}].

Dutta and Laslier [1999] establish that UC satisfies Con.However,TC does
not as the foliowing example reveals:

Example 3:Let X ={x,y,z,w} where x,y,z,w are all distinct. Let,R =A(X)u
{(%.y).(z,%),(w,x),(y.2),(w,y),(z,w)}.Clearly,x e TC(X,R).Let A [X]{X}, with #(A)
2 2. Suppose,ygA.Then,x ¢ TC(A,R).Hence, x eTC(A,R) and #(A) > 2 implies
y €A.Suppose x,y € A~nB where A,B € [X]{X}, A%B, A ¢ B ¢ A.Without loss
of generality suppose A={x,y,z} and B={x,y,w}.Then, xgTC(B,R).Thus,TC
does not satisfy Con.

A solution S on X is said to satisfy:

Tie Splitting (TS) if v (A,R), (B,R) € [X|x[Twith An B =¢:[AxBcIR)
implies S(A L B,R) = S(AR) LU S(B,R)] ;

Strong Type 1 Property (ST1P) if V x, vy, z € X; [(y.X) eP(R), (x,2) eP(R), (z,x)
eR] implies S({x, y, z},R) = {x, y, z}.

SARABEA! LIFRARY

ML AN INSTIVUTE OF MANAGEMEK )
VASIRAPUR AHMEDA BAD- 050



Proposition 3 :- Let R € IT and let S be a solution on X such that S(AR) =
UC(A, R) V¥ A € [X]. Then S satisfies SC, CC, TS, ST1P, E and Con.

Proof : We have aiready seen that UC satisfies E, and SC,CC,TS,ST1P
being easy to verify let us show that S satisfies Con. Let (A,R) € [X] xIT with
# (A) >4 and x € S(AR). Thus, y € A, y # x implies either [(x, y) € R] or
[there exists z, « A with either ((x, z,) € R and (y, z,) ¢ R) or ((x, z,) € P(R)
and (y, z,) ¢ P(R))]. Let A, ={y € A/ (x, y) € R}. Clearly A, # ¢, since x € A,.
Further, since there does not exist y € A,, such that y covers x via R in A,, x

€

S(A.R). ,

Case 1:- A, = A._Since # (A) > 4, there exists ¥ € A\ {x} such that A\ {x, y} =
$. LetA; ={x, Y}and A,=A-{7V} Cleatly Aycc A, A;ccAand AjUA; =
A. Further x € S(A,,R) n S(A2,R).

Case2: A,c c A Inthis case, let A, =A,and fory e A\ Ay, let A, ={x,y, z,}.
Since # (A) > 4, A, c c A whenever y e A\A,. Further, Vy e AA; :x € S(A,

,R). Also, A, U ( U Ay] = A. Hence S satisfies Con.

YEA\A,
Q.E.D.
Lemma 1 : If # (X) <3 and C is a choice function on X which satisfies SC, TS
and ST1P, then S is the uncovered solution.

Proof : Let S and X be as in the statement of the lemma and let R <I1. If

# (X) = 1 or 2, there is nothing to prove since S(A,R) = UC(A, R) V A e [X] by
the definition of a solution. Hence suppose # (X) = 3. If A € [X] and # (A) < 2,
then S(A,R) = UC(A, R). Thus suppose A=X={x,y, zZ} with x zy = z # x. If
there exists a € X : (a,b) eP(R) V b € X, then S(X,R) = {a} = UC(X, R), by SC
of both S and UC. Hence suppose that ¥V a € X, there exists b € X\{a} : (b,a)
eR.

Case 1:I(R) = X. Then by TS of C and UC, S(X,R) = UC(X, R) = X.
Thus without loss of generality suppose, (x, y) eP(R). Hence, by what has
been mentioned before Case 1, (z,x) eR.

Case 2 : (z,x), (v,2) eP(R).

By ST1P, S(X,R) = {x, y, z} = UC(X, R).
Case 3:(z,x) eP(R), (v.z) el(R).

By ST1P, S(X,R) ={x, y, z} = UC(X, R).
Case 4 : (z,x) el(R), (y.2) eP(R).

By ST1P, C(X) = {x, vy, z} = UC(X, R).
Case 5: (z,x) €l(R), (v,2) el(R).
Thus, {z} x {X, y}c I(R).
By TS, S(X,R) = S({z},R) U S({x, y},R)



= {x, z} = UC(X, R).
This proves Lemma 1.
Q.E.D.

A look at the proof of Lemma 1 reveals that we have essentially proved the
following :

Lemma 2 : Let S be a solution on X which satisfies SC, TS and ST1P. Then
Vv (A ,R)e [X] xIT1 with # (A) < 3, S(A,R) = UC(A, R).

The above observation follows by noting that UC(A, R) depends on the
restriction of R to A only.

Note : If in Lemma 1 (: or for that matter in Lemma 2), we repiace SC by CC
and E we do not get the desired result as the following example reveals :

Example 4: Let X = {x, y, z} with x 2 y = 2 # x. Let S(X,R) = {x, y}, where
R=A(X){(y,x),(y.2).(x,2)},and let S=UC otherwise. S satisfies CC, E, TS and
ST1P, the last two properties being satisfied vacuously. However, UC(X, R) =
{y} = S(X,R). Note that S does not satisfy SC, since (y,x),(y,z) eP(R)and yet
S(X,R) = {y}.

In Dutta and Laslier [1999] we find the following property for a solution S on
X:

Type One Property (T1P) : V x, y, z € X; [(y,X) eP(R), (x,z) eP(R), (z,x) €l(R)]
implies S({x, y, z},R) ={x, y, z}..

Clearly T1P is weaker than ST1P. However, if we replace ST1P by T1P in
Lemma 1 ( : or Lemma 2), we do not get the desired result as the following
example reveals.

Example 5: Let X = {x, y, z} with x = y # z # x. Let S(X,R) = {x}, where
R=A(X)U{(x,y).(y,2).(z,x)},and let S=UC otherwise. Clearly S satisfies SC, TS,
E, CC and T1P (: all vacuously). However, S violates ST1P which under the
present situation would require S(X,R) = X. Further S(X,R) # UC(X, R) =

We are now equipped to prove the following theorem:

Theorem 4 : A solution S on X is the uncovered solution if and only if S
satisfies SC, TS, ST1P, E and Con.

Proof : Proposition 3 tells us that an uncovered solution satisfies all the
properties mentioned in the theorem. Hence let S be a solution on X
satisfying SC, TS, ST1P and Con. Let R ¢ 1. By Lemma 2, S(A,R) = UC(A,
R) ¥V (A,R) e [X] xIT with # (A) < 3. Suppose S(A) = UC(A, R) V A e [X] with



#(A)=1,...m, and let B e [X] with #(B) = m+1. Let x € S(B,R). Suppose m+1
> 4, for otherwise there is nothing to prove. Hence by Con there exists a
positive integer K and non-empty proper subsets B,, ..., Bx such that B =

K
UB; and x € F]S(B,,R)‘ Clearly # (B, ) <mwheneveri e {1, ..., K}.
i=1 =1

By our induction hypothesis, S(B, ,R) = UC(B, R) Vi € {1, ..., K}. Thus x ¢
F]UC(BI ,R), and by E, x € UC(B, R). Thus, S(B,R) « UC(B, R). By an
i=1

exactly similar argument with the roles of S an UC interchanged, we get
UC(B, R) < S(B,R). By a standard induction argument, the theorem is
established.

Q.E.D.

Note : The above theorem is not valid without E or Con.

Example 6: Let X = {X, vy, z, w} where all of them are distinct. Let S(X,R) = {x},
S(AR)=A if # (A) = 3, where R=AX){(xy).(y.2).(z,w),(w,x),(x,2),(z,X),
(y,w),(w,y)},and let S=UC otherwise. S satisfies SC, ST1P, TS (vacuously).
Further, let A;= {x, y} and A, = {x, z, w}. x ¢ S(X,R) and x € S(A; R) n
S(Az2,R). Further A;u A; = X, with A; c ¢ X and A, c ¢ X. Thus S satisfies
Con. However, UC(X, R) = X = {x} = S(X,R). Observe that, S does not satisfy
E ,sincey e S({x, y, z},R) n S({y, z, w},R) buty ¢ S(X,R).

Example 7: Let X be as above. Let S(X,R) = {x, y}, S(A,R) = {x} if x € A,
S(AR) = A if x ¢ A where R=A(X)U({x}xX)u({y.2,w}x{y,z,w}),and let S=UC
otherwise. Clearly S satisfies SC, ST1P (:vacuously), TS and E. But S does
not satisfy Con : y € S(X,R). If we take any finite number of non-empty proper
subsets of X whose union is X, atleast one must contain ‘X’ and thus its
choice set cannot contain ‘y’.

Acknowledgement::| would like to thank Prof.Dipak Banerji for useful
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