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Abstract of :
A CONSEQUENCE OF CHERNOFF AND OUTCASTING AND
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March 2000.

The purpose of this paper is to prove by induction the theorem ( in Aizerman and
Malishevski [1981]) that a choice funtion which satisfies Chernoffs axiom and
Outcasting can always by expressed as the union of the solution sets of a finite
number of maximization problems. In this paper we also show that the Slater
solution for abstract games (see Slater [1961]) satisfies the Chernoff,Outcasting
and Expansion axioms.On the other hand the solution due to Copeland [1951] ,
which has subsequently been axiomatically characterized by Henriet [1985],does
not satisfy any of these three properties.
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Iintroduction

The purpose of this paper is to prove by induction the theorem ( in Aizerman and
Malishevski [1981]) that a choice funtion which satisfies Chernoff's axiom and
butcasting can always by expressed as the union of the solution sets of a finite
number of maximization problems. The proof we offer is considerably simpler
than the one in Aizerman and Malishevski [1981]. In Moulin [1985], a discussion
of a similar result is available. Our framework closely resembles the one of
choice theory as enunciated in Moulin [1985). it is well known that a combination
of Chernoffs axiom and Outcasting is equivalent to a property called Path
Independence (See Moulin [1985]).

The idea of a function which associates with each set and a binary relation a
non-empty subset of the given set has a long history whose exact origin is very
difficult to specify and in any case is unknown to the author.In Laslier {1997] can
be found a very exhaustive survey of the related theory when binary relations

are reflexive,complete and anti-symmetric.



In a related paper (Lahiri [2000a])we extend the above set of binary relations to
include those which are not necessarily anti-symmetric.Such binary relations
which are reflexive and complete are referred to in the literature as abstract
games. An ordered pair comprising a non-empty subset of the universal set and
an abstract game is referred to as a subgame.A (game)solution is a function
which associates to all subgames of a given (nonempty) set of games,a
nonempty subset of the set in the subgame.Lucas [1992] has a discussion of
abstract games and related solution concepts, particularly in the context of
cooperative games.Moulin [1986),is really the rigorous starting point of the
axiomatic analysis of game solutions defined on tournaments,i.e.anti-symmetric
abstract games.Much of what is discussed in Laslier [1997) and references
therein carry through into this framework.in Lahiri [2000 b],we obtaian necessary
and sufficient conditions that an abstract game needs to satisfy so that every

subgame has atleast one von Neumann-Morgenstern stable set.

In the final section of this paper we show that the Slater solution for abstract
games (see Slater [1961]) satisfies the Chernoff,Outcasting and Expansion
axioms.On the other hand the solution due to Copeland [1951] ,which has
subsequently been axiomatically characterized by Henriet [1985],does not
satisfy any of these three properties.

The Framework
Let X be a finite, non empty universal set. If A is any non-empty subset of X, let
[A] denote the set of all non-empty subsets of A. A choice function on X is a

function C:[X] — [X] such that C(A) c AV A e [X].

Given A € [X], let |A| denote the cardinality of A. C is said to satisfy:



a) Chernoff Axiom (CA), if VA, B € [X], AcBimplies C(B)nAcC (A);

b) Outcasting (O) , if v A, B ¢ [X], C(B) c A c B implies C(B) = C(A).

¢) Aizerman (A), if V A, B e [X], C(B) c A c B implies C(A) < C(B).

Chernoff Axiom was originally proposed in Chernoff [1954]. Outcasting, which
occurs under its present nomenclature in Aizerman and Aleskerov [1995], has
been attributed to Nash [1950],by Suzumura [1983]. Aizerman has been in the
literature for a while ( for example,see Fishburn [1975]). However, its prominent
role was recognized only recently (Aizerman and Malishevsky [1981]).

Clearly, Outcasting implies Aizerman. It is also quite easy to see that Aizerman
and Chernoff together imply Outcasting. Hence, a choice function satisfies
Aizerman and Chernoff if and only if it satisfies Outcasting and Chernoff.

The issue here is the following theorem in Aizerman and Malishevski [1981] :

Theorem 1: Let C be a choice function on X which satisfies CA and O. Then
there exists n ¢ N and functions fi: X = N, i € {1, ..., n} such that vV A ¢ [X],

CA) = Ulx e ATR(M) 2 fi(y) V y c A}
i=1

I
Before we provide a new proof of this theorem, let us provide two examples to

show that neither CA nor O is alone sufficient for the above theorem.

Example 1: Let X = {x,y,z}, C(X) = {x}, and C(A) = AV A € [X], A cc X. Clearly
C satisfies CA but not O Towards a contradiction suppose there exists n ¢ N

and functions f: X - N, i =1, ..., n such that

CA)= Ufa eA/fi(@)2fi(b) Vb eA} vV AcIX].

i=1



Then C(X) = {x} implies f; (x) > max {fi(y), f(2)} V i.

However, C({x,y}) = {x,y} implies f, (y) > f; (x) for some i, which condtradicts what
we obtained before.

Example 2 : Let X = {x,y,z}, C(X) = X, C({x.y}) = {x}, C({y.z}) = {y}. C ({x.z}) = {z}.
C({a}) = {a} V a € X. Clearly C satisfies O but not CA. Towards a contradiction
suppose there exist n ¢ N and functions f: X -5 N, i = 1, ..., n such that

CA)= UfacAlf(a)>fi(b)vbeA}VAe[X].
i~1

Then C(X) = X implies there exists i € {1, ..., n} such that f (y) > f _(x). However,
then y e C({x,y}), contrary to our definition of C.

Proof of Theorem 1 :

We will prove this theorem by induction on the Cardinality of X.
If [X| =2, then there are two possibilities :

a) C(X) = X : then define f: X — N as follows :
fa)=1vae X

b) C(X) = X : then define f: X - N as follows :

f(a) = 2 ifa e C(X)
=1ifa e X\ C(X).

Clearly C(A)={a e A | f(a) = f(b) V b € A}.



Hence suppose the theorem is true for | X| e {1,...m-1} and suppose |X| =m e
N. Let C(X) = {x, ,..., X}, for some p € N. For each x, ¢ C (X), let Y, = X\ {x }.

Then

V(@;e)AchY;,C(B)mAc:C(A)

V(Bx) AcBcY,, if C(B) c A then C(A) = C(B).
Let C;: [Yi] - [Y] be defined as follows :
CA)=CA)VAe[Y],ie{1, ..,p}

_ By the induction hypothesis Vi € {i, ..., p }, there exists ;e N and g : Y; > N,

j=1,..., mysuch that

CA)= Ula eA/gla) > gl(b)vb e A}, VA e[¥]
j=1

Let g(x) = [max{gl(a) /a < Y;}] +1
Vie{1l..m}ie{1, ..,p}

Now suppose A e [X].
Suppose AcY;Vie{1,..p}

Then C(A) = C(A) = |] {a A 1gi(a) > gi(b)vb e A} Vie{1,.p}
j=1

. C(A) = ij Tf {aecAlgla)=2glb)vb e A}.
i=1j=1

Hence suppose A ¢ Y; for some i € {i,...,p}.



Case1:C(X)cA
Then, by (O), C(A) = C(X).
m ; . .
. C(A) = {x4,....%p} = _ij1‘U1{a e A /gi’(a) > gi‘(b)Vb € A}.
I=1)=
Case2: C(X) z A.
LetA={i/xx e A} D
ThusAcY;VieA

By the induction hypothesis,

C(A) = C{A) = Tf {acAlgla)zglb)vb eA)VieA.
j=1

Hence,

CAc U U facAh 1gi(a)2 gl(b)vb e A}.
i=1j=1

Now suppose i ¢ A. Thus x;e C(X) n A. By CA, x; € C(A)

WU Tf {a e Algla)>gl(b)vb e A} c C(A).
igA j=1

But, C(A) = C(A) = Tf {acAlgl(a)>glib)vb eA)vieA.
j=1

Uiia c A 1gi(a) 2 gl(b)vb e A} c C(A).
1j=1

nCo

i
Hence C(A) = _513‘1{5. e Algl(a)>gl(b)vb e A}, VA e[X].
I=1)=
The theorem was shown to hold for |X| = 2 and has now been shown to hold
for |X| = mifit holds for | X| = m-1. Hence it is true for all finite non-empty X.
Q.E.D.

Remark: In Moulin [1985],there is a property called Expansion. C is said to
satisfy Expansion (E) ,if V A, B € [X], C (B) n C(A) c C (AUB).



The result due to Schwarz [1976],which we refer to in the introduction as the one
available in Moulin [1985] implies the following:

Let C be a choice function on X which satisfies CA ,E and O. Then there exists n
e N and functions fi: X > N, i € {1, ..., n} such that vV A e [X],

MCA) = U{x eATf(X)>fi(y)Vy cAland (2 CA) = {xeA
i=1

1=

xeC({x,y)vV yeA}.Conversely (1) and (2) imply C satisfies CA,E and O.

The following example shows that (1) above may be satisfied even if C does not
satisfy E.

Example 3 : Let X = {x,y,2}, C(X) = {y,z}, C({x.y}) = {x.y}, C({y,z}) = {y.z}, C ({x.z})
= {x,z}, C({a}) = {a} V a € X. Clearly C satisfies CA and O but not E, since
xeC({x,a})V aeX and yet xgC(X). Letf,: X > N, i = 1, 2 be such that f; (y)=3>

fi(x) =2> f; (z)=1 and {, (2)=3> f, (x)=2> f, (y)=1. However,

CA)= G{a eAl/fi(a)>fi(b)VvbeA}VAEe[X]
i=1

Quasi-Transitive Binary Relations

A binary relation Q on X is any non-empty subset of X x X. Given a binary

relation Q on X its asymmetric part denoted P(Q) = {(x, y) € Q/ (y, x) ¢ Q } and

the symmetric part of Q denoted I(Q)= {(x, y) € Q/ (y, x) € Q }.A binary relation Q

on X is said to be

(i) reflexiveif(x, x) e QV xeX;

(ii) cbmplete ifx,y e X, x=zyimplies (x,y) e Qor (y, x) € Q;

(iiiy quasi-transitive if V x, y, z € X, (x, ¥) € P (Q) and (y, 2) € P(Q) implies
(x2) € P(Q); |

(iv) aquasiorder if it is reflexive,complete and quasi-transitive.



We are concerned here with the following theorem, which may be found in
Roberts [1979], Aizerman and Malishevsky [1981],Moulin [1985] (and which has
been generalized in Lahiri [1999] to the case where the universal set X is
possibly infinite) and which now follows as an easy corollary of our Theorem 1:

Theorem 2: Q is a quasi order on X if and only if there exists a positive integer n

and functions f:X -N, i € {1, ..., n} such that Q = { (x, y) € X x Xfi(x) > fi (y) for

someie {1, ..., n}}.

Proof- It is easy to see that if there exists a positive integer n and functions

f:X >N ,ie{1, .., n}suchthat Q= { (x, y) € X x X/fi(x) > f; (y) for some i € {1,
..., N}} then Q is a quasi order.To prove the converse assume that Q is a quasi
order. For A € [X], let C(A) ={xeA/(x,y) eQ V y € X }.Clearly C(A) #¢ whenever A
e [X], since Q is a quasi order. Hence C as defined above is a choice
function.Further it is easy to verify that C satisfies CA and O. Hence,by Theorem
1, there exists a positive integer n and functions f;: X > N fpr i e {1, .., n}, such

that C(A) = U{x e A /f(x) > fi(y)V y e A} VA e [X]. Since (x, y) €Q if
i=1

and only if x e C({x,y}), and since x € C({x,y}) if and only if f(x) > f; (y) for some i

e {1, ..., n},the proof of the theorem is thereby complete.

Q.E.D.

Stronger Consequences

The following lemma permits to strengthen the two theorems obtained above:
Lemma 1 : Let X R (:the set of real numbers) be given. Then, there exists a

positive integer n and one to one functions f:X - N, i € {1, ..., n} such that

{(x,y) e Xx XH(x) 2 f(y)} = { (x, y) € X x Xffi(x) 2 fi(y) for some i {1, ..., n}.

VIRRAM SARABHAY
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Proof :- Let {f(x)/ x eX} = {s,,..., 84 } where q is a positive integer and s, < s, Vj
e(1, ... g-1}.Let ny=|{x eX/ f(x)= 8} | and let n= (n,)Ix...x(ng !
Let g:X 5N be defined as follows:
g(x) = nq, if f(x) = s
gix) = nq+...+n; if f(x) = 5
Clearly, vx,yeX : [ f(x) > f(y) if and only if g(x) > g(y)].
A function = : {1,..., n; +..+nq} > X is called a restricted permutation if V k €
{1,... ny+.+ng}: (1) [n (k) € {x eX/ f(x)= s} if and only (1<k <n )] & (2) [r (k) €
{x eX/ f(x)= s;} if and only (n.; <k <n; and 1 <i <q) ].Let IT denote the set of all
restricted permutations.Since X is finite so is I1. For = e II, define f,: X— {1,..,
Ny +..+nq} as follows: vxeX , f,( x) = k if and only if = (k) =x. It is now easy to
verify that, { (x, y) € X x Xf(x) 2 f(y)} ={ (x, y) € Xx X/g(x) 2 g (¥)} = { (x, ¥) € X x
XA(x) 2 f, (y) for some = € IT}. This proves the lemma.

Q.E.D.

In view of Lemma 1 and Theorems 1 and 2 we have the following:

Theorem 3: Let C be a choice function on X which satisfies CA and O. Then

there exists n € N and one to one functions f,: X - N, i € {1, ..., n} such that

VAe[X), C(A) = Ufx cA/f(x) > fi(y)V y cA}.
i=1

Theorem 4: Q is a quasi order on X if and only if there exists a positive integer n
and one to one functions ;X >N, i € {1, ..., n} such that Q = { (x, y) € X x X/fi(x)

>fi(y) for somei e {1, ..., n}}.
Game Solutions

A binary relation R on X is said to be transitive if V x,y, Z € X, [(X, Y) € R & (y,
2) e Rimplies (x, z) € R] and it is said to be anti-symmetricif [V x, y € X, (X, ¥)



e R&(y, x) € R implies x = y]. Given a binary relation R on X and A € [X], let
R|A = R N(AxA).

Let IT denote the set of all reflexive and complete binary relations. If R € IT, then
R is called an abstract game. An ordered pair (A,R) e [X]xIT is called a
subgame. Given a binary relation R on X and A ¢ [X], let G(AR) ={x € A/ Vy ¢
A :(xy) € R}. Given A e [X], let A (A) denote the diagonal of A i.e. A (A)=
{(x,x)/xe X}.

The following: example shows that given R € IT and A € [X], G(A,R) may be
empty:

Example 4:Let X ={x,y,z} and let R =A (X)u{(x,y),(y.2),(z,x)}.Clearly G(X,R) is
empty.

Let,A be a non-empty subset of IT.

A (game) solution on A is a function S: [X]xA —[X] such that:

(i) V(A,R)e [X]xA:S(A,R) c A ;

(i) V(AR), (A.Q)e [X]xA:R|A=Q| A implies S(A,R)=S(A,Q).

Let S be a solution on A and let R eA.Let S(R):[X]>[X] be defined
thus:VAe[X]:S(R)(A) =S(A,R).Clearly S(R) is a choice function.
If Y(A,R)e [X]xA, G(A,R) is non-empty valued then the associated solution is
called the best solution on (X, A).
Given an abstract game R,it is said to be a transitive abstract game, if R is a
transitive binary relation.Let Q be the set of transitive abstract games.It is
wellknown that ReIl if and only if there exists a function f:X—% such that x,y
X: (x,y)eR if and only if f(x) > f(y).
The Hamming distance on IT denoted H: IT x IT -»R (or simply H) is defined as
follows: H(R,Q) =| R\Q | +| Q\R | .It is easy to see that H is a metric on I1.
Given R eIl let Q(R)={QeQ/ VQ'eQ:H(R,Q)<H(R,Q’)}.

io



Example 5 :Let X ={x,y,z} and let R =A (X)u{ (x,y),(y.2).(z,x)}.Let Q, = (R U
{x2P(zx)} Q2 = (R U {(y)IH(xy)} Qs = (R U {(2y)DM(y.2)}. vie{1,2,3}:
H(R,Q) =2.Towards a contradiction suppose that Q is a transitive game with
H(R,Q)<2.H(R,Q)>O,since R itself is not transitive.Hence suppose that
H(R,Q)=1.Thus either QccR and |R\Q|=1or RccQ and |Q\R|=1.If QccR
then Q cannot be complete and thus Q is not a transitive game.Thus, RccQ and
|QR | =1.But then Q is not transitive.Hence Q(R)={ Q;,Q,, Q3}.

We have thus established the following:

Proposition 1: There exists an abstract game R such that Q(R) contains more

than one element.

The Slater solution SL: [X]xII>[X] is defined as follows:V(AR)e
[X]xIT:SL(A,R)=U{G(A,Q)/QeQ(R)}.

A solution S on a non-empty subset A of I is said to be a Slater selection if for
all R in A there exists Q in Q(R)(:possibly depending on R) such that for all A in
[X]:S(A,R)=G(A,Q).A Slater selection is by its definition a very well-behaved
solution.

A solution S on a non-empty subset A of 1 is said to satisfy:

a) Chernoff Axiom (CA’), if YReA: S(R) satisfies CA;

b) Outcasting (O') , if VReA: S(R) satisfies O;

¢) Expansion (E') , if YReA: S(R) satisfies E.

By‘ Theorem 1, SL satisfies both CA and O'.It may be of some interest to find out

whether SL satisfies E'.However,we can prove the following:

Proposition 2: There exists a solution S on IT different from SL which satisfies
CA and O'.
Proof :-Let X={x,y,z} and Q=XxX.For R eIl \ {Q}let S(A,R)=SL(AR).Let
S(X,Q)={x.y} and let S(A,Q)=A otherwise.Clearly S satisfies CA"and O ,although
S#SL.

Q.E.D.



Proposition 3 :- Let R eI1.Then there does not exist Q,Q’ in Q(R) and x,y,z in X,
such that : (a) {(x,y).(y.2).(x.2)} = Qc A(X) L {(x.Y).(y.2).(zY),(x.2)};

(b) {(z.y).(y.x).(zX)} € Q' = AX) U {(z.y).(y.%).(x,y).(z.X)}.

Proof ;- Suppose towards a contradiction that there exists Q,Q’ in Q(R) and
u,v,win X, such that :(a) {(u,v),(v,w),(u,w)} c Q < A(X) U {(u,v),(v,w),(w,v),{uw)};
(b) {(w.v),(v,u),(w,u)} c Q c AX) U {(w,v),(v,u),(u,v),(w,u)}. Suppose without
loss of generality that X = {x,y,z}.Thus, H(Q,Q’)>4.If R is a transitive abstract
game then clearly the above is not possible since then Q(R) ={R}. Hence
suppose that R is not transitive.By the triangle inequality, H(R,Q)=H(R,Q")>2.
Case 1:(xy)eP(R), (v.2)eP(R) and (z,x) eR.In this case Q(R) is either a
singleton (i.e. if (z,x) el(R)) or as in Example 5, contrary to the above .

Case 2:(x,y) €P(R), (y,2)el(R) and (z,x) €R. In this case Q(R) =(R \ {(y,2)}},
which is also a singleton and the above situation cannot arise.

Case 3: (x,y) €l(R), (y,2)eP(R) and (z,x) <R. In this case Q(R) ={R \ {(x,y)}}.
which is also a singleton and the above situation cannot arise.

Case 4: (x,y) €l(R), (y,2)el(R) and (z,x) eP(R). In this case R U {(x,2)} eQ(R),
and H(R, R U {(x,2)}) =1<2.Hence the above situation cannot arise.

Case 5: (x,y) €l(R), (v,2)el(R) and (z,x) eP(R). In this case R u {(x,z)} eQ(R),
and H(R, R u {(x,2)}) =1<2.Hence the above situation cannot arise.

Case 6: (x,y) €l(R), (y,z)el(R) and (x,z) eP(R). In this case R u {(z,x)} eQ(R),
and H(R, R U {(z,x)}) =1<2.Hence the above situation cannot arise.

This proves the proposition.
Q.E.D.

The following is obtained as an easy consequence of Proposition 2:

Theorem 5 : SL satisfies E .

Proof :Let (A,R)e [X]xI1. By proposition 3, if |A|< 3 then G(A,L{QeQ(R)}) c
U{G(A,Q)/QeQ(R)}. Suppose that if |A|l< K, then GAU{QeQR)}) <
UW{G(A.Q)/QeQ(R)}.Let |A|= K +1, and towards a contradiction suppose that
G(A,u_{Q eQ(R)}) ¢ U{G(A,Q)/QeQ(R)}. Thus there exists y € G(A,LU{QeQ(R)}) \



U(G(A,Q)/QcQ(R)}.If U{G(A,Q)/QeQ(R)} is a singleton then clearly
G(AAQeQ(R)}) = U{G(A,Q)/QeQ(R)}.Hence let x,z € U{G(A,Q)/QeQ(R)} with
x # Z. By the induction hypothesis, y € (U{G(A {x},Q)/QeQ(R)}})~ (U{G(A
¥z},Q)/QeQ(R)}). Let Q; eQ(R) such that y € G(A {x},Q,) and let Q, eQ(R) such
that y e G(A \{2},Q,). Clearly (x,y) € P(Q1),(y.2) € Qy ,(z,y) € P(Q2) and (y.x) €
Q,. This contradicts the conclusion of Proposition 3 Hence, G(A, {QeQ(R)}) c
UG(A,Q)/QeQ(R)}.By a standard induction argument G(A, {QeQ(R)}) <
WG(A,Q)/QeQ(R)} for all A in [X]. This in-conjuction with CA”, which SL satisfies

proves the theorem.
Q.E.D.

GivenR e IT, A € [X] and x e X let s(x,A,R)=|{yeA/(x.y) eP(R)}|-|{yeAlyx) e
PR} ‘

The Copeland solution Co: [X]xIT—[X] is defined as follows:

v (AR) €[X]x IT.Co(A,R)={xcA/VyecA: s(x,A,R) > s(y,AR)}.

Proposition 4:(a)Co does not satisfy CA™ :(b)Co does not satisfy O’;(c)Co does
not satisfy E’;(d)there exists R such that G(A,R) is not a subset of Co(A,R) for
some A in [X].

Proof :-Let X={x,y,z}.(a) Let R =A (X)u{ (x,y),(y.Z),(z,x)}.Now,Co(X,R)=X and ye
Co(X,R)~{x,y}.However yeCo({x,y},R).Thus Co does not satisfy CA".(b) Let R =A
X xy).(yx).(.2).(zx).x2)} Co(X,R)={y}c{xy}. However, Co({xy})=
{x.y}{y}= Co(X,R).Thus Co does not satisfy O; (c)Let R be as in (b). Now x €
Co({x,y},R) n Co({x,z},R). However, Co(X,R)= {y}.Thus Co does not satisfy
E .(d)Let R be as in (b) and (c).xeG(X,R) but Co(X,R)= {y}.Thus G(X,R) is not a

subset of Co(X,R).
Q.E.D.

Thus the Copeland solution apart from not satisfying either CA’or O, fails other

tests that a desirable solution may be required to satisfy.
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