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ABSTRACT

A federation voting operator allows a finite set of coalitions to unilaterally elect
any outcome. There are several special types of federation voting operators, all of
which share a property :the candidates are assigned weights, and for a coalition
to be decisive,it is necessary that the sum of the weights of its members exceed a
pre-assigned quota. In this paper we address the following question: When is a
Federation Voting Operator a Weighted Voting Operator ?
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1 Introduction

A model for analysing voting procedures where each individual in a society casts
a ballot and a voting operator aggregates the ballots into elected outcomes has
been modelled in Lahiri (1999,2000 a).A ballot is a set of alternatives chosen
from a universal set of candidates.A ballot profile associates with each voter a
ballot.A voting operator,selects a set of candidates from amongst those who
have secured at least one vote.Further we assume that if there is atleast one
candidate who secures the vote of every individual,then atleast one such
candidate is definitely chosen.In Aczel and Roberts (1989), one is introduced to
the idea of a merging function which aggregates ballots which are singletons
into a singleton outcome.This is definitely a more realistic model of democratic
exercises as we see it in practise. However,even though singleton ballots are a
realistic premise for analysis,it is difficult to be theoretically sound and yet
exclude the possibility of more than one elected outcome.Thus for
instance,under plurality it is quite possible that two candidates receive the
maximum number of votes.To accommodate such possibilities, Lahiri (2000 b)
introduces the concept of a vote aggregator. A vote aggregator is required to
satisfy the rather innocuous assumption called unanimity;i.e. if every one votes
for the same candidate then that candidate is elected.It is worth recalling in this
context the seminal work of Arrow,where individuals are required to vote not for a
single candidate,but for a preference ordering over the entire array of
candidates. This and the related literature find a thorough discussion in
Aleskerov (1999).Essentially what each voter votes for is a binary relation. These
binary relations are aggregated into a single binary relation.Since a binary
relation is nothing but a subset of the set of all ordered pairs of candidates, the
classical framework of Arrow is more appropriately a special case of the scenario
where ballots are sets instead of singletons.This being the motivation behind the
present work,we concentrate here on voting operators.

The voting operator we study in this paper, namely the federation voting operator
originates in the work of Aizerman and Aleskerov (1986,1995).Aleskerov (1999),
contains an exhaustive discussion of the related literature. A federation voting
operator allows a finite set of coalitions to unilaterally elect any outcome.Such
coalitions are called minimal decisive coalitions.There are several special types
of federation voting operators, all of which share a property :the candidates are
assigned weights, and for a coalition to be decisive,it is necessary that the sum
of the weights of its members exceed a pre-assigned quota. First, there are



those federation voting operators where coalitions can unilaterally elect
outcomes if and only if they have a requisite number of voters. A real world
example of such a voting operator is the electoral process used in electing
members of the Rajya Sabha i.e. the upper house of the Indian Parliament. An
electoral coliege comprising of parliamentarians who are themselves elected on
the basis of universal adult franchise, must cast a certain minimum number of
votes in favour of a candidate for the latter to gain entry into the Rajya Sabha. A
second type of federation voting operator is an oligarchy, where the ability to
unilaterally elect an outcome is invested in a single coalition. Finally,there is the
type of federation voting operator where the ability to unilaterally elect an
outcome is invested in a single individual. Such voting operators are called

dictatorial voting operators.

In this paper we address the following question: When is a Federation Voting
Operator a Weighted Voting Operator ?In the process of answering this question
we exploit the formal similarity of a federation voting operator with a simple game
due to Shapley (1962) and the formal similarity of a weighted voting operator
with a weighted voting game.The unique property which is necessary and
sufficient for a federation voting operator to be a weighted voting operator is
called robustness in this paper.This property is similar to the concept of trade
robustness that was introduced by Taylor and Zwicker (1992), and which shown
by them to be necessary and sufficient for a simple game to be a weighted voting
game.Our proof is completely different from the one in Taylor and Zwicker

(1992). ‘

The analytical framework in which aggregation rules are studied in this paper is
similar to a device which is referred to in classjcal choice theory as a choice
function. A comprehensive survey of rational choice theory ( i.e. the theory
concerned with specifying conditions on a choice function under which there
exists a binary relation of a desired type whose “best” elements from a given set
of alternatives, coincide with the elements chosen by the choice function) till the
mid nineteen eighties is available in Moulin (1985).

2 The Model

Let n be a natural number. Let N = {1,...,n} be the set of agents or voters. Let X
be a non-empty, finite universal set of alternatives.Let P(X) denote the power set

of X, i.e. the set of all subsets of X.
Let P(X)N denote the set of all functions from N to P(X).Any element S =(S;,...,S,)

e POX)", is called a ballot profile.
A voting operator is a function C : P(X)N -»P(X) such that for all S € P(X)" : (1)

C(S) € ) Si i (@) [ 8= dlimplies [C(S) N( ,S)7 bl

Thus an element which appears on no ballot is never chosen and atleast one
element which appears on the ballot of every individual is invariably chosen. As
a consequence of the definition of a voting operator it easily follows that given
any x e X, there exists SeP(X)" such that {x} = C(S) : simply take Vi e N ,S; ={x}.
For, x € S eP(X)V, let W(x,S) ={i e N/ x € S}}.

In the sequel we will be considering the following properties of voting operators :
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Monotonicity : Let x € C(S) and let S and Te P(X)Nwith{ie N/x e S}c{ie N
/x € T}. Then x e C(T).

Neutrality with regard to options : Letx, y € X and S,T e P(X)". Suppose {i
N/x e S} ={i € Nly € T}.Then.x e C(S) < y e C(T).

Robustness : Let,S and TeP(X)", and suppose U {W (x,S)/xeC(S)} =

U (W (x,T)/xeC(S)}.Suppose that VieN:#{xeC(S) / i eW(x,S)} = #{xeC(S) /

i eW(x,T)}. Then, C(S)NC(T) #.

Given a collection Q = {wy,...,wy} of nonempty subsets of N, let P(Q) = {w < N/
wc w, for some weQ} and L(Q)={w’ = N/ w' ¢ P(Q)}. Clearly, L(Q2) contains the

empty set.

Definitions of Voting Operators :

a) C is said to be a federation voting operator if there exists Q = {wy,...,Wg}, a

collection of nonempty subsets of N, such that v S eP(X)" :C(S)= {xeX /

W(x,S)eP(Q)} .

b) C is said to be an oligarchy if C is a federation voting operator with Q = { w; }.
¢) C is said to be a k-votes operator ( : where ‘k’ is a positive integer with k <n)
if C is a federation voting operator with Q = { w = N / w has exactly k elements}.
(A k-votes operator selects only those elements which appear on at least
k-ballots.)

d) C is said to be dictatorial if there exists i € N ( : called a dictator) such that

v Se PX)N:C(S) = S,.

e) C is said to be a weighted voting operator if it is a federation voting operator

for which there exists a function v :N — XuU{0} (:where ¥ is the set of natural
numbers) and a natural number x (called the quota) such that [weP(Q)] if and
only if [wd, weN and ¥ v(i) > x].

The following theorem has been proved in Lahiri (2000 a):

Theorem 1 : A voting operator satisfies monotonicity and neutrality with regard
to options if and only if it is a federation operator.

The following observation is easy to verify:

Proposition 1 : Let C be a weighted voting operator.Then C satisfies

robustness.

Proof : Let C be a federation voting operator such that [weP(Q)] if and only if
[w=p, weN and 3 v(i) > x], where v :N = XU{0} and « is a natural number. Let,S

and TeP(X)" , and suppose U {W (x,S)/xeC(S)} = U {W (x,T)/xeC(S)}. Suppose

that VieN:#{xeC(S) /i eW(x,S)} = #{xeC(S) /i eW(x,T)}. Thus[ ¥ v(i) >«] for
1€EW(x,S)

all xeC(S).Now,

[#{xeCS)/ieW(xS)}Ik< T T v(i)=T#{xeCS)/ieW(xS)}v(i)]. Thus,

xeC(S)ieW(x,S) ieN
[#{x eC(S)/i eW(x,S)}k < T X#{xeC(S)/ieW(xT)}v(i)] ,since
1EW(x,T)ieN

VieN:#{xeC(S) / i eW(x,S)} = #{xeC(S) / i eW(x,T)}.Thus,



[#{xeCS)/ieWHxDix< ¥ Iv(i)] Hence[ ¥ v(i)=«x] for some x eC(S).

xeC(8)ieW(x,T) 1€EW(x,T)

Thus, W(x,T) eP(Q) for some eP(Q2). Thus, C(S)NC(T) =¢. Q.E.D.
The Characterisation Theorem

In what follows we will make the following assumption:

Assumption : # X >2".

The following proposition is immediate:

Proposition 2: Let C be a federation voting operator satisfying robustness.

Suppose that v S e P(X)" :C(S)= j\qJ1 n S; .Let W;,...,Wbe disjoint sets in P(Q)
= eW,'

K k
and let V;,...,Vi be disjoint sets in N such that ;;1 W, = Y V; and N\ 1U1 W,
= j= -
does not belong to P(Q2).Then there exists i € {1,...,k} such that V;belongs to
P(Q).
Proof : Let X = { X1,..., Xn }, where m= 2", and let S e P(X)" ,with W (x;,S) = W;
k
forie{1,..k}and W (x,,S)= N\ ]_u1 W. Thus C(S) = { x1,..., % }. Let Te P(X)V,

k K
with W (x,T) = Vifori e {1,...k} and W (X, T)= N\ 1_U1 Vi=N\ jk:)1 W,. By

robustness, C(S) n C(T) = ¢. Thus there exists i € {1,...,k} such that V;belongs to
P(Q).

Q.E.D.

The following lemma is crucial in what follows:
i=1,...,k be a system of ‘k’ equation in ‘'n’ unknowns

M - Let iaijxj = bi )
=1

and suppose a;, b; are all rational for i=1,.. .k ; j=1,...,n. Let (x;,...,x;) be a solution

for the above system of equations. Then given £>0, there exists a solution

(%,....X, ) with all co-ordinates rational such that "(x;,...,x;)(il,...,in) <e.

Proof :- If n=1, then a_x; =b,, i=1,... .k with all a;;, b;, i=1,...,k rational implies

X; = 3 v;/henever a;1=0. If a;;=0Vi, then b;=0 Vi and hence we can choose any

a,

X, e(x} —&,X; + s)i, rational to solve the system. In either case the theorem is true
for n=1. Suppose the theorem is true for 1,2,...,n-1 where n-1>0. Let iaijxj =b,,
1

i=1,....k be the system as desired and let (x;,...,x;) solve the system. Without

loss of generality suppose a»0. Let x,,=l[bk —E;laijj]. Since the real valued
a =



function (yy,..., Y1) |—>-1—[bk - l’f;lakjy J.],with domain R™'is continuous,there
a, =1

. . . ) 1 . €
exists 8>0:ﬂ(yl,...,yn_,) - (xl s Xy )" <d—> ‘a—[bk - Zakjyj] -X;|< =
k
Consider the system,
TC,x, =B, i=1,..k where C¢ = 0 = By, for j=1,..n-1and Cy=ay~2a,,,
=1 a

kn

Bi=b; - 2& fori=1,...k-1,j=1,..n-1.

a,
o=l . 4. n-1 N .
Now Y a x +—"’[bk - Zaijj] =b, fori=1,... k-1
Fl a,, j=1

.'.Zj[aij —i‘;akj]x; =b, —Eibk fori=1,...,k-1.

Ay Ay
(x{,. X n_l)satlsﬁes the new system. By the induction hypothesis there exists

(X,,.--X,.,) with all co-ordinates rational such that

ll(i,,...,in_,)—(x;,...,x;_,)ﬂ<min{§,8}. Let X, =-:—[ Zan ] Clearly X, i

x =l

»

rational since it is obtained from |(%,,...,X,_,) . Further, [in -x;|< 3.

2 2 2

. <2 n—1 2
.."ki”""j")—(xl’"’x“: = E(x X )2 E[X —x )2 <T Z 54_ %—.—_52—
""ki"“"iﬂ)—(x:""x.)‘ <J—85'<9 Now X, =—[ Zak,x ]lmplles

L3 -
Jgaijj =b, . Fori<k,

n-1 a n—1 n-1g3.
Z[a»-——-—a ]x = b, ————b Za X; —Z——ax = b, ——b or

akn Fla,m ab

II)iau:cﬁ-a {b——Zaka] b, i.e., Za,,x,—b Hence if the theorem is assumed
a.. 1

true for 1,...,n-1 with n-1>0, then it is true for n. We have already shown that it is
true for 1. Hence it is true for all n.

Q.E.D.

Proposition 3 :Let C be a federation voting operator which satisfies robustness.
Then, C is a weighted voting operator.



Proof :- We prove this proposition by induction on n = # N.If N is a singleton,
we have N={1}.By unanimity, {1} = Q.Let v.N—->XU{0} be defined by v(1)=1
and let x=1. Then clearly, [weP(Q)] if and only if [we$, wcN and ¥ v(i) 2 k].

Suppose the proposition is true for #N=1,...,r-1, where r is any natural
number. Let #N=r. For wc N, let e,,-N—{0,1} be defined by e.(i) =1 if iew,

ew(i) =0, ifigS.
Let A={ >t.e,/t, €[0llVw eP(Q)and Xt , = 1} and

weP(Q) weP(£2)

B={ St.e,/t, €[0,]]vw e(Q)and Yt , = 1}

weL(€) weL(Q)
Both A and B are non-empty convex subsets of R'. Let x €A and neB with
= Xt.e, = Xt.e, =1 andt, being a rational number for all weQUL(Q2). By
wel weL(Q)
Taking the LCM of the denominators we may assume that V weQuUL(Q),
t, = Ef(‘i where KeX and nneNU{0}. Thus >n, = Xn, =K. Taking ny
wed

weL(Q)
copies of w for each weQUL(Q) we get a violation of robustness.

Now suppose,
Yt.e,—- Xt,e, =0,and
we2 weL()

Yt,=1= Xt
weld wel(Q)

has a non-negative solution.
SLoxtee,— 2t.e, =0,and
e)

w weL(Q
to>0 . tw>(0 )

xt,=1= Xt

ﬁe)% WELQ)

has a strictly positive solution.

Hence by Lemma 1, >t e, - Xt,e, =0, and
)

w eL(Q
te>0 s &P

Xt =1= 3t
wel} weL(Q)

ty >0 ty

has a strictly positive solution all whose co-ordinates are rational. Thus,

Yt.e,— Xt,e,=0,and
wel) wel(Q2)

Yt =1= Tt,
wel

weL(Q)
has a non-negative solution all whose co-ordinates are rational,
contradicting what we obtained earlier in the proof. Thus AnB=¢. By the
separating hyperplane theorem, there exists pe R™\{0} such that
p-x>p-nV(x.n)eAxB. Thus p.ew>p.ewV(w,w)eP(Q)xL(Q2).
Suppose for some jeN:p; <0.
Case 1 :- There exists we P(Q) such that jew. Let w ew\{j}. Now p.(e.-ew)=p;<0
contradicting what we obtained above.



Case 2 :- For all we P(Q), w \{j}e P(Q).Without loss of generality suppose j = n.
Let Q= {w\{n}/w eQ}. Thus #(N\{n})=n-1 and it is easily verified that the
federation voting operator v S eP(X)M™™ : C (S)= {xeX / W(x,S)eP(Q)} satisfies
robustness. Then by the induction hypothesis , there exists a function v’ :N\{n} —

X{0} and a natural number  such that [weP(Q)] if and only if [w =$, w cN\{n}
and Y v'(i) 2 x].Let viP-XU{0} be defined by setting, v(i)=v'(i)Vi N\ {n}, and

v(n)=0. Then it is easily verified that [weP(Q)] if and only if [w=¢$, weN and
Xz v(i) 2 x].

Hence pe R Y{0}. Clearly there exists p ¢ ®" \ {o} with all co-ordinates rational
such that min{p.e, / w € Q} > max{p.e,, / w e L(Q)} . By multiplying the numerators
of p by the LCM of the denominators we get v :N—NuU{0} such that

min{ ¥, v(i)/ w € Q} > max{ ¥ v(i)/ w e L(Q)} . Let x =min{¥ v(i)/ w €Q}. Thus

1€EW

[weP(Q)] if and only if [w¢, wcN and X v(i) > x]. The proposition stands

established by a standard induction argument.

Q.E.D.

Propositions 1 and 3 combined together, constitute a proof of the following
theorem:

Theorem 2 :A federation voting operator C is a weighted voting operator if and
only if C satisfies robustness.

In view of Theorems 1 and 2 the following characterisation theorem for weighted
voting operators is immediate.

Theorem 3 : A voting operator C is a weighted voting operator if and only if C
satisfies monotonicity, neutrality with regard to options and robustness.

Example 1: Let C(S)= {xeX / W(x,S)eP(Q)},v S eP(X)" , where Q = {w} (a
singleton) for some non-empty subset w of N. Clearly C is an oligarchy. Define
v :N — Xu{0} as follows:v(i)=1 ifiew, v(i) = 0 if igN \ w.Let x = #w.Then, [weP(Q)]

if and only if [w=¢, weN and 2v(i) zx].

Example 2: Let k be a positive integer less than or equal to n and let C(S)= {xeX /
W(x,8)eP(Q)},V S eP(X)", where Q = {wc N/ # w = k}.Clearly C is a k-votes
operator. Define v :N — &{0} as follows:v(i)=1 if VieN.Let x = k.Then, [weP(Q)]

if and only if [w=$, wcN and 3 v(i) 2 x].

Example 3: Let ieN and let C(S)= {xeX / W(x,S)eP(Q)},V S eP(X)" , where Q =
{wc N /ie w}.Clearly C is a dictatorial voting operator. Define

v :N - RU{0} as follows:v(j)=1 if j=i,v(j) = 0 if j # i. Let k = 1.Then, [weP(Q)] if and
only if [w$, weN and 3 v(i) > x].



Note:In some senses,an oligarchy is a basic unit of any federation voting

operator.For, let C(S)= {xeX / W(x,S)eP(Q)}.V S eP(X)" where Q = {w,...,.wg} is

a collection of nonempty subsets of N.Fori €{1,...,q}, let vi: N » X U{0} be defined

as follows: vi(j) = 1ifj e wi, vi(j) =0 ifj e N\w; .Fori €{1,...,q}, let x;= #w;. Thus,

[weP(Q)] if and only if [w2d, wcN and [Jie{l,...,q}: T v,(j) 2 x,] ].In view of this
1ew

observation,we the following theorem stands established :

Theorem 4 : Let C be a federation voting operator. Then, there exists a natural
number k and weighted voting operators C;,...,C such that v S ePOX)V:
C(S)=u{Ci(S)i e{t,....k}.

Let C be a federation voting operator. Then, min {k/ ¥ S eP(X)" C(S)=u { Ci(S)/
i €{1,...,k}} is called the dimension of C, and is denoted by k(C). Clearly k(C) is
always greater than or equal to one, and is equal to one if and only if C is a
weighted voting operator.Thus the dimension of oligarchies, k- votes operators
and dictatorial voting operators are one.However it is easy to provide examples of
federation voting operators for which k(C) is greater than one.

Example 4: Let n = 2k for some positive integer k. Let Q = { wc N/ w = {2j-1,2},
for some j € {1,....k}}. Let C be a federation voting operator such that v S eP(X)"
:C(S)= {xeX / W(x,S)eP(Q)}. Towards a contradiction suppose that C is a
weighted voting operator. Then, there exists a function v :N — Nu{0} and a
natural number k such that [weP(Q)] if and only if [wed, weN and T v(i) > «].

Thus, v(1) + v(2) > «, v(3) + v(4) >k, since both {1,2} and {3,4} belong to Q.
Hence either v(2) + v(3) > x or v(1) + v(4) > . Thus,either {2,3} or {1,4} belongs
to P(Q), contradicting our definition of Q. Thus, C is not a weighted voting
operator.
Fori e{1,...,k}, let vi: N —» RU{0} be defined as follows: v; (2i-1) = v; (2i)=1 v;(j) =
0ifj e N2i-1,2i}.For i €{1,...,q}, let ;= 2. Thus, [weP(Q)] if and only if [ws¢,
weN and [ie{l,...,k}: Tv(j) 2 x;] ].Infactitis possible {o establish via an

JEW

induction argument that k(C) = k. For k =1,2'it is easy to verify that k(C) = k.
Assume that k(C) = k, for k =1,...,r-1> 2.Let, k=r and towards a contradiction
suppose that k(C) <r. Thus, fori €{1,...,.k(C)} with k(C) <, there exists functions
vi: N = XU{0} and a natural number x; such that fweP(Q)] if and only if [w=¢,
wcN and [Fiefl,....k(O)}: Tv,(j) = ;] 1.Since, Q = { wc N/ w = {2j-1,2j}, for

JEW

some j e {1,...,r}}, there exists j;, j» €{1.....r} with j; # pand h €{1,... k(C)}, such

that (a) va(2 j1 - 1) + Vn (2 j1) 2 kn; (D) VA (2 j2- 1) + Vh(2 ]2) 2 xni(€)

[Zv,())<x,,if w ¢P(Q)] . By symmetry of the problem under consideration,we
1EW

may let j, =1 and j,=2.Thus for k = 2, k(C) = 1, which is not possible. Thus, k(C)

=r. By a standard induction argument, it follows that k(C) = k for every natural

number k. :
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