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Abstract

Since the publication of Arrow’s [1951] impossibility theorem, much effort has been
spent on the analysis and rationalizability of committee decision making. The traditional
approach to this problem considers rules which aggregate individual binary relations to
a binary relation for society. In this survey we call such rules, which are assumed to be
defined on profiles of individual rankings, by the name social decision functions.

in Aleskerov (1999) can be found a property that social decision functions are required
to satisfy. This property is called locality.In Arrow’s original work it was called
independence of irrelevant aiternatives.Social Decision functions which satisfy locality
are called local social decision functions.Aleskerov (1999) not only contains a state of
the art survey of local social decision functions,but severat original contributions to the
literature as well. However, Aleskerov does not restrict the domain of social decision
functions to be profiles of individual rankings.In different characterization

theorems, different domains are considered.All these domains contain the set of profiles
of individual rankings as a subset and usually as a strict subset. It is well known in the
theory of axiomatic choice theory that a characterization valid on a given domain may
fail to hold on a subdomain.Our purpose in this survey is to show that such is not the
case with local social decision functions.

It is necessary to justify the domain we have chosen for our survey. Social sciences in
general and economic theory in particular, has never confronted any major problem
while representing individual preferences by a strict ranking.lt is only the issue
concerning social preferences by a strict ranking which has been at the centre of the
debate concerning aggregation of preferences in social choice theory.Thus the domain
comprising profiles of individual rankings is consistent with the demands of economic
theory and yet highlights the problems that arise very naturally in social aggregation
procedures.
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1. Introduction :- Since the publication of Arrow’s [1951] impossibility theorem,
much effort has been spent on the analysis and rationalizability of committee
decision making. The traditional approach to this problem considers rules
which aggregate individual binary relations to a binary relation for society. In
this survey we call such rules, which are assumed to be defined on profiles of
individual rankings, by the name social decision functions.

In Aleskerov (1999) can be found a property that social decision functions
are required to satisfy.This property is called locality.In Arrow’s original work
it was called independence of irrelevant alternatives.Social Decision
functions which satisfy locality are called local social decision
functions.Aleskerov (1999) not only contains a state of the art survey of local
social decision functions,but several original contributions to the literature as
well.However,Aleskerov does not restrict the domain of sociai decision
functions to be profiles of individual rankings.In different characterization
theorems, different domains are considered.All these domains contain the set
of profiles of individual rankings as a subset and usually as a strict subset. It
is well known in the theory of axiomatic choice theory that a characterization
valid on a given domain may fail to hold on a subdomain.Our purpose in this
survey is to show that such is not the case with local social decision
functions.

It is necessary to justify the domain we have chosen for our survey. Social
sciences in general and economic theory in particular, has never confronted
any major problem while representing individual preferences by a strict
ranking.lt is only the issue concerning social preferences by a strict ranking
which has been at the centre of the debate concerning aggregation of
preferences in social choice theory.Thus the domain comprising profiles of
individual rankings is consistent with the demands of economic theory and
yet highlights the problems that arise very naturally in social aggregation
procedures.

2. The Model :- Let X be a non-empty finite set, containing at least three distinct
elements. Let A(X)={(x,x)/xeX}. A(X) is called the diagonal of X.
A binary relation R on X is said to be reflexive if A(X)cR and complete if
XW(X)cRu R, where R = {(x,y)/(y.x) eR} is the inverse of R. A binary
relation R on X is said to be an abstract game if R is reflexive and complete.



Let B(X) denote the set of abstract games. An abstract game R is said to be a
tournament if v x,yeX with x2y, Rn{(x,y).(y,X)} is a singleton.
A binary relation R on X is said to be transitive if vV x,y,zeX : [{(x,y).(y.2)}cR]
implies [(x,z)eR]. Let Tr.(X) = {ReB(X)/R is transitive}.
A tournament R on X is said to be a linear order if ReTr.(X). Let L(X) denote
the set of linear orders on X.
Given a binary relation R on X, its asymmetric part P(R)={(x,y)eR/(y,x)¢R}
and its symmetric part I(R)={(x,y)eR/(y,x)eR}. A binary relation R on X is said
to be quasi-transitive if P(R) is transitive. Let QT(X)={ReB(X)/R is quasi-
transitive}.
Given a binary relation R on X, let T(R)={(x,y)eXxX / there does not exist a
positive integer ‘s’ and elements x;,...,xs in X such that x=x,, y=x; and
(x:.x+1)eP(R)Vief{1,...,s-1}}. A binary relation R on X is said to be acyclic if
T(P(R))NA(X)=¢. Let A(X) denote the set {ReB(X)/R is acyclic}.
A binary relation R in B(X) is said to be weakly sourced if there exists xeX
such that for no weX~{x} is it the the case that (w,x)eT(R)~T(I(R)). A binary
relation R in B(X) is said to be single sourced if there exists xeX such that :
(i) for no yeX~{x} is it the case that (y,x)e T(R)~T(IR)); (ii) YyeX~{x} : that
(xy)eT(P(R)). Let WS(X) denote the set of all weakly sourced relations on X
and SS(X) denote the set of all single sourced binary relations on X. Clearly,
SS(X)cWS(X).
A binary relation R in B(X) is said to be an interval order if ¥ x,y,z,veX:
[{(x.,y),(z,v)}cP(R)] implies [{(x,v),(z,y)}"P(R)=$]. Let I0(X) denote the set of
interval orders on X.
Then L(X) cTr.(X)clO(X)cQT(X)c A(X).
Let n be a positive integer greater than or equal to two and let N={1,2,....n}. N
denotes the agent set i.e. the set of agents. Let LN(X) denote the set of all
functions from N to L(X) and if feL"(X), then for ieN,f(i) (denoted f)
represents the preferences of agent i over the alternatives in X. A social
decision function is a function F:L"(X)—»B(X), such that v
feLN(X) N cF(fc Uf . Hence if (x.y)e Nf; , then since feL"(X), we have

ieN ieN ieN

(y.x)e¢ Uf. Thus (x,y)eP(F(f)). This property of a social decision function is
ieN

called unanimity. Given a non-empty subset Y E)f X and ReB(X), let R/Y
=RN(YxY). Given fe LN(X), let /Y be the function on N such that v ieN :

(FY)(i)=t/Y.

A social decision function F:LN(X)~B(X) is said to be local (: or satisfy
locality) if v x,y,eX and f, geLN(X) : [f/{x,y}=g/{x,y}] implies
[F(D/Ax.y}=F (g)/{x,y}].

Given FeL"(X) and x,yeX with xzy, let V(x,y:)={ie N/(x,y)ef}. Clearly
V(y x:H=N~V(x,y;f) ¥ x,yeX with xzy and feL™(X). Given a local social
decision function (LSDF) F, and (x,y)e(XxX)~A(X), let

o



W(x,y;F)={w/w=V(x,y:f)cL"(X)] implies [(x,y)eP(F(f)]}. Clearly W(x,y;F)=¢,
since NeW(x,y;F).

A LSDF, F is said to be monotonic if V(x,y) e (XxX)~A(X);[ W eW(x,y;F) and
w cw'] implies w'eW(x,y;F). It is said to be neutral if there exists a set W(F)
such that v (x,y) e XOX)~A(X):W(x,y;F)=W(F).

. Characterization of monotonic and neutral LSDF'’s :-

Theorem 1 :- Let F be a monotonic and neutral LSDF. Then there exists a
non-empty set W (F) of non-empty subsets of N such that erLN(X) and
xyeXxy)eFMorye U [nP(fi)].

weW(F)Liew

Proof :- Let W (F) be a non-empty set of non-empty subsets of N such that
vfeL™(X) and x,yeX;(xy)eF(f)= (y.x)e U [ ﬂP(fi)]-
weW(F) Liew
Let W eW(x,y;F) and letw c w’. Let feLN(X); w’ =V(x.y,f).
LetgeLN(X): W=V(x,y;g). Since weW(x,y:F), (x,y)eP(F(g)). Thus (y.x)&F(q).
Hence (x,y)e U [ﬂP(gi)J. Hence there exists we W(F):(x,y) € NP(g;) .
weW(F)Liew ] iew
Thus wew < w’. Thus(xy) e NP(f). Hence (x,y)eP(F(f)). Thusw’' eW(x,y;F).
iew

Hence F is monotonic. Let w eW(x,y;F) and let (z,v)e(XxX)~A(X). Hence

there exists (by a similar argument as above) we W(F):w c W.

Let feL™(X). Then (zw) e NP(f) implies (z,v) eP(F(f)). W e W(z v;F). Now
iew

suppose F is a LSDF which is monotonic and neutral. Hence there exists a
set W(F) such that Y(x,y) e(XxX)~A(X):W(F)=W(x,y;F). Let W(F)=
{weW(F):[w’ e W(F),w’ c w]implies w’ = w}.

Let feL(X) and (x,y)e U { NP(f; )]. Hence there exists we W(F) :

weW(F)Liew
(x,y)e‘ﬂP(fi). ~.weV(x,y;f). By monotonicity, V(x,y;f)eW(F). Thus
(x,y)eP(F(f)). Hence, LV%(F) [_ﬂ P(f, )} c P(F(f))..
Now, let (x,y)eP(F(f)). Since F is an LSDF, V(x,y;f)eW(x,y;F4:29 PM)=W(F).
Thus there existsw € W(F):w < =V(x,y;f). Hence (x,y)e NP(f)..

Thus (x,y)e U {ﬂp(f.)]-

weW(F)|Liew

\\N



SPEM = U [npm]

weW(F)lLiew
This proves the theorem.

Q.E.D.

Let F be a LSDF such that vfeL¥(X) and x,yeX:(x,y)eF(f) if and only if (y,x)¢
U [ﬂP(fi )}, for some non-empty collection W(F) of non-empty subsets of

weW(F)Liew

N. If W(F)is a singleton, then F is callled an oligarchy. If there exists a

positive integer 'k’ such that W(F)={wcN/ cardinality of w=k}, the F is called

a k-votes rule. On the other hand if F is an oligarchy for which W(F)={w}

where w is a singleton, then F is called a dictatorial rule.

Let F be an LSDF such that V¥ feL™(X) and x,yeX:(x,y)eF(f) if and only if

yxe U [ﬂP(fi)} for some non-empty collection of non-empty subsets of
weW(F)|iew

N.If Nw =¢, then fis called a veto-rule. This is because, unless every
weW(F)

agent in w prefers x to y, it is not posssible for the social decision function to

exhibit a preference for x over y. A veto rule F is clled a collegium rule if

whenever 11:N—N is a one-to-one mapping with n[ N wJ = w, then
weW(F weW(F)

vf,geL™N(X) with f=g,; VieN, F(f)=F(qg).

. Acyclic LSDF’s:

Lemma 1 :- Let F be an LSDF. Then range (F) cA(X) if and only if given any
positive integer s, less than or equal to m (i.e. the cardinality of X) and
X1,...,.Xs€X:[wieW(x;,x.;F) for ie{1,...,s-1} and w;e W(x,,x4;F)] implies

[eitherfgjwi orLst-, cc N].
i=1 i=1

Proof :- Let F be an LSDF and suppose range (F) cA(X). Let feL"(X) and
X1,...,Xs€ X such that (x;,x.1)eP(F(f)) for i{1,...,s-1} and (x;,x1)eP(F(f))). Thus
V(% X+1;) eW(X;, X 1;) for ie{1,...,.5-1} and V(x,X1;H) eW(Xe, X1 f). If

s-1
[ N V(x;, Xi,4 ;f)} NV(x,x;;f) eP(f)) then there exists jeN:(x,x.1)eP(f)Vie{l,...,s-1}
i=1
and (xs,x4) eP(f). This contradicts fieL(X). Hence,
-1 -1
[an(x,,xM;f)} NV (X, Xq;f)=¢. If [sn V(x,, xm;f)} UV(Xs,x1;flcceN, there exists
i=1 i=1



jeN:(%1,X)eP(f)Vief{1,...,s-1} and (x1,%) eP(f}). This contradicts feL(X). Hence
if wieW(x;, X 1;f) for ie{1,...,s-1} amd w,ew(xs,x¢;f) implies eitherfs)wi = or
i=1

iji ccN, then range(F)cA(X).
i=1

Now suppose range (F)cA(X) and let xy,...,xse X with w,e W(x;,X«1;F) for

ie{1,...,s-1} and w;eW(x,x4;F). Towards a contradiction suppose rs\wi i=¢
i=1

and Jw, =N. Then there exists feL"(X):Wi=V(%,X.1:f) for ic{1,...s-1} and
i1

Ws=V(Xs,X1;f). Hence (x;,x..1)eP(F(f)) for ie{1,...,s-1} and (x,,x1) e P(F(f)),
contradicting range (F)cA(X).
This proves the lemma.

Q.E.D.

Let F be an LSDF satisfying neutrality. Then, clearly there exists a non-empty
collection W(F) of non-empty subsets of N such that vx,yeX with
xz2Y;W(x,y;F)=W(F). This observation was used in the proof of Theorem 1.
Given an LSDF F satisfying neutrality, the Nakamura number of F, v(F) is a
natural number, such that W(F) contains at least one collection of v(F) sets
whose intersection is empty and intersection of fewer sets is always non-
empty. If Nw =9, then v(F) is set equal to +co.

wew(F)

Theorem 2:- Let F be an LSDF satisfying monotonicity and neutrality. Then
range(F)cA(X) if and only if v(F)>m, where m is equal to the cardinality of X.

Proof :- As in Lemma 1, there exists a non-empty collection W (F) of non-
empty subsets of N such that vfeL™(X) and x,yeX:

(x.y)eF(f)ifandonly if (yx) ¢ U [ﬂP(fi)]. Further, W(F) =
weW(F)Liew .

{weW(F):[w' eW(F),w' c w|implies w’ = wj}.

Suppose range (F)cA(X) and towards a contradiction suppose v(F)<m.

Hence there exists wy,...,w,neW(F) such thatfn]w-, =¢ and Nw, 2 whenever J
i=1 IG]

is a non-empty proper subset of {1,...,v(F)}. Let x,...,x,neX and let fe LN(X):

V(x;,xi+1;f)=w; for ie{1,...,v(F)-1}

v(F)-1
V(Xyry, X1, =Wy [N ~ { U w-,H.
1=1
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By monotonicity, V(x.@.X1:f)eW(F). Thus, (x,%+1)eP(F(f)) Vie{1,...,v(F)-1} and
(Xwe,X1) eP(F(f)) contradicting range (F)cA(X). Thus, v(F)>m.
Conversely suppose, v(F)>m. Then if s is any positive interger less than or
equal to m and wy,...,wse W(F), then ﬁw-, #¢. By Lemma 1, range(F)cA(X).

i=1

This proves the theorem.
Q.E.D.

Theorem 3 :- Let F be a veto rule. Then range (F)cA(X).

Proof :- If F is veto rule, then w =¢. Hence v(F)=+=>m.
weW(F)

By Theorem 2, range(F)cA(X).
Q.E.D.

Theorem 4 :- Letm>n where m is the cardinality of X . Let F be an LSDF
satisfying monotonicity and neutrality. Then range(F)cA(X) implies F is a
veto rule.

Proof :- Suppose F is as above except that it is not a veto rule. Hence

Nw =¢. Given icN, let W, ={we W (F)/igw}. For each icN, choose wicW,.
weW(F)

Then Nw; =¢. Hence, v(F)<n<m. By Theorem 2, range(F)zA(X) and a
ieN

contradiction.This proves the theorem.
Q.E.D.

Let F be an LSDF. It is said to satisfy anonymity if Vi,jeN and f,geL"(X) if
[f=gnvheN~{i j}.f=g and f=g}, then [F(f)=F(g)].

Theorem S:- Let F be an LSDF satisfying neutrality, monotonicity and
Anonymity. Then F is a k-votes rule. '

Proof :- By Theorem 1,

PF(f)= U [nP(f-,)} vieL"(X), where W(F) is a non-empty collection of
weW(F)|iew

non-empty subsets of N. By anonymity, we W(F), ¢=w'cN and cardinality of
w = cardinality of w', implies w'e W(F). This proves the theorem.

Q.E.D.



Theorem 6:- Let F be a k-votes rule. Then [range(F)cA(X)]<—>m<[n n k]

n

where[n k] is the smallest integer greater than or equal to [L]

n-k

Proof :- Let F be a k-votes rule and let v(F) be its Nakamura number. Hence
there exists a collection of v(F) sets in W(F) each of size ‘k’ whose
intersection is empty. The union of the complement of each such set is thus
N. The complement of each set in W(F) is of size (n-k). Hence v(F), (n-k)>n.

If [ n k}m, then v(F)>m. By Theorem 2, range(F)cA(X).

Now suppose F is a k-votes rule with range(F)cA(X). Thus v(F)>m.
Let {S;,...,S;} ne a partition of N:

(i) S=n-ki for i=1,...,p-1

(ii) Sp<n-k.

~.(p-1)(n-k)+cardinality of S,=n

~.p(n-K)=n>(p-1)n-k
n

Lp2|——| 2 p-1

]2

o]

Now S?eW(F) Vie{1,...p} and (1S? = ¢
i1

~v(F)<p= [ﬁd

e ]

Q.E.D.

Let B(X) = B(X)nA(X). B%(X) is the set of tournaments on X.

Proposition 1:- Suppose ‘n’ is odd and F is an LSDF. Then F satisfies
monotonicity, neutrality, anonymity and range(F)cB°(X) if and if F is an

[n_;l} votes rule. Such an F is called the majority SDF.



Proof - If F is the majority SDF, then F clearly satisfies the desired
properties.Hence suppose F is an LSDF satisfying monotonicity, neutrality,
anonymity and range(F)cB°%(X). By theorem 5, there exists a positive integer
‘K’ such that vfeLY(X):

PE®)= U NP
where W(F) = {w c N/ cardinality of w = k}.
Suppose k< [nTH} Thus 2k<n.

Letw and w’ be two disjoints sets in W(F) and let x,yeX with xzy. Let
feLNX):V(x,y;H=w. Thus w’ cV(y,x;f). Since we W(F), (x,y)eP(F(). If
w’' e W(F)and w' cV(y,x;f), by monotonicity, (y,x)eP(F(f)), which contradicts

(x,y)eP(F(f)). Now Suppose k> [nT-H] Thus 2k>n+1>n.

Let feL"(X) and xyeX with xzy and let, V(xy:f) = {1.2......~—~)
n+3
V(y.xf) = { ‘; ).

Neither V(x,y;f) nor V(y,x;f) belongs to W(F). Hence (x,y)eP(F(f)) and
(y,x)eP(F(f)). Thus (x,y)el(F(f)), contradicting range(F)cB°(X). Hence
n+1
k=——.
2

Q.E.D.

. Quasitransitive SDF's

Theorem 7 :- Let F be a k-votes rule. Then range(F)cQT(X) if and only if k=n.

Proof - If k=n, then P(F(f))= NP(f ) vfeLN(X). Hence range(F)cQT(X). Now
ieN

suppose range(F)cQT(X) and towards a contradiction suppose k<n.

Hence W(F) has atleast two non-empty subsets of N. Let w, w’ € W(F) with
wzw’'. Let W=w'U(N~w). Clearly W eW(F). W(F) = {{i}ieN}. Let fcLN(X)
with V(x,y;f) = {1} for some x,yeX. Since {1}e W(F), (x.y)eP(F(f). Since
N~{1}eW(F), (y,x)eP(F(f)) and a contradiction.

Let x,y,z X with x£y=z#x and let feL"(X) with
(i) Vixyf=w
(i) Vy.zHH=w



(iii) V(x,z;f) = wnw’'.

This construction is possible since whwW=wnw’. Clearly whw’ ¢ W(F).
Hence {(x,y).(y.Z)}<P(F(f)), but (x,z)eP(F(f)). Thus range(F)zQT(X) and a
contradiction. This proves the theorem.

Q.E.D.

Lemma 2 :- Let F be a LSDF with [range(F)cQT(X)]. Then,
[Vx,y,zeX:w;eW(x,y;F), w.eW(y,z;F) and wynw,cwcW,UW,] implies
WeW(x,z;F)].

Proof :- Let w;,w, and w be as above and let feL"(X) :

(i) V(x,y;F)=w1

(it) V(y,z;F)=w2

(i)V(x,z;F)=w

This is possible since winw.cwcw,uw,. Thus (X,y)eP(F(H),
(y,2)eP(F(f)).Since range(F)cQT(X), (x,2)eP(F(f). thus weW(x,z;F).

Lemma 3:- Let F be a LSDF with [range(F)cQT(X)]. Then F is neutral.

Proof :- Let weW(x,y;F) and w’ eW(y,z;F). By Lemma 2, since

wNnw’' cwewuw’, we get weW(x,z:F). Let veX~{x,z} and let w” eW(v,x;F).
Then w” nwcwewouw” and Lemma 2, implies weW(v,z;F). Thus
weW(v,z;F) V(v,2) e (Xx(X~{x}))~A(X). Let w eW(Y x;F) and veX~{y,x}. Since
weW(v,y;F) and wAw cwcwu w , we get weW(v,x:F)vveX~{y,x} by Lemma
2. Since weW(y,v;F) and weW(v,x;F), Lemma 2 implies that weW(y,x;F).
Thus weW(v,Z:F)V(v,2) e XxX)~A(X). Thus there exists a non-empty
collection W(F) of non-empty subsets of N, such that
W(F)=W(v,z:F)V(v,z) e (XxX)~A(X).

Q.ED.
Lemma 4 :- Let F be a LSDF with [range(F)cQT(X)]. Then F is monotonic.

Proof :- By Lemma 3, there exists W(F) such that v(x,y) e(XxX)~A(X).
W(F)=W(x,y;F). Let weW(F) and wcw'. Let x,y,ze X with x2y=z=x and let
feLN(X):

(i) V(xy;f)=w

(i) V(y,z;f)=N

(iii) V(x,z;H)=w’

This is possible since wcw' cN.



Since weW(F) we get (x,y)eP(F(f)). By definition of an SDF, (y,z)eP(F(f)).
Since range(F)cQT(X)',(x,z) e P(F(f)). Thus w' eW(F).

Q.E.D.

Lemma 5 :- Let F be an LSDF with range(F)cQT(X). Then F is an oligarchy.
Proof :- By Lemmas 3,4 and Theorem 1, there exists a non-emtpy collection
W(F) of non-empty subsets of N such that vfeLN(X) :

PEM = [nP(fo]

weW(F)|iew

Since range(F)cQT(X), by Lemmas 2 and 3, Nw eW(F). Since

weW(F)
W(F)={weW(F) w’ eW(F), w’ cw implies W’ =wj}, W(F)={ Qw}. Hence
weW(F)

W(F) is a singleton. Thus F is an oligarchy.

Q.E.D.

Theorem 8 :- Let F be an LSDF. Then [range(F)cQT(X)] if and only if [F is an
oligarchy].

Proof :- If F is an oligarchy, then clearly range (F)cQT(X). This coupled with
Lemma 5, proves Theorem 8.

Q.E.D.

Note :- if cardinality of X is three, then QT(X)=WS(X). To see this, let
={x,y,z} and let ReWS(X). Let (x,y), (y,z)eP(R). Towards a contradiction
suppose (z,x)eR. Then (y,x)e T(R)~T(I(R)). This contradicts the assumption

that ReWS(X). Hence (x,z)eP(R). Thus ReQT(X).

Lemma 6 :- Let F be an LSDF, with [range(F)cWS(X). Then F is an

oligarchy.

Proof :- If cardinality of X is three, then by the note above and Theorem 8,

there exists a non-empty subset W of N such that vfeL"(X).

P(F(f)) = NP(f,) i.e. F is an oligarchy. Thus F satisfies monotonicity and
lew

neutrality. Hence suppose, cardinality of X is equal to m, which is greater
than 3. Suppose the lemma is true for cardinality of X less than m. Choose
xeX and let I(x) be a subset of L"(X) such that fel(x) if and only if VieN and
yeX~{x} it is the case that (y,x) f. Now if feh(x), since F(fleWS(X), it must
be the case that there exists ye X~{x} such that for no veX~{y} is it the case
that (v.y) e T(F()~T(I(F(f))).



Let GeLN(X)~{x})~B(X~{X}) be defined as follows : YgeLN(X~{x}), let

GH{g)=F(f) | X~{x} where feh(x) and f| X~{x}=g. Clearly G, is a well defined

LSDF, and range(G,)cWS(X~{x}). Hence by the induction hypothesis, there

exists a non-empty subset Wy of N such that YgeL¥(X~{x}}:P(G«(g))=
NP(g,) . Hence Vfel(x):P(F(f) | X~{x})= N P(fi|X ~{x}). Since F satisfies

iewy iewy

locality VfeL"(X) : P(F(f) [ X~{x}) = N P(f|X ~{x}). Let x,y,z,v be distinct

iewy

elements in X. Then (z,v)eP(F(f) | X~{x}) < (zv)e N P(f|X ~{x})and

(z,V)ePF @) | X~{y)@.V)e n P(fi|X ~{y}) . Thus w,=w,. Hence there exists
IEWY

a non-empty subset w of N such that YxeX and VfeLV(X) : P(F(f) | X~{x})

= ) P(f|X ~{x}). Hence P(F(f))= N P(f|X ~{x}). Hence P(F(f))=_rJvP(fi)-

iewy iewy
Hence F is an oligarchy. By a standard induction argument the lemma stands
proved.

Q.E.D.

. Dictatorial Social Decision Functions :-

Theorem 9 : Let F be an LSDF. Then range(F)cSS(X) if and only if F is

dictatorial.

Proof :- If F is dictatorial then range(F) is clearly a subset of SS(X). Hence

suppose range (F)cSS(X)cWS(X). By Lemma 6, there exists a non-empty

subset w of N such that vieLN(X):P(F(f))c NP(f). Towards a contradiction
ieW

suppose w is not a singleton. Let jew. Hence W~jz¢. Let X={xy,...,X} and let
feLV(X):

(i) Vie{1,...,m-1} (X, %) ef.

(i)vheN~{j} and Vie{1,....m-1} : (X1, %) efh.

Thus, P(F(f))=¢, since {j)ccw and wzN~{j}. Now range(F)cSS(X) implies that
there exists xeX:vyeX~{x}, (x,y)e T(P(F(f))), which is contradicted by
P(F(f))=¢(:since P(F(f))=¢ implies T(P(F(f)))=¢). Thus w is a singleton. Hence
F is dictatorial. c

QED.

Theorem 10 : Let cardinality of X be atleast four. Let F be an LSDF. Then

range(F)clO(X) if and only if F is dictatorial.

Proof :- If F is dictatorial, range(F)clO(X). Since 10(X)cQT(X), by theorem 8,

there exists a non-empty subset w of N such that vfeL"(X): P(F(f))= NP(f)=.
ieW



Towards contradiction suppose w is not a singleton. Let jew. Hence w~{j}=$.
Let x.y,z,veX with all four being distinct. Let feL"(X) such that

(i) (xy), (.2), (zv)ef,

(i) (z,v),(v,x),(x,y)ef, whenever. he W~{j}

(iii)(y,v).(v,2),(z,x) ef,, whenever heN~w.

Now (x,y)e NP(f,). Hence (x,y)eP(F(f)), (z,vie NP(f). Hence (z,v)eP(F(f)).
ieW ieW

Since F(f)elO(X), either (z,y)eP(F(f)) or (x,v)eP(F(f)). However,
V(z,y:fl=w~{j})ccw and V(x,v;f)={j}ccw, contradicting the definition of F.
Hence w must be a singleton. Thus F is dictatorial.

Q.ED.

Note :- The clause, “Cardinality of X is at least four” is necessary since when
cardinality of X is three IO(X)=QT(X) and F need not be dictatorial. For
instance for X={x,y,z}, F defined by P(F(f))= NP(f), has range in 10(X).

ieW

However F is not dictatorial.

Coroliary of Theorem 10 :- Let cardinality of X be atleast four and let F be an
LSDF. Then range (F)cTr.(X) if and only if F is dictatorial.
Proof :- This follows immediately from the fact that I10(X)cT(X).

Q.ED.

Theorem 11 :- Let F be an LSDF. Then F is dictatorial if and only if
range(F)cTr.(X).
Proof :- If F is dictatorial, then clearly range(F)cTr.(X). By Theorem 8, there
exists a non-empty subset w of N such that vfeL¥X) : P(F())) = NP(f).

ieW

Towards a contradiction suppose, w is not a singleton. Let jew. Hence
w~{{}2¢. Let x,y,zeX with xy=z=x and let feLN(X) :

() V(x,z;f)=w~{j}

(iV(z,y:H=(} ‘

(ii)V(x,y;H)=w ©me
Let iew~{j}. Then (x,y),(y,z), (x,z)ef. Let i=j. Then (x, y) Zy), (z x) efi.
ieN~w. Then (y,x),(y,2),(z,x)ef.. Hence there is no inconsistency in ¢

definition of f. =L ‘“ 4
Then V(x,y;H=w, we get (x,y)eP(F(f)). Since V(z,y;H={i}ccw, (z,y)e P(F(fyP»* .
Since waV(y,z,f)=N~{j}, (y,2)2P(F(f). ..(y,2)el(F(f)). Since F(NeTr.(X),. "o
(x,2)eP(F(f)). But V(x,z;f)=w~{j} and wew~{j}. This cqntradiction piqves thaw
theorem. YD PN G »

Q.E.D.



Note :- Theorem 11 is the celebrated theorem due to Arrow and in the
literature on social choice theory it is referred to as Arrow’s Impossibility
Theorem. '
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