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Abstract

We address (the permutation flowshop scheduling problem with earliness and tardiness
penalties (E/T) and common due date of jobs. Large number of process and discrete parts
industries follow flowshop type of production process. There are very few results reported
for multi-machine E/T scheduling problems. We show that the problem can be sub-divided
into three groups- one, where the due date is such that all jobs are necessarily tardy; the
second, where the due date is such that it is not tight enough to act as a constraint on
scheduling decision; and the third is a group of problems where the due date is in between
the above two. We develop analytical results and heuristics for problems arising in each of
these three classes. Computational results of the heuristics are reported. Most of the
problems in this research are addressed for the first time in the literature. For problems with
existing heuristics, the heuristic solution is found to perform better than the existing results.

Keywords: flowshop, earliness, tardiness, common due date



1. Introduction

In recent years, production managers have started laying emphasis on scheduling products as
close as possible to their due dates. One of the driving reasons is the interest in Just-In-Time
(JIT) manufacturing. The new interest in scheduling is to analyze the impact on the
manufacturing costs of earliness, i.e., producing products before the due dates. One of the
most obvious consequences of earliness is the cost incurred in finished goods inventory.
Other reasons for reducing earliness would be limited storage space for finished goods, and
the limited shelf life of products as in the case of chemicals and pharmaceuticals industries.
Most of the existing scheduling literature has focused only on single performance measures
such as lateness, tardiness, flowtime and number of tardy jobs etc. However, few have

addressed multiple performance measures in the same objective function.

In this research, we consider the scheduling problem of minimizing earliness and
tardiness (E/T) penalties in a flowshop type of production process. The motivation for this
production environment is from our study of multi-stage production planning and scheduling
probfem (Chandra, Mehta and Tirupati, 2004), where the finished goods follow flowshop
type of production process. Flowshop production environment exists in most of the process
and discrete parts manufacturing industries. We consider common due dates of jobs. One of
the reasons for this is to capture situations where large numbers of products are due from a
single customer order with a common shipping date. The other reason is that in an assembly
type of multi-stage production systems, intermediate products are prescribed common due
date to avoid any downstream production delays. The notion ‘of common due date is also
consistent in production environment with high setup times where various customer orders of

a product could be combined in a single production run and shipped on a common date.

The contribution of our research is new results in scheduling theory with earliness
and tardiness penalties in a multi-machine production environment. We develop some
analytical results and new heuristic algorithms to solve flowshop scheduling problems with
E/T penalties. We also test the performance of the proposed heuristics and report their

computational performance.



This paper is organized as follows. In the next section, we review the literature on
scheduling with earliness and tardiness penalties. In section 3, we describe the scheduling
problem addressed in this research. In section 4, we provide some existing results on the
single machine E/T scheduling problem. We use some of these results in treatment of the
flowshop E/T scheduling problem. In the following section, we develop the solution
procedure for our scheduling problem. The resuits of the solution procedure are described in

section 6. Finally, we summarize the paper in the last section.

2. Literature Review

The study of earliness and tardiness penalties is a relatively new area of research in
scheduling theory. The variety in E/T scheduling literature is generated from the assumptions
made about due dates and penalty costs. However, most of the results in E/T scheduling are
for single machine problems only. There is very limited research reported on multi-machine.
production environment with E/T penalties.

The issue which stands out in E/T scheduling research is that how the scheduling
decisions are constrained by the due dates. Considering that due dates are common for all
jobs, problems which have due date late enough so as not to influence the scheduling
decisions are called unrestricted due date problems. If the due date constrains the scheduling
decisions, then it is referred as the restricted due date problem. Kanet (1981) provided the
first set of results that defined unrestricted common due date in scheduling with E/T
penalties. The objective in this paper was to minimize absolute deviation of job completion
times from the due date. Kanet provides an algorithm to determine an optimal solution
solvable in polynomial time. The optimality conditions and alternate optimal solutions of
single machine are also discussed in Sundararaghavan and Ahmed (1984), Hall (1986), and
Bagchi, Chang and Sullivan (1986). The analysis of restricted version of the problem is due
to Bagchi, Chang and Sullivan (1986). NP-completeness of the restricted due date single
machine problem was proved by Hall, Kubiak and Sethi (1991). The single machine E/T
problem has also been investigated with objectives like weighted penalties, non-linear
penalties, completion time variance etc. A comprehensive review of the problem can be

found in Baker and Scudder (1990).



An issue that is beneficial in scheduling problems with earliness penaities is that of
inserted idle time (IIT). Most of the E/T work in scheduling does not consider IIT either by
restricting the solution to be a non-delay schedule or by assuming a common due date for all
jobs. For the n|li{di=d|Z(Ei+T;) (i.e, common due date problem), Cheng and Kahlbacher
(1991) proved that it is unnecessary to consider schedules with inserted idle time except prior
to the first job in the schedule. Kanet and Sridharan (2000) provide a review of T
scheduling. However, they do not consider the review of Baker and Scudder (1990), as these
papers are restricted to non-IIT and non-delay schedules. Both the review papers, Kanet and
Sridharan, and Baker and Scudder observe that the essence of E/T problem lies in its non-
regular performance measure. Imposing the restriction of no inserted idle time diminishes the
objective.

In the multi-machine production environment, Koulamas (1994) has shown NP-
hardness of F| | ZT, problem for m > 3. The above complexity result coupled with the nature
of flowshop has limited the possibility of developing efficient solution algorithms for F| | ZT..
Since F| | ZT;is NP- Hard, F| | Z(Ei+T;) is also NP-Hard. Research on E/T penalties in multi-
machine setting is very scanty. Gowrishankar et al. (2001) considered minimizing the
completion time variance and the sum of squares of completion time deviations from a
common due date. They develop lower bound for both the probiems. Using the lower bound,
they propose branch and bound algorithms for the two prbblcms. For larger problems, they

propose heuristics for both types of problems.

In a' multi-machine production environment, there is no work reported in the literature
that investigates the minimization of absolute deviation of job completion times from the
common due date. In the next section, we describe the scheduling problem addressed in this

research.

3. Scheduling Problem

In a multi-machine production environment, the E/T costs in scheduling are function of the
schedule of jobs on the last machine. Considering that m is the last machine in a flowshop,
tardiness of a job 7;is defined as: T; = max (Ci, — d, 0), where Cy, is the completion time of

job i on machine m and d is the common due date of the job. Earliness of a job £, is defined



as: E; = max (d— Cim, 0). The scheduling problem in this research is to determine a sequence
of all jobs and their schedule with minimum earliness and tardiness costs. The schedule of a
job comprises determination of Sj; the start time of job i on machine j, and C;. The objective

is to minimize Y (E; + T)) Vi=[ton.

We described in section 1 the reason for considering common due date for all jobs. In
order to derive scheduling decisions, we consider permutation sequence of jobs on the
machines. The motivation for this is that usually in process industries, the desired production
quantity of a product is achieved with production runs of small batches of known process
yields. Setup times are usually very high during product changeover, and only minor setup is
incurred when a new batch of same product is produced. A batch has its own identity and a
specific schedule. This essentially means that a product schedule comprises schedule of its
each batch in a production run. Since each machine in a flowshop would have same sequence
of batches of a product, it is appropriate to consider permutation flowshop in the scheduling
problem and treat each batch of a product as a job. Next, we provide a mixed integer-

programming model that addresses the scheduling decisions.
3.1 Scheduling Problem Formulation

Indices and index sets

i = index of jobs

j = index of machines

N = set of jobs, {i|i=1,2,.....,n}

S = set of machines, {j |j=1,2,....,m}
Parameters

d = common due date of jobs

Py = processing time of job i on machine j
Variables

Sij = start time of job / on machine j

Cy = completion time of job i on machine j

=
I

tardiness of job i, T;= max(Cim - d, 0)
earliness of job i, E; = max(d - Cp, 0)
Vik = { 1, if job i is before job & in a sequence, i, ke N

s
[

0, otherwise



The scheduling problem can be formulated as follows:

min Z=ZE.+T.=Z]Cm—d|

subject to:

Cy2Cy-1+py VieN,jeS )
Sy-(Sy+p)+M(1-yx) 20 Vi keN,jeS Q)
Sy-(Sp+pe)+M ya>0 Vi keN,jeS (3)
Cm-d=T.-E VieN 4
G=5+p vieN,jeS )
CU,SU,EI,I" 20 (6)
ya €{0,1}

Constraint 1 is the operation precedence constraint for a job. It ensures that an operation
cannot stait until the previous operation has been completed. Constraints 2 and 3 indicate job
precedence at a machine. They ensure that if a job i is scheduled before job %, then at each
machine job k is started only after job i is completed. Constraint 4 determines E, or 7; of a
job, as the case may be. Constraint 5 indicates that preemption is not allowed for a job and

determines the start times of each job at each machine.

In subsequent sections we describe the solution procedure to solve the scheduling
problem. We begin with discussing some results for a single machine E/T common due date
problem in the next section. These results form the basis of developing solution procedure for

the flowshop E/T common due date problem.

4. Existing Single Machine Results

In this section, we revisit from literature results on single machine scheduling problem of
minimizing absolute deviation of job completion times from their common due date. In the
next section, we extend some of these results to obtain analytical results for the flowshop E/T
scheduling problem. The detailed description of results on single machine E/T scheduling
problem is aiso available in Baker and Scudder (1990).



Let the unrestricted due date for single machine (discussed» in section 2) be dj, and let
SUD(d) be the single machine E/T problem for common due date, d > dj. Let us recall that
the unrestricted due date makes the single machine problem unconstrained, i.e., the due date
is not early enough to act as a constraint on the scheduling decision. Also, the optimal
solution to SUD(d) is available in polynomial time. If p; the processing time of job i and jobs
are arranged such that p; < p; < p;...<p,, the E/T single machine problem is unrestricted, if
due date 4 is such that:
d2dy=pr+pstpst..... + Pnt t Dn2t Pn if n is even.
d2 do=p; +ps+ps+.....t Pns + Pni+ pn ifnisodd.

The optimal sequence for SUD(d) is:

(n, n-2, n4,...,2.,1,..3.... n-3, n-1), if n is even.

(n,n-2 n4,...1.2..4..... n-3, n-1),  if nis odd.

Under these conditions, the optimal solution of SUD(d) has following properties (Baker and

Scudder, 1990):

l. There is no idle time in the schedule. This means that if job j immediately follows job
i in the schedule with completion time, C;= C;+ p;

2. The optimal schedule is V Shaped. Jobs for which C; < dj are sequenced in non-
increasing order of processing time, while jobs for which C; > dj are sequenced in
non-decreasing order of processing times. Raghavachari (1986) establish the V-shape
of an optimal schedule for any common due date.

3. One job completes precisely at the due date, i.e., C; = d for some i.

Let the optimal sequence of SUD(d) be 1,2,...e-1, ¢, e+1,....n. In this sequence, e is
the job that finishes at common due date 4, i.e., C, = d and S, = C, - p,, where C., S, are the
completion time and start time of job e respectively. As there is no idle time in this schedule,
Ce.;= S; and S,.; = C..; — pe-;- The schedule of the optimal sequence is determined in this

manner.

We would like to state here that there could be alternate optimal sequences of SUD(d)
for any d > dj, although the optimal value of SUD(d) remains same. The optimal sequence
shown above is assumed to be at d = dp. It is difficult to obtain all alternate optimal

sequences for d > dp. However, all the alternate optimal sequences can be obtained for



SUD(d) at d = dp. It is to be noted that there will be alternate optimal sequences at d = d,
only if, the processing times of any two jobs are same. The set of all alternate optimal
sequences at d = dj is used later in solving the flowshop E/T scheduling problem. The
procedure to generate ail alternate optimal sequences at d = dy (GAOS) is described in

Appendix 1.

Similarly there are results for single machine E/T problem for restricted due date, i.e.,
d < dy(Hall, Kubiak and Sethi, 1991). The restricted due date is so early that it influences the
scheduling decisions. Thus, the treatment of single machine E/T problem is guided by the
constraint that distinguishes the restricted and unrestricted problems. In the next section, we
derive the constraints that classify the scheduling problem as restricted and unrestricted in a
flowshop setting. Subsequently we outline the solution procedure to solve the flowshop E/T

problem.

S. Solution Procedure for Flowshop E/T Problem

In this section, we discuss the procedure for solving the flowshop E/T scheduling problem

considered in this research. In order to do this, we use the treatment of single machine E/T

problem in literature as the building block to solve the flowshop E/T problem. First, we will
“derive the constraints that make the flowshop problem restricted or unrestricted. Then, we

categorize the flowshop E/T problem into three Sub-Problems and develop solution

procedure for each of the Sub-Problem. We begin with deriving the unrestricted due date.

Notation

S = index of sequences of jobs, s = 1,2,.../

S(m, dy) = set of optimal sequences of SUD(dy) at last machine m with
common due date dp. The set is generated by procedure
described in Appendix 1.

Efs, dy) = set of early and on-time jobs in sequence s with common due
date dy, s § (m, dy).

T(s, dy) = set of tardy jobs in sequence s with common due date dj,
5 €8 (m, dp).

r(s, dg) = schedule of optimal sequence s, consisting of S; and C; Vi,



s€ S (m,dy). Schedule is generated as described in the

procedure above in this section.

Z){r (s, dp)} earliness and tardiness costs of schedule r (s, dp).

F(s) = flowshop schedule of sequence s, s € S(m,dp). F(s) is
determined as follows. Let the sequence be 1,2,......n.
81 =0,
fori=1ton
forj=1tom,
S; = max {Cy1, Cij
Cy=38;+py
Mgy = Makespan of schedule F(s); M) = Cum, § € S (m, dg). This is

the completion time of last job in the sequence.

We define k& as the sequence with minimum makespan, i.e., k=arg mind Mresy. The
seS(m,do)

unrestricted due date d; in permutation flowshop environment is then defined as

di = Mry— ijm. The second term is the sum of tardy jobs in sequence k. This
JeT (k,do)

essentially méans that for a common due date d > dj the flowshop E/T problem is

unconstrained and the due date does not influences the scheduling decisions.

Next, we develop the restricted due date d> in a permutation flowshop setting. Let us
define a = argmin Z py Vi=12,..n, where a is the minimum of sum of processing times
! =

of job at all machines amongst all jobs. We call this sum as the restricted due date, i.e.,

d; = Z pa . By definition, no job can be early with due date d < 4;. The above discussion
g=i

gives rise to another range of due date, that is in between the restricted and unrestricted due
date, and we call it as the intermediate due date. Thus, for flowshop E/T problem with
common due date, we define these Sub-Problems for d > d;(unrestricted due date), do<d< d,
(intermediate due date) and d < d, (restricted due date). On the basis of this classification of
due dates, we have decomposed the flowshop E/T problem into three Sub-Problems as shown

in Figurel.
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Restricted Due Date Problem Intermediate Due Date Problem Unrestricted Due Date Problem
(Sub-Problem 3) {Sub-Problem 2) (Sub-Problem ()

d<d, d,<d <d, d >d,
d; d

Figure 1: Flowshop E/T Problem Decomposition Based on Due Dates

Sub-Problem 1 is the flowshop E/T problem defined over the unrestricted common
due date d > d;. Sub-Problem 2 is flowshop E/T problem defined over the intermediate due
date, d> <d < d; and Sub-Problem 3 is the flowshop E/T problem defined over the restricted
due date d <d>. As discussed earlier, Sub-Problem 3 has a special structure by definition of
d; that all jobs will be necessarily tardy. In the following sub-sections, we describe each of

the Sub-Problems and develop the solution procedures. In sub-section 5.1, which follows

next, we solve Sub-Problem 1.

5.1  Sub-Problem 1: Flowshop E/T Problem for Unrestricted Common Due Date

In this sub-section, we develop the solution procedure for solving the permutation
flowshop E/T problem for unrestricted common due date, d > d;. The problem is to
determine a flowshop schedule with minimum E/T costs. The objective of Sub-Problem 1 is

to minimize E/T penalties, i.e., MinimizeZ=ZE,+11=Z|c,,,_dl, where C,, is the

completion time of job i on the last machine m.

One of the optimal properties of SUD(d) is that there is no idle time in the schedule. If
there is any idle time, it should be removed while maintaining the feasibility of the schedule.
The procedure to remove idle time (RIT) in the schedule F(s) at the last machine is described
in Appendix 2. This procedure will be used in the development of solution procedure for
solving Sub-Problem 1. We now state a theorem to determine optimal solution for Sub-

Problem 1.

11



Theorem 1: For a flowshop E/T problem with common due date d 2 d,, there is an
optimal sequence k with Z{F(k)} = Z,{r(kdp)}.

Proof: By definition of SUD(d)), sequence k is optimal for d 2> d) It follows that for d
2dy, Zi{rk, d)} = Zi{r(kdy). By definition, d; 2 dp. Thus for d 2 d,, sequence k is optimal
for SUD(d) and Z;{r(kd))} = Z;{r(kdy)}. Z{F(k)} is function of completion time of jobs at

machine m, ie., Z{F(k)}= |Cm—d| for d = d; It follows that Z{F(k)}> Z;{r(kd))} as
Jj=1

Zi{r(k,d;)} is optimal for d = d|.

In schedule F(k) at machine m, if Sim = Ci.im ¥ i = n, n-1, n-2,....,2, sequence k has
all optimal properties of SUD(d) atd = d; If Sipy > Ci.jm Vi = n, n-1, n-2,....,2, this idle time
can be removed by the procedure RIT developed in Appendix 2.

It follows that sequence k has now all properties of SUD(d) at d = d;. Thus, Z{F(k)} =
Zi{r(k d)} at d = d). If d, is increased to d; + 4, the optimal schedule at stage m would be C;,
=Cm + Afori =n-1to ] and Cpm = Mpyy + A For d > d,, all properties of SUD(d) hold.
Hence for d 2d;, Z{F(k)} = Z;{r(k, dp)} and sequence £ is optimal.

Q.E.D.

The theorem given above provides the optimal solution for Sub-Problem 1. We would
like to state that tﬁe value of unrestricted due date d4; in Sub-Problem 1 is determined on the
basis of set of all optimal sequences of single machine E/T problem at d = dp. As mentioned
earlier, it is difficult to obtain optimal sequences for single machine E/T problem for d > dj.
In that sense the value of d; could be made tighter. This is becéuse some of the optimal
sequences for d > dj could have lesser makespan than Mgy, and 4; is a function of Mgy In

the next sub section, we describe Sub-Problem 2 and develop its solution procedure.

5.2 Sub-Problem 2: Flowshop E/T Problem for Intermediate Common Due Date
In this sub-section, we provide the heuristic algorithm for solving Sub-Problem 2.

The objective of Sub-Problem 2 is same as that of Sub-Problem 1, ie,

Minimize Z = Z E+T = Z|Cim - d| . The difference between Sub-Problems 1 and 2 is in the

1

value of the common due date d. The common due date value for Sub-Problem 2 is between

12



d> and d), ie., d; <d <d;. Garey et al. (1976) provide proof of NP-completeness of this

problem. Next, we describe the proposed heuristic algorithm to solve Sub-Problem 2.

5.2.1 Heuristic Algorithm (H1) for Sub-Problem 2
The heuristic for solving Sub-Problem 2 is based on deriving a permutation sequence
of jobs at the bottleneck machine. Bottleneck machine is identified as the machine that
requires maximum sum of processing time of all jobs amongst all machines. We solve the
single machine E/T problem at the bottleneck machine. The pre-bottleneck processing times
of a job is captured by considering release dates of job at the bottleneck machine. The release
date of a job in this problem is defined as the earliest time at which the job is available for
processing at the bottleneck machine. The post-bottieneck processing times of a job is
captured by determining the due date of a job at the bottleneck. The resulting problem is
single machine E/T problem with release dates and distinct due dates, n/l/r/3(E+T,). We
solve this single machine problem at the bottleneck machine. To solve this, we use results on
n/1/r/Z(E;+T;) by Chu (1992) and Chu and Portmann (1992). They derive a sequence of jobs
on single machine. In our heuristic, using a priority function (defined in the detailed heuristic
steps), a job is selected and appended to a partial sequence. Schedule of the partial flowshop
sequence is developed sﬁbsequently. Based on this schedule, release dates and due dates of a
" job are updated at each iteration of appending the job. The schedule of the complete
permutation sequence is then modified to improve earliness and tardiness costs. In the end,
local neighborhood search procedure (tabu search) is applied to improve the solution. The
detailed steps of the heuristic for solving Sub-Problem 2 (H1) are provided in Appendix 3.

Next, we describe the solution procedure for solving Sub-Problem 3.

5.3 Sub-Problem 3: Flowshop Tardiness Problem for Common Due Date

We now discuss the Sub-Problem 3 of minimizing earliness and tardiness penalties in
a flowshop for common due date, d < d>. This Sub-Problem has a special structure, by
definition of d>, no job is early. Thus, the problem reduces to one of minimizing tardiness.
Since the due date in our problem is common for all jobs, minimizing tardiness is same as
minimizing flowtime, if all jobs are necessarily tardy. Further, since all jobs are

simultaneously available, the minimizing flowtime problem is same as minimizing
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completion time. Thus our problem is to minimize tardiness or flowtime or completion time
of all jobs. We now derive the analytical solution for Sub-Problem 3. We begin by defining

some new terms.

Notation

q = index of sequences of jobs

S = set of permutation flowshop sequences

dd = common due date of jobs

o1q, d) = permutation flow shop schedule of sequence ¢ and due date d,
g€S.

Z{o(g, d)} = Early/Tardy cost of schedule o1gq, d),

Z{o(q,d)} = i[c,m -d|

k =argmin ZP”

J=1
d:= i )
JE

Proposition 1: In a flowshop E/T problem with common due date d, an optimal
sequence s for d = d is optimal for d < d..

Proof: Suppose the optimal sequence s for d = d> is not optimal for d < d. From
definition of d, in any flowshop sequence ¢, no job is early (E;=0, Vi = 12,..,n) ford =
d>. Hence schedule ofg, d) has regular performance measure (non-decreasing in Cy) for d =
d,. For regular performance measures, the cost of any schedule with inserted idle time ¢ = 4
can be improved by removing 4 as C;, Vi, j are reduced by = A Hence we consider o1g, d)
without inserted idle time and all jobs are scheduled as early as possible. ofq, d2) is derived
as follows:

fori =1lton

forj=1tom
Si1=20
. Sij = max {C,_','.l, Ci-lj}
Cy =8y + py

14



Z{o(g.d)} =Y [Co—d

From definition of Z{o1q, d,)}, it can be seen that:

ford = d>-1, Z{o(q, d)} increases by n,

ford = d»-2, Z{o(q, d)} increases by 2n,

for d = d>-x, Z{o(q, d)} increases by xn.

Thus, for any d < d, Z{o1q, d)} increases by (d2-d)n,

Hence, for d < d, Z{o(q, d)} = Z{o(q, dy)}+ (dr-d)n

Now consider an optimal sequence s for d = d,. Suppose s is not optimal for a due date d’

where d’ < d,. Consider another sequence s/, which is optimal for d’ < d>. Then we have,

Z{o(s, d)}= Z{o(s, d)}+ (drd) n (1)
Zot(sl, d)}= Z{o(s], d))}+ (dr-d) n (2)
If 5 is not optimal for d’, .

Z{otls, d)}> Z{o(s1, d)} 3)

From (1), (2) and (3),

Z{ot(s, d)}+ (dr-d’)n > Z{o(sl, d)}+ (dr-d)n

Thus, Z{ots, d2)}> Z{o(sl, d>)}. This is a contradiction as s is an optimal sequence for d =
d> Hence s is an optimal sequence for d < d>. _

This result has implications that the optimal solution of flowshop tardiness problem
for common due date, d <d, (Sub-Problem 3) remains the same. We develop a heuristic for
solving this problem. Several researchers have investigated the problem of minimizing
tardiness, flowtime, and completion time in permutation flowshops (Nawaz et al., 1983;
Rajendran, 1993; Woo and Yim, 1998). The equivalence of these three objectives for Sub-
Problem 3 was discussed above.

The concept behind the heuristic is the same as used in heuristic algorithm for Sub-
Problem 2. We derive a permutation flowshop sequence at the bottleneck machine. The one
minor difference between the heuristics for Sub-Problems 2 and 3 is that the priority function
for a job is determined differently. This is because in Sub-Problem 3 we are minimizing only
tardiness, whereas E/T costs are minimized in Sub-Problem 2. Secondly, the steps for

improving earliness and tardiness costs of heuristic of Sub-Problem 2 are not required. The

15



steps of the heuristic solution of Sub-Problem 3 (H2) are explained in Appendix 4. In the
next section, we discuss the computational results obtained by using these solution
procedures.

6. Computational Results

As discussed in section 5, we have analytically derived optimal solution for Sub-Problem 1.
In this section, we discuss the computational results on Sub-Problems 2 and 3. We will
describe the lower bound on these Sub-Problems, the experiment design and the

computational performance of the heuristics developed for Sub-Problems 2 and 3.

6.1 Lower Bound on Sub-Problem 2

Oy(i) = sum of 7 shortest processing times on machine j amongst all
Jobs

LBC; = lower bound on the completion time of job i on machine m.

C = completion time of job / on machine m

LBET; = lower bound on earliness and tardiness of job i

In a permutation flowshop, the completion time of the i* job on the last machine m,

i.e., for any sequence, LBC, > max, ., {O,(i) + min, i p—min, p,,} Oy(i) is a lower bound
=1

on the time needed to process i jobs on machine j. Therefore, C,, is not less than the sum of
Oy(i) and the minimum processing times among all jobs on machine 1 through m except
machine j. Since this is true for all machines, the LBC; is a valid lower bound on completion
time of i job on last machine of any sequence. LBC; is provided by Kim (1995). The lower
bound on earliness and tardiness of job i is given by:
LBET; = max{d - LBC,, 0} + max{LBC; —d, 0}. The first sum is the lower bound on earliness,
and the second sum is lower bound on tardiness. It is difficult to determine the lower bound
on earliness. Hence, we consider LBE7;, = max{LBCi — d, 0}. Next, we describe the
experiment design for measuring the computational performance of Sub-Problem 2.
6.2 Experiment Design for Sub-Problem 2

The procedures described in the heuristic algorithm for solving Sub-Problem 2 are
applied to benchmark problems in the literature on flowshop scheduling (Taillard, 1993).

The parameters used in the experiments are shown in the Table 2 below.

16



Number of jobs, n n=3,10, 20, 50, 80, 100

Number of machines, m m=235,10 15, 20

Number of instances, /, of test problems I=350

Processing time of a job on a machine in | Random number uniformly distribution

each instance, p, between 1 and 99.
Number of tabu iterations 50, 60, 70, 80
Tabu tenure Random number between 5 and 10

Table 2: Parameters in Experiment Design of Sub-Problem 2

For small problems, optimal solution is obtained using Branch and Bound algorithm.
The MIP model is developed in GAMS with CPLEX solver. The performance of the
heuristic for small problems is compared with optimal solution. For large problems, the
heuristic solution is compared with the lower bound. The performance measure of the
heuristic is the average percentage deviation of the heuristic solution from the optimal
solution in small problems Pyo, and from the lower bound in large problems Py .

We define,

Zn Objective value of heuristic solution of instance /
Zor. Objective value of optimal solution of instance /
Ziar Lower bound of the instance

For smaller problems (n =3, 10; m =5)

1 Zur — Zoi
Pro=— — (100
e I [Z Zor J

1

For large problems (r > 10)
Pu =%[Z}:%}oo

LBC, is a weak lower bound (Kim, 1995). It is difficult to estimate the lower bound
on earliness. Thus, LBET; is a very weak lower bound on earliness and tardiness. This is
verified for small problems (n = 5, 10, m =5, I = 50). The average percentage deviation of

optimal solution from the lower bound is 326 percent for S- jobs, and 284 percent for 10-
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jobs. However, for (n = 5, 10, m = 5, I = 50), Pnois 0.894 percent and 1.126 percent for 5-
jobs and 10-jobs respectively. The common due date considered for this analysis is d =
(d;+d3)/2. The observations are encouraging for measuring heuristic performance, as the
optimal solution also has large deviation from the lower bound.

The performance of the heuristic for smaller problems is also compared with optimal
solution with a random common due date between d; and d,. This is done to evaluate the
quality of heuristic solution in the entire range of intermediate due date. For (n = 5, 10, m =
3, I'=50), Prois 0.846 percent and 1.247 percent for 5-jobs and 10-jobs respectively.

Since the lower bound of Sub-Problem 2 is very weak, the performance measure of
the heuristic for larger problems is tested for common due date value d;(obtained in Sub-
Problem 1). This is because we have optimal solution of flowshop E/T problem for common
due date d;, obtainable in polynomial time. The results of this comparison are indicated in
Table 3. The results in Table 3 indicate the average percentage deviation of optimal solution
at d = d, (obtained from analytical solution for Sub-Problem 1) from thf; heuristic solution.
The results of Table 3 indicate that the performance of heuristic H1 is good, as the maximum

average percent deviation of the optimal solution from lower bound is found to be 1.744

percent.
Machines
Jobs 5 10 15 20

5 0.000 0.000 0.235 0.000
10 0.084 0.081 0.099 0.276
20 0.074 0.020 0.012 0.023
50 0.323 0.153 0.152 0.146
80 0.865 0.642 0.617 0.644
100 1.744 1.168 1.175 1.129

Table 3:Average Percentage Deviation of Optimal Solution from Heuristic Solution
for Common Due Date, d = d,.

When the number of tabu iterations is increased, the results improve. The average percentage
deviation is found to be reducing. This, however, increases the computational time to solve

the problem. The improvement in results with increase in number of tabu iterations is shown
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in Figure 2 for (n = 50, m = 5, I = 50). As scen in Figure 2, the solution at 100 tabu iterations
is around 70 percent better than the solution at 50 tabu iterations. In the next sub-section, we

discuss the results of Sub-Problem 3.
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Figure 2: Improvement in the solution with Increase in Number of Tabu Iterations

6.3 Results of Sub-Problem 3

In this section, we discuss the results of flowshop E/T problem with restricted
common due date, i.e., d < d». The special structure of Sub-Problem 3 was discussed in
Section 4. Sub-Problem 3 determines a permutation flowshop schedule of all jobs with
minimum tardiness costs. The objective of this problem is to minimize tardiness of jobs.
Because of the common due date and the property that no job is early, the objective of the
problem is same as that of minimizing flowtime and minimizing completion time. As a
result, we can use one of the better-known lower bounds -in literature, of flowshop
completion time problem, as the lower bound of Sub-Problem 3. The best-known lower
bound of flowshop completion time problem is due to Ahmadi and Bagchi (1990). Let the
value of this lower bound be called Z; g45.

There are several results in the literature on flowshop problems with an objective of
minimizing tardiness, flowtime or completion time of jobs. Due to the equivalence of these
objectives in the case of Sub-Problem 3, we compare some of the existing best results to
valuate the performance of our heuristic (H2) for solving Sub-Problem 3. We consider
following three heuristics existing in the literature:

1. NEH Nawaz et al. (1983)
2. RZ Rajendran and Ziegler (1997)
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wY

Woo and Yim (1998)
We determine average percentage deviation from lower bound LBAB on each of the

three heuristics (NEH, RZ, and WY). On the same instances we test our heuristic (H2),

which was described in Section 5. We also propose two more heuristics by applying tabu
search procedure on heuristics RZ and WY. These heuristics are RZT and WYT. Table 4

indicates the performance of existing heuristics and the proposed heuristics for various jobs

RZ NEH | Wy RZT WYT H2 |
Jobs |Machines 5

5 7.212 7.964 7283 6922 6.922] 6922

10 10.999] 13.359] 11.865] 10.246] 10.351] 10.402

20 16.091] 19.516] 17.090] 14.511| 14.975 15.306

50 21267 27.178] 21.792] 19.554] 19.993] 20.705

80 22.547| 30.702] 22.351] 20.633 20.840| 21.881

100, 23.350] 31.531] 23.078] 21.559| 21.588 22.976|
Jobs Machines 10

5 8.385| 9.278] 8.685| 8.247| 8.247] 7.892

10 14.729) 16.082] 15.335] 14.041] 14.091] 13.530

20, 21.389] 23438 22.371] 19.709] 20.264] 19.728

[ 50 29.126] 32.444] 29.842| 27.178] 27.789] 27.770

| 80 30.706] 35.337] 30.918) 28799 29.343 29.630

100 32.242] 37.024] 32.353] 30.160 30.871 30.731
Jobs Machines 15

5 8.397| 10.423  9.001 8.308]  8.331 8.073

10 14698 16.544] 15389 14.015 14.122] 13.438

20 22678 25279 23527 21.411] 21.324] 20.824

50 32.412| 34256 33.124] 30.642] 30.936] 30.314

| 80 35.110| 36.258 35.620| 33.459] 33.988 33.584

100 37.735] 38451 37.808] 35.993] 36.312] 36.362
Jobs Machines 20

5 7.856] 9635 8203 7.764 7.764] 7.432

10 14171 15.398] 14.706] 13.420 13.475 13.086|

|20 22.880] 24.587] 23.714] 21.858] 22.073] 21.653

50 33.289) 35213 34.207] 31.820] 32.346] 31.847

80 37.548] 39.254] 37.957| 35987 36.315 36.524

[ 100 39.399] 40.267] 39.406| 38413 38039 37.883

Table 4: Average Percentage Deviation of Heuristic Solution from Lower Bound (Pu1)

and machine combinations. The parameters of experiment design to measure the heuristic

performance are same as used in the experiment design for Sub-Problem 2.

Table 4 indicates the comparison of three existing heuristics and three new heuristics
developed to solve Sub-Problem 3(i.c., heuristics NEH, RZ, WY, RZT, WYT and H2). As

seen in Table 4, where Z;p; = Z1p4p for each instance I, Py, in all the cases is better for
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proposed heuristics as compared to the existing heuristics In all the heuristics, the average

percentage deviation from lower bound increases with the number of jobs.

7. Conclusions

In this research, we have solved the permutation flowshop scheduling problem with
earliness and tardiness penalties and common due date of jobs. Based on the constraints
irhposed by the due dates, we show that the problem can be decomposed into three Sub-
problems: one, where the due date is uarestricted, the second, where the due date is
restricted, and the third where the due date is in between the restricted and unrestricted due
dates. We derive the constraints that categorize the flowshop problems as restricted and
unrestricted types.

The solution procedure for all three Sub-Problems presents the first results in the
literature that addresses multi-machine problem with E/T penalties. We derive analytical
results and obtain optimal solution for Sub-Problem 1 that has unrestricted due date. We
propose new heuristics for Sub-Problems 2 and 3 with intermediate and restricted due date
respectively. In Sub-Problem 2, for small instances (n = 5, 10; m = 5; [ = 50), the average
percentage deviation of the heuristic solution from the optimal solution is found to be 0.846
percent and 1.247 percent for 5-jobs and 10-jobs respectively. For large instances, the

* heuristic solution is compared with the optimal solution obtained at d = d,. The heuristic
solution for large problems has very less deviation form optimal solution, with the maximum
being 1.744 percent in the case of n = 100, m = 5, I = 50. We discussed that Sub-Problem 3

~ reduces to that of minimizing tardiness only, and the problem is same as minimizing
flowtime or completion time. We compare the performance of the heuristics for solving Sub-
Problem 3 with some of the existing results on flowshop tardiness, flowtime, and completion
time problems. The proposed heuristics are found to perform better than the existing
heuristics.

We have applied these results to schedule finished goods in a large multi-stage
production planning and scheduling problem (Chandra, Mehta and Tirupati, 2004). This
“Ppaper also describes the application of the overall production planning and scheduling

problem to a pharmaceuticals company in India with considerable cost savings.
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Appendix 1: Procedure for Generating Alternate Optimal Sequences at d =d) (GAOS)
The alternate optimal sequences at d =d; are generated as follows. If the optimal

sequence obtained above is index from ! 1o n,

Step 1: j=1

Step 2: x=j+1

Step 3.1: IS Pam = Djm

Yes—> Create new sequence by interchanging j and x

x=x+1
isx=n+l
Yes> J =Jj + I and goto step 3.2
No-> repeat step 3.1

No=2> x = x + I and repeat step 3.1
Step 3.2 ifj=n

STOP else goto step 2

Appendix 2: Procedure for removing idle time at last machine (RIT)

Let the sequence s be 1,2,...n

Step 1: i=n
Step 2: 1= Sm-Ciim
Step 3: Ift >0
Yes=> forx =1toi-/
Sxm = Sxm + 1
Cim = Sym + Pam
Ifi = 1, STOP else
i =i—1I and goto Step 2
No~> If i = 1, STOP else

i =i-1 and goto Step 2
In step 1, the last job in the sequence is selected. Step 2 checks if there is an idle time
between the jobs. Step 3 removes the idle time between the jobs while maintaining the

feasibility of the schedule. This procedure would result in following schedule at machine m.
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Com = MF(S)

Srm = Crom = Prm
Fori=n-1to ]
Cim = Si+1m

Sim = Cim — Pim

Appendix 3: Heuristic Algorithm for Solving Sub-Problem 2(H1)

Notation

k = bottleneck machine

" = earliest time at which job i is available for processing at
machine %

di = due date of job i at bottleneck machine k£

o = a permutation flow shop sequence of » jobs

V4 = set of partial sequence of jobs

s(o, i) = schedule of sequence o consisting of S; and C; for Viea,j
=L2,...m

Z{s(oc 1)} = cost of permutation flowshop schedule

2fs(a ) =Y | Cm-dl
i=l

The problem is to determine o and s(c; i) so as to minimize Z{s(o; i) }.

Heuristic (H1) for Solving Sub-Problem 2

Step 1 Determining bottleneck machine &
k = arg max s
g ) Z; Py

Step 2 Determining permutation flowshop sequence (o) and schedule
s(o, i) for o

Step 2.1 Determining release date of job 7 at bottleneck machine &

k-1
r,k=2p:x Vi=1,2,...n

x=|

Determining due date of job i at bottleneck machine £
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Step 3

Step 2.2

Step 2.3

Step 2.4

Step 2.5

Step 2.6

Step 2.7

drkzd"’ Zp;x Vi=l,2,...n

x=k+1
Determining priority «;of jobs

u; = r if rig + puc 2 diy
u=dg—pu  fric+ pa<da
Appending a job to 7 (partial sequence)
Select job with minimum u; and add to =
Schedule s(7 i) as follows:

forito |n,ie 7,

forj=1tom
Si=0
Sy =max {Cy.;, Cr.p;}
Cy=Sy + py

Updatingry Vign

Add ito mand call it ;

Determine s(7, i) accordingto step2.3 Vien, j=1tom

rik = Cn r-1(completion time of i at (k-1) after being appended
to 7)

This is based on the logic that we schedule the partial sequence
m; according to step 2.4 and determine the time when job i is
available for processing at bottleneck machine.

Updatingdy Vi gx

max x|
dy=max {dy, Cp+1, {Cu- D pv}}

k+2<xsm furett
This is based on the logic that a job ts not required till the time
the partial sequence x is already scheduled on post- bottleneck
stages.

Repeat steps 2.1 to 2.6 for i g rtill |1'I‘ = n, i.e. a complete

sequence ois obtained.

Adjusting the schedule at j = m (last machine)
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Shifting all early jobs towards right (increasing C, ) before ‘d”
Define e: set of early jobs, e = {i | Cm < d}
o: set of ontime job: o = {i | Com = d}
t: set of tardy jobs: £ = {i | Cim > d}
I ={i| Sim<dand Ciy > d}
fori=171ton,
f(Cim < Si41mand Ci < d),
get z = min{S, /- Cimy d — Ci}
forx=1t1i
Sym = Sym + 2
Comn=Cum +z
With this all jobs that complete before due date d are shifted towards d so that
earliness costs are reduced. This procedure maintains the feasibility of schedule.
Step 4 Improving E/T costs further
if le] 2 Jo| + |1}
check if jo| = 7
Yes — fori = Iton,
Sim = Sim + pxm, X €0
Cm=Cim+ PpmXx €0
No—>z=d-Smx €l
fori=1ton
Sim = Sim + 2
Cim=Cim+z
Step 4.1 Bring back (reduce C;,) tardy jobs (if they can be) that got shifted
towards right after step 4
fori=1tof, i€y,
if Cim < Sjzimand Sicim > Cimes
Yes = Sicim = Si+tm — min {Six1m = Cim, Sis1m = Cym-1}
Cittm = Sisim + DitIm

No = Sitim = Sicim
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Ci+1m = Cit+im

n

Step 5 Determine Z{s(c, 1)} = Z | Cim - d

i=)

Step 6 Improving the objective value by performing neighbor hood search scheme
(tabu search) to get a better sequence and schedule. The tabu search procedure
is described below.

Tabu Search Procedure (TS)
Z, = objective function of the current best solution
O = current best sequence
Z, = objective function of the best ever solution
O, = best ever sequence
p = number of pairs, p = n(n-1)/2
t = number of tabu iterations
Zy = objective function of the candidate sequence
formed by interchanging j* pair, j = 1,2,..p
Oy = sequence of candidate sequence x formed by
interchanging j* pair,j = 1,2,...p.
a; = Ze - Zy
Is; = tabu structure of the j* pair, 0 <'ts; <'tabu tenure
Step 6.1 fori=1tot
Step 6.1.1 forj=1top

Step 6.2 j=1

Generate p candidate sequences o by interchanging j™ pair
from the current best sequence o, x = 1,2,...p

Schedule the sequence x from step 2.4, step 3 and step 4.
Determine Z,, from step 5

Determine a; = Z, - Zy;

Sort d;’s in non-increasing order and re-index djfrom / to n
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Step 6.3

Case 1 Candidate solution is worse than current solution and the pair is tabu as well
a;<0and 15;> 0
Jj =j+1 and repeat step 6.3

Case 2: Candidate solution is better than current solution and the pair is not tabu
ifa;> 0 and ts;= 0
step 6.3.1 Ze=1Zy
O. = Gy

ts;= tabu tenure

forj=1I1top
ifts;> 0
ts; = ts,—1
if Z, <Z,
Z.=27,
%%,
Case 3: Candidate solution is worse thg'" the current sbib?imm%gg_is_t@
if ¢; <0 and fs; = 0 goto step 6.5.1 0
Case 4: Candidate solution is better than the current solution; ”Bé;t’te;ﬁhan best ever

solution but the pair is tabu (Aspiration) ot
if @;> 0 and 1s;> 0 and Z, > 4;
goto step 6.3.1 -
Step 6.4 Ifi =¢, STOP, else i =i+ I and goto Step 6.1.1.

Appendix 4: Heuristic Algorithm (H2) for Sub-Problem 3
Steps 1 to steps 2.1 are same as in Heuristic H1 for solving Sub-Problem 2.
Step 2.2 Determining priority u; of jobs
uj = max(ri, t) + max{max(rik, t) + pik, dik/
where t = current time = Cg
Step 2.3 to step 2.7 are same as in Heuristic H1
Steps 3 and steps 4 are not required as no job is early.

Steps 5 and steps 6 are same as in Heuristic H1
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