Working Paper

S




THE TOP CYCLE AND UNCOVERED
SOLUTIONS FOR ABSTRACT GAMES:
AXIOMATIC CHARACTERIZATIONS

By
Somdeb Lahiri

W.P.No. 2000-11-02
November 2000 /4 D4

i

The main objective of the working paper series of the IIMA is to help faculty members to
test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-380 015
INDIA




PURCRASED
APPROVAL

ORATIN ANCANGS
rel

- ASE MO,
VIRRAN SARABMA vi{
ciw mppere LT MA

W P- 2000-11-02

2502382



Abstract
for
The Top Cycle and Uncovered Solutions for Abstract Games : Axiomatic
Characterizations
by
Somdeb Lahiri
Indian Institute of Management,
Ahmedabad-380 015,
India.
e-mail:lahiri@iimahd.ernet.in
November 2000.

In this paper we consider binary relations which are reflexive and complete.Such
binary relations are referred to in the literature as abstract games.Given an abstract
-game a (game)solution is a function which associates to each subset a non-empty
collection of points of the subset .In this paper we provide axiomatic characterizations
of the top cycle and uncovered solutions for abstract games.In a final section of the
paper.the similarity between a game solution and a choice function of classical rational
choice theory is exploited to axiomat ically characterize the top cycle and uncovered

choice functions.
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1. Introduction : An abiding problem in choice theory has been one of characterizing
those choice functions which are obtained as a result of some kind of optimization.
Specifically, the endeavour has concentrated largely on finding a binary relation (if
there be any) whose best elements coincide with observed choices. An adequate
survey of this line of research till the mid eighties is available in Moulin [1985]. More
recently, the emphasis has focused on binary relations defined on non-empty
subsets of a given set, such that the choice function coincides with the best subset
corresponding to a feasible set of alternatives. This problem has been provided with
a solution in Lahiri [1999], although the idea of binary relations defined on subsets
is a concept which owes its analytical origins to Pattanaik and Xu [1990].

Given a binary relation, the idea of a function which associates with each set a non-
empty subset of the given set has a long history whose exact origin is very difficult
to specify and in any case is unknown to the author.in Laslier [1997] can be found
a very exhaustive survey of the related theory when the given binary relation is
reflexive,complete and anti-symmetric.

In this paper we extend the above set of binary relations to include those which are
not necessarily anti-symmetric.Such binary relations which are reflexive and
complete are referred to in the literature as abstract games.in a recent paper,Peris
and Subiza [1999], refer to abstract games as weak tournaments.Given an abstract
game, a (game)solution is a function which associates to each non-empty subset a
non-empty collection of elements from the subset, on the basis of the given abstract
game.Lucas [1992] has a discussion of abstract games and related solution
concepts, particularly in the context of cooperative games.Much of what is
discussed in Laslier [1997] and references therein carry through into this
framework.An important consequence of both the frameworks is that often,a set may
fail to have an element which is best with respect to the given binary relation.To
circumvent this problem the concept of the top cycle set is introduced,which selects
from among the feasible alternatives only those which are best with respect to the
transitive closure of the given relation.The top cycle set is always non-empty and in
this paper we provide an axiomatic characterization of the top-cycle solution.It is
subsequently observed that the top cycle solution is the coarsest solution which
satisfies two innocuos assumptions.

An alternative ‘X’ is said to cover another aiternative 'y’ if and only if 'x’ is preferred
to 'y’ and for every other third element ‘2’ if (a) 'y’ is atleast as good as ‘Z’, then so is



‘); (b) if 'y’ is preferred to 'z’ then so is ‘x'. Given any feasible set, its uncovered set
is the set of all elements in the feasible set which are not covered by any other
element in the same set. The question that naturally arises is the following : Given a
choice function , under what condition does a binary relation exist, whose
uncovered sets always coincide with the choice function? This question has been
discussed in Lahiri [1999], where it is observed that the binary relation ‘is
uncovered’ is reflexive, complete and quasi-transitive and any reflexive, complete
and quasi-transitive binary relation can be made to coincide with the “is uncovered”
relation of some binary relation. The problem becomes much more difficult if instead
of defining the covering relation globally, we considered the covering relation for
each individual feasible set, by simply looking at the restriction of the comparison
function to that set. In such a situation that fact that ‘x’ covers 'y’ in a particular
feasible set does not imply that 'x’ covers ‘y’ giobally. in effect, we are then
concerned with what Sen [1997] calls ‘menu based’ relations.In this paper we also
address the problem of axiomatically characterizing the uncovered solution (where
‘covering’ is now defined as a ‘menu-based’ concept).

In Peris and Subiza [1999] an abstract game is referred to as a weak tournament
and it is shown there that a considerable portion of the theory developed in the
context of tournaments, carry through to weak tournaments as well.Our axiomatic
characterizations are however different from the ones available Peris and Subiza
[1999].

In a final selection of this paper we revert to the context of classical rational choice
theory. By exploiting the close similarity between a game solution and a choice
function,we discuss the necessary implications of the results established in the
earlier sections of the paper, which apply to choice functions. This leads to a
modest extension of the theory that has been summarized in Moulin [1985].

. Game Solutions :- Let X be a finite, non-empty set and given any non empty subset
A of X, let [A] denote the collection of all non-empty subsets of A. Thus in particular,
[X] denotes the set of all non-empty subsets of X. If A e [X], then # (A) denotes the
number of elements in A. A binary relation R on X is said to be (a) reflexive if ¥ x
X:(x, %) € R; (b) complete if ¥ x, y € X with x # y, either (x, y) e Ror (y, x) € R ;(¢)
transitive if V X, y, z € X, [(x, Y) € R & (y, 2) € R implies (X, 2) € R] ;(d) anti-
symmetricif [V X,y € X, (X, Y) € R&(y, X) € R implies x = y]. Given a binary
relation R on X and A e [X), letR|A=R N(AxA). Let IT denote the set of all
reflexive and complete binary relations. If R e IT, then R is called an abstract game.
Given a binary relation R, let P(R) = {(x, y) e R/(y, x) ¢ R}and (R) = {(x, y) e R/
(y. ) € R}. P(R) is called the asymmetric part of R and I(R) is called the symmetric
part of R. Given a binary relation Ron X and A € [X], let G(AR) ={x e A/ Vy € A
(x,y)" € R}. Given A e [X], let A (A) denote the diagonal of A i.e. A (A)={(x,x)/xe A}.
The following example shows that given R € IT and A e [X], G(A,R) may be empty:
Example 1:Let X ={x,y,z} and let R =A (X)U{(x,y).(y.2).(z,x)}.Clearly G(X,R) is
empty.

GivenR e I1, A € [X] ,let T(R I A) be a binary relation on A defined as follows: (x, y)
e T(R| A) if and only if there exists a positive integer K and x;,...,.xx in A with (i) x,=



X X =y : (i) (%, Xu1) € RV i e {1,..K-1}. T(R|A) is called the transitive hull of R in
A.Clearly T(R |A) is always transitive.

Given R e T, A € [X], G(A, T(R|A)) is called the top cycle set of R in A.Clearly
G(A,T(R|A)) is non-empty whenever R e I and A € [X].

Let, R belong to I'1. An R-based game solution on X is a function S: [X] »[X] such
that:

(i) VAe [X]:S(A) c A ;

(i) Yx,ye X :xeS({x,y}) if and only if (x,y) eR.

Thus in particular, R = RS =U{ S({x.y}) x {x,y}/x,y € X}

If vAe [X], G(A,R) is non-empty valued then the associated game solution is called
the R- based best solution on X.in future, whenever there is no scope for confusion,
an R- based game solution will be simply referred to as a solution.

The top cycle solution denoted TC: [X] —»[X] is defined as follows: VAe [X]: TC(A) =
GAT(R|A)).

GivenR eIl, A e [X]and x, y € X, we say that x coversyviaRin Aif :

(i) x, y € A, (ii) (x, y) € P(R); (iii) VZz € A: [(y, 2) e Rimplies (x, z) e R] ; (iv) Vz € A:
[(y, 2) € P(R) implies (x, z) € P(R)).

Given R e I1, let R(A) = {(x, y) € AxA/ x covers y via Rin A}. Let UC(A) = {x € A/ if
y € Athen (y, x) ¢ R(A)}. It is easy to see that v A e [X], R(A) is a transitive binary
relation on A. Thus UC(A) = ¢ whenever A € [X]. Thus (i)V A €[X]: UC(A)cAV A€
(X} (ii) vx,ye X:xeUC(A) if and only if (x,y) eR.

The solution UC: [X]-[X] is called the uncovered solution.

Given A € [X] and x € X let s(x,A)=#{ycA/(x,y) eP(R)} - #yeAl(y,x) eP(R)}.

The Copeland solution Co: [X]—[X] is defined as follows:V A [X]:
Co(A)={xeA/vyeA: s(x,A) > s(y,A)}.

The following proposition is available in Laslier [1997]:

Proposition 1: ¥V A €[X]:Co(A)cUC(A)cTC(A).

Example 2:Let X ={x,y,z} and let R =A (X)u{(x,y).(y.2),(2.y).(x,2),(z,x)}.Now
Co(X)={x}c c {x,z} =UC(X) c < X =TC(X).Further Co(X) c c UC(X) c < TC(X).

. Axioms for the Top Cycle Solution:A solution S on X is said to satisfy :

Strong Condorcet (SC) if V A €[X]: [xeA] and [vyeAYx}:(x,y) eP(R)] implies [S(A)
={x}];

Expansion Independence (El) if V A €[X]:[xeS(A),yeA,(y.z) eR] implies
[xeS(AL{Z})];

Existence of an Inessential Alternative (EIA) if v A e[X] with #(A) > 2 and V xeS(A),
there exists yeA (possibly depending on A and x) such that xe S(AX{y}).

Theorem 1:The only solution on X which satisfies SC,El and ElAis TC.

Proof:lt is clear that TC satisfies SC,El and EIA.Hence let S be any solution that
satisfies SC,El and EIA.Let Ac[X].If #(A) is one or two there is nothing to prove
since S(A)=TC(A) by definition.Thus suppose S(A)=TC(A) whenever #(A)=1,...k Let
#(A)=k+1.Let xeA.If vyeAYx}:(x,y) eP(R)] then S(A) =[}}=TC(A).Hence suppose
VxeA there exists y eA\{x} such that (y,x) eR.
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Let x eTC(A).Since TC satisfies EIA there exists z €A such that x e TC(AY{z}).By
the induction hypothesis S(A{z})= TC(A\{z}).If (x,z) R then by El , x eS(A).If
(x,2)¢R.then since x e TC(A)= G(A,T(R|A)) there exists weA such that (x,w)
eT(R|A) and (w,2) eR.Then by E! once again x eS(A). Hence TC(A)=S(A).

Now suppose x eS(A) and towards a contradiction suppose x ¢ TC(A).By EIA there
exists z eA such that x e S(A\{z}).By the induction hypothesis S(A\{z})= TC(A\{z}). If
(x,z) eR then by El applied to TC, x e TC(A). Hence suppose (x,z)gR.Thus
(zx)eP(R). Lety e TC(A). Clearly y=x.Suppose y#z.Thus yeAY{z}.Thus (x,y)e
T(R|A) which combined with y e TC(A) gives us x eTC(A).Hence y=z.If for some w
eAY{x,z} we had (w,z)eR, then since x eTC(A{z}) and w eA\{z} we would get x
eTC(A).Thus YweA:(z,w)eP(R).But then by SC,S(A)={z}, contradicting x
€S(A).Thus x eTC(A). Hence S(A)cTC(A). Thus S(A)=TC(A).

By a standard induction argument it now follows that VAe[X]: S(A)=TC(A). &

A solution S on X is said to satisfy:

Converse Condorcet (CC) if V A[X] and xeA:[VyeAYx}:(y.x)eP(R)] implies
[xeS(A));

Weak Existence of an Inessential Alternative (WEIA) if v A e[X] with #(A) >4 and V
xeS(A), there exists yeA (possibly depending on A and x) such that xeS(A\Yy}).
Since TC satisfies ElA it also saisfies WIEA. Infact we can now prove the following:
Theorem 2:Let S be any solution on X which satisfies SC,CC and WEIA.Then, V A
e[X]: S(A) c TC(A).

Proof: Step 1: Let S be any solution on X which satisfies SC and CC.Then, V A €[X]
with #(A) < 3: S(A) c TC(A).

Proof of Step 1:For #(A) < 2 there is nothing to prove since by the definition of a
solution all of them agree on such sets.Hence suppose #(A) =3.Let A={x,y.z} with
x2y=z=x.Suppose without loss of generality xe S(A).If (x,y).(x,2) eR,then x
e€TC(A).Thus,suppose without loss of generality that (y,x) eP(R).If (z,x) eP(R) then
by CC, xgS(A),contradicting what we have assumed.Hence (x,z) must belong to R.If
(z,y) eR,then again x eTC(A).If (y,z) eP(R),then by SC,S(A)={y},contradicting
xeS(A).Thus S(A) c TC(A).

Step 2: Let S be any solution on X such that v A e[X] with #(A) < 3: S(A) ¢
TC(A).Suppose S satisfies WEIA.Then, Vv A [X]: S(A) « TC(A).

Proof of Step 2: Suppose that Vv A e[X] with 3 <#(A) <m: S(A) c TC(A).Let #(A) =
m+1.Thus #(A) > 4.Let xeS(A).By WEIA there exists yeA such that xeS(AYy}).By
the induction hypothesis S(AXy}) c TC(AXy}).Thus, xe TC(A\y}).If (x,y) eR, then
clearly xeTC(A).Hence, S(A) « TC(A).Suppose (y,x) eP(R).If
vzeAXYy}.(y,z) eP(R) then by SC,S(A)={y},contradicting xe S(A).Hence ,there exists 2
eAX{x,y} such (z,y) eR.Since, xeTC(A\{y}) and z cAXy}, (z,y) €R implies
xeTC(A).Thus S(A) c TC(A).

Step 2 combined with Step 1 and a standard induction argument proves the

theorem. &
Infact,the above proof reveals the following:



Theorem 3:Let S be any solution on X which satisfies SC and EIA.Then, ¥ A ¢[X]:

S(A) c TC(A).
CC is not required once we replace WEIA by EIA since then the induction argument

can begin from #(A) > 2 .

. The Uncovered Solution: A solution S on X is said to satisfy Expansion (E) if v A,B
€[X]}: S(A)NS(B) < S(AUB).

It is easy to see that both TC and UC satisfy E:

(i)Let A,B €[X]x IT and suppose x eUC(A)NUC(B).Towards a contradiction suppose
that xeUC (AUuB).Hence there exists yeAuB,such that y covers x via R in
AUB.Without loss of generality suppose yeA.Since x €A, y covers x via R in A.This
contradicts x eUC(A).Thus UC satisfies E.

(i) Let A,B €[X] and suppose x e TC(A)NTC(B).Towards a contradiction suppose
that xe TC(AUB).Hence there exists yeAUB,such that (x,y)e T(R | AUB). Without
loss of generality suppose yeA.Thus (x,y)T(R IAuB) implies that
(x.y)2T(R|A).This contradicts x eTC(A).

Moulin [1986] has established the following: )
Proposition 2:Let S be any solution satisfying SC and E. If[v A [X] with #(A)=3 we
have UC(A) < S(A)] then [V A €[X]: UC(A) c S(A)]l(see Appendix for details).

A solution S on X is said to satisfy Contraction (Con) if ¥ Ae[X] with #(A) >

4 [xeS(A)] implies [ there exists a positive integer K > 2 and sets A,...,Ax e[A]{A}
such that (i)u{ Ac/k=1,...K} =A;(ii) xen{ S(A)/k=1,...K}].

Dutta and Laslier [1999] establish that UC satisfies Con.However, TC does not as
the following example reveals:

Example 3:Let X ={x,y,z,w} where x,y,z,w are all distinct. Let,R =A(X)u
{0y).(2,%),(w,x),(Y,2),(w,y),(z,w)}.Clearly,x eTC(X).Let A €[X]{X}, with #(A) > 2.
Suppose,ygA.Then,x ¢ TC(A).Hence, x eTC(A) and #(A) > 2 implies

y eA.Suppose x,y € AnB where A,B ¢ [X]{X}, A=B, A ¢ B ¢ A.Without loss of
generality suppose A={x,y,z} and B={x,y,w}.Then, xg TC(B).Thus, TC does not
satisfy Con.

A solution S on X is said to satisfy:

Tie Splitting (TS) if V A, B € [X]xI[Twith An B = ¢ : [A x B = I(R) implies S(A U B) =
S(A) U S(B)];

Strong Type 1 Property (ST1P) if V x, y, z € X; [(y.x) eP(R), (x,2) eP(R), (z,y) €R]
implies S({x, y, z}) = {x, y, z}.

Note: Let S be any solution satisfying E. If S satisfies ST1P then,[v A [X]

with #(A)=3 we have UC(A) c S(A)).

Proposition 3 :- Let S be a solution on X such that S(A) = UC(A) V A € [X]. Then S

satisfies SC, CC, TS, ST1P, E and Con.
Proof : We have already seen that UC satisfies E, and SC,CC,TS,ST1P being easy

to verify let us show that S satisfies Con. Let A e [X] with # (A) >4 and x € S(A).
Thus, y € A, y = x implies either [(x, y) € R] or [there exists z, € A with either ((x, 2,)
e Rand (y, 2) ¢ R) or ((x, z,) € P(R) and (y, z,) ¢ P(R))]. LetA,={y e A/(x,y) €



R). Clearly A, # ¢, since x € A,. Further, since there does not exist y e A,, such that

y covers x via R in A, x € S(A,).
Case 1:- A, = A. Since # (A) > 4, there exists ¥ € A\ {x} such that A\ {x, ¥} = ¢. Let

A = {X, _Y} and A;=A- {y} Cleaﬂy AiccA AaccAand AU A= A. Further x
€ S(A1) N S(Ag)

Case 2:A,cc A Inthiscase, let A; = A;and fory e A\ A, let A, = {x, v, 2,}. Since
#(A) 24, A, c c Awhenevery e A\A,. Further, vV y e AW, :x e S(A)). Also, Ay U

( U A,) = A. Hence S satisfies Con. &

yEAA|

Lemma 1: If # (X) <3 and S is a solution on X which satisfies SC, TS and ST1P,
then S is the uncovered solution.

Proof : Let S and X be as in the statement of the lemma. If # (X) = 1 or 2, there is
nothing to prove since S(A) = UC(A) V A e [X] by the definition of a solution. Hence
suppose # (X) = 3. If A € [X] and # (A) < 2, then S(A)= UC(A). Thus suppose A= X =
{x,y, z} with x # y # Z # x. If there exists a € X : (a,b) eP(R) V b € X, then §(X) = {a}
= UC(X), by SC of both S and UC. Hence suppose that ¥ a € X, there exists b ¢
XY{a} :(b,a) eR.

Case 1:1(R) = X. Then by TS of C and UC, S(X) = UC(X) = X.

Thus without loss of generality suppose, (x, y) eP(R). Hence, by what has been
mentioned before Case 1, (z,x) eR.

Case 2: (z,x), (y,z) eP(R).

By ST1P, §(X) = {x, y, z} = UC(X).

Case 3 : (z,x) eP(R), (y.2) €l(R).

By ST1P, S(X) = {x, y, z} = UC(X).

Case 4 : (z,x) el(R), (v.z) eP(R).

By ST1P, S(X) = {x, y, z} = UC(X).

Case 5: (z,x) el(R), (v.2) €l(R).

Thus, {z} x {X, y}c I(R).

By TS, S(X) = S({z}) L S({x, y}) = {x, Z} = UC(X).

This proves Lemma 1. &

A look at the proof of Lemma 1 reveals that we have essentially proved the
following:

Lemma 2 : Let S be a solution on X which satisfies SC, TS and ST1P. Then vV A €
[X] with # (A) < 3, S(A) = UC(A).

The above observation follows by noting that UC(A) depends on the restriction of R

to A only.
Note : If in Lemma 1 (: or for that matter in Lemma 2), we replace SC by CC and E

we do not get the desired result as the following example reveals :

Example 4: Let X = {x, y, z} with x 2 y # z # x. Let S(X) = {x, y}, where
R=A(X){(y.x).(y,2),(x,2)}.S satisfies CC, E, TS and ST1P, the last two properties
being satisfied vacuously. However, UC(X) = {y} # S(X). Note that S does not satisfy

SC, since (y,x),(y,.z) eP(R)and yet S(X) = { y}.



in Dutta and Laslier [1999] we find the following property for a solution S on X:
Type One Property (T1P) : V x, ¥, Z € X: [(y,x) eP(R), (x,z) eP(R), (z,x) €l(R)]
implies S({x, y, 2}) = {x, y, z}.

Clearly T1P is weaker than ST1P. However, if we replace ST1P by T1P in Lemma 1
(: or Lemma 2), we do not get the desired result as the following example reveals.
Example 5: Let X = {x, y, z} with x # y # z # x. Let S(X) = {x}, where
R=A(X){(x,y).(y,2),(z.x)}.Clearly S satisfies SC, TS, E, CC and T1P (: all
vacuously). However, S violates ST1P which under the present situation would
require S(X) = X. Further S(X) # UC(X) = X.

We are now equipped to prove the following theorem:

Theorem 4 : A solution S on X is the uncovered solution if and only if S satisfies

SC, TS, ST1P, E and Con.
Proof : Proposition 3 tells us that an uncovered solution satisfies all the properties

mentioned in the theorem. Hence let S be a solution on X satisfying SC, TS, ST1P
and Con. Let R e I'1. By Lemma 2, S(A) = UC(A) V A e [X] with # (A) < 3. Suppose
S(A) = UC(A) V A € [X] with# (A) = 1,...m, and let B € [X] with #(B) =m+1. Let x e
S(B). Suppose m+1 > 4, for otherwise there is nothing to prove. Hence by Con there
exists a positive integer K and non-empty proper subsets B, ..., Bx such that B =

K ,
UB; andx e rK]S(B,.,R). Clearly # (B, ) < mwheneveri e {1, ..., K}.
i=1

i=1
By our induction hypothesis, S(B) =UC(B) Vie {1, ..., K}. Thus x € ﬁUC(Bi), and
i=1

by E, x € UC(B). Thus, S(B) c UC(B, R). By an exactly similar argument with the
roles of S an UC interchanged, we get UC(B) c S(B). By a standard induction
argument, the theorem is established. &

Note : The above theorem is not valid without E or Con.

Example 6: Let X = {x, y, z, w} where all of them are distinct. Let S(X) = {x}, S(A)=A
if # (A) = 3, where R=A(X)U{(x,y),(Y,2),(z,W),(W,X),(X,Z),(z,X), (Y.w),(w.y)}. S satisfies
SC, ST1P, TS (vacuously). Further, let A;= {x, y} and Az ={x, z, w}. x e S(X) and x e
S(A1) N S(Ay). Further Aju A; = X, with A; « ¢ X and A; < < X. Thus S satisfies
Con. However, UC(X) = X = {x} = S(X). Observe that, S does not satisfy E ,since y
S{{x, y, z}) n S({y, z, w}) buty ¢ S(X).

Example 7: Let X be as above. Let S(X) = {x, y}, S(A) ={x}ifx € A, S(A)=Aifx g A
where R=A(X)u({x}xX)u({y.z,w}x{y,z,w}).Clearly S satisfies SC, ST1P (.vacuously),
TS and E. But S does not satisfy Con : y € S(X). If we take any finite number of non-
empty proper subsets of X whose union is X, atleast one must contain ‘x’ and thus
its choice set cannot contain 'y’.

. Cholce Functions and Extensions of Rational Choice Theory : In this section we
discuss the implications of the analysis reported in earlier sections of this paper,in
the context of classical rational choice theory.

A choice function (on X) is a function C: [X] —[X] such that : VAe [X].C(A) c A ..
Given a choice function C, the binary relation revealed by C denoted R® is defined



as follows: R® = {(x,y) / x eC({x.y})}. Clearly, R® eI1. A choice function C is said to
be a top-cycle choice function if YAe [X]:C(A) = G(A.T(R®|A)). A choice function C
is said to be an uncovered choice function if YAe[X]: C(A) ={x € A/ify e Athen
(y, x) ¢ RC(A)}, where RS(A) = {(x, y) € AxA [ x covers y via R® in A}.

A choice function C is said to satisfy :

Strong Condorcet (SC) if V A €[X]: [xeA] and [VyeAY{x}:(x,y) eP(R®)] implies [C(A)
={x}};

Expansion Independence (El) if V A [X]:[xeC(A).yeA.(y.2) eR®] implies
[xeC(ALZ}));

Existence of an Inessential Alternative (EIA) if ¥ A e[X] with #(A) > 2 and V¥ xeC(A),
there exists yeA (possibly depending on A and x) such that xe C(A\{y}).

As a consequence of the analysis reported earlier it follows that:

" Theorem 5: A choice function C is a top cycle choice function if and only if C
satisfies SC,El and EIA . '

A choice function C is said to satisfy:

Converse Condorcet (CC) if vV Ac[X] and xeA:[VyeAY{x}:(y,x)eP(R%)] implies
[xeC(A));

Weak Existence of an Inessential Alternative (WEIA) if v A e[X] with #(A) >4 and ¥
xeS(A), there exists yeA (possibly depending on A and x) such that xe C(A\y}).
Since TC satisfies EIA it also saisfies WiEAinfact-we.can now prove the following:
Theorem 6:Let C be any choice functibn which satisfies SC,CC and WEIA.Then, v
A €[X]: C(A) c G(A, T(R®| A)). ‘

Theorem 7:Let C be any choice function which satisfies SC and EIA.Then, V A €[X]:
C(A) c G(A,T(R®| A)).

CC is not required once we replace WEIA by EIA. .
A choice function C is said to satisfy Expansion (E)if ¥ A.B [X]: C(A)~C(B) c

- C(AuB).

The relevant proposition in Moulin [1986] now translates to the following:

Proposition 4:Let C be any choice function satisfying SC and E. Iffy A ¢[X] with
#A)=3we have {x e A/ify e Athen(y,x) ¢ R°(A)} c C(A)] then [V A e[X]: {x e
Alify e Athen(y, x) ¢ R°(A)} c C(A)].

A choice function C is said to satisfy Contraction (Con) if v Ae[X] with #(A) >
4,IxeC(A)] implies [ there exists a positive integer K > 2 and sets A;,..., A« e[A]MA}
such that (i)u{ Ac/k=1,...K} =A;(ii) xe{ C(Ax)/k=1,...K}]).

A choice function C is said to satisfy:

Tie Splitting (TS) if V A, B e [X]xIT with A~ B =¢ : [A x B c I(R®) implies C(A U B) =
C(Ayu C(B)] ;

Strong Type 1 Property (ST1P) if V x, y, z e X:[(y,x) eP(R), (x,z) eP(R°), (z,y) eRY
implies C({x, y, z}) = {x, y, z}.

We now have the following theorem:

Theorem 8 : A choice function C is an uncovered choice function if and only if C
satisfies SC, TS, ST1P, E and Con.
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Appendix
Here we provide a concise proof of Proposition 1.
Proof of Proposition 1:Clearly the proposition holds for #(A) = 1 or 2. Hence
assume that the proposition holds for #(A) = 1,...,K and now let #(A) = K+1.
Suppoose x € Co(A) UUC(A).If, [VyeAYx}:(x,y) eR] then, xe TC(A). Hence,
suppose that there exists ye A\{x} such that (y,x) eP(R).Clearly, x € Co(A{x})
UUC(AY{x}).By the induction hypothesis x e TC(A¥x},R). If
[VzeA\y}.(y,2)eP(R)], then Co(A) UUC(A)= {y},contradicting xeCo(A)
UUC(A). Hence there exists ze AYy}:(z,y)eR.Since zeAY{y} and x e TC(AY{x})
clearly, (x,2) eT(R|A).Thus (x,y) e T(R|A).Thus, TC(A).The proposition now
follows by induction on the cardinality of A.
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