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The exact problem we are concemed with in this paper is of the
following nature. There are a finite number of producers each
equipped with a utility function of the standard variety, which
converts an input into a producer specific output. An allocation of
the input among the producers is sought which is Pareto efficient
i.e. there is no reallocation which increases the output of one
producer without decreasing the output of any other. This, as is
very widely known, corresponds to maximizing the weighted sum
of the utility functions subject to a resource constraint.
Alternatively, the weights can be interpreted as exogenously
specified prices of the separate outputs and then the problem
reduces to maximizing the aggregate revenue subject to a resource
constraint. Our analysis focuses on the relations between the
optimal solutions and the price and aggregate resource pair.
Further, we also study the effect on the former of varying the latter
pair.
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Introduction :- Formal graduate education of most economists
begins by an exhaustive study of consumer choice theory. The
paradigm that is generally favored is one where given a vector of
prices and income, a rational agent equipped with a utility
function, maximizes it subject to the budget constraint that the
prices and income imply. The utility function is supposed to reflect
the preferences of the consumer. An adequate analysis of the
theory for our purposes can be found in Luenberger [1995]. If the
utility function is interpreted as a rule which transforms inputs into
a desirable output, the same model of consumer choice can be used
to model the behaviour of an agent who seeks to maximize output
(cor for that matter revenue at exogenously given prices for the
output he produces), subject to the cost of production not
exceeding a given investment (: which is irreversible). In this paper
we investigate a closely related model which is meant to depict the
problem of allocating a given amount of a single homogeneous
resource among a finite number of producers i.e. the problem of
fair division of a single commodity. A rather lucid introduction to
the main concerns of this problem can be found in Moulin and
Thomson [1997].

The exact problem we are concerned with in this paper is of the
following nature. There are a finite number of producers each
equipped with a utility function of the standard variety, which
converts an input into a producer specific output. An allocation of
the input among the producers is sought which is Pareto efficient
i.e. there is no reallocation which increases the output of one



producer without decreasing the output of any other. This, as is
very widely known, corresponds to maximizing the weighted sum
of the utility functions subject to a resource constraint.
Alternatively, the weights can be interpreted as exogenously
specified prices of the separate outputs and then the problem
reduces to maximizing the aggregate revenue subject to a resource
constraint. Our analysis focuses on the relations between the
optimal solutions and the price and aggregate resource pair.
Further, we also study the effect on the former of varying the latter
pair.

The axiomatic study of resource allocation problems started off
with the seminal work of Nash[1950]. Peters[1992] shows that a
fair division problem such as what has been discussed above is
representable as a kind of problem that Nash based his study on. In
Lahiri[1996, 1998] we note that the converse is also true: a
problem of the kind that Nash was concerned with is representable
as a fair division problem.

The significance of this paper lies in adapting the methods used in
the study of consumer choice to analyse problems of fair division.
Like consumer choice theory we are able to establish the upper-
hemicontinuity of both the weighted social choice rule and the
dual weighted social choice rule and the continuity of the primal
and dual value functions. Sensitivity properties of the value
functions, similar to the sensitivity properties of the indirect utility
function of consumer choice theory (i.e. the primal value function)
and the expenditure function of consumer choice theory (i.e. the
dual value function) are established in this framework. However,
the primal value function for fair division problems seems to
behave like the expenditure function of consumer choice theory
and the dual value function (i.e. the expenditure framework) in our
framework has a behaviour akin to the indirect utility function of
consumer choice theory.



A consequence of this analysis is the observation that classical
consumer choice theory in general and its associated analytical
techniques in particular are very rich in scope and content.

. The Model :- Let there be ‘n” agents where ‘n’ is some positive

integer greater than or equal to two. Let N= {1,..,n} denote the

agent set. Let u; : Ry —> R, be a “utility function’ for agent ‘1’ ,

denoting the amount of ‘desirable’ commodity that agent i can

produce out of any given amount of a homogenous output.

Throughout we assume that :

)] u; is strictly increasing i.e. [a,beR,, a> b] implies
[ui(a) >u; (b)];

(11) y; 1s continuous;

(1i1) y; 1s concave i.e. [a,beR., te[0,1]] implies [u;(ta+(1-t)b) >
ty; (a) + (1-thui(d)];

(iv)u; (0)=0

Let X = ®"\{0}. If pe X, then p; denotes the price of the commodity
that agent ‘i’ produces.

Let w>0 be the total amount of the homogenous input that has to
be allocated among the agent. Given w>0, a feasible allocation is

a point xe ®" such that ¥ x; <w. Let S(w) = {(u;(X}),....un(Xp))/X is
ieN

a feasible allocation}. It is shown in Peters [1992] that S(w) i1s a
non-empty, closed, bounded, convex subset of ®% containing a
strictly positive vector and allowing for free-disposability (i.e. v,
vxe RY,v > v¥, veS(w) implies v¥eS(w)). In Lahiri [1996] it is
shown that given any non-empty, closed, bounded, convex subset
S of ®% containing a strictly positive vector and allowing for free
disposability, there exists utility function u;:3R,—R. as above and
w>0, such that S=S(w).

Given w>(, a feasible allocation x s said to be Pareto efficient if
there does not exist ve S(w) with vi2u;(x;)VieN and v>uy(x;) for
some ieN. The following well known result is worth reproducing
(see de 1a Fuente [2000]):
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Proposition 1 :- Given w>0 a feasible allocation x 1s Pareto
efficient if and only if there exists pe X such that whenever y is

any other feasible allocation, we have ¥ p;u;(x;)z= Tpiui(yi)-
. ieN ieN

. The Continuity of the Weighted Social Choice Rule :- Given peX
and weR(i.e. R\{0}), let F(p,w)= {xe ®2/(a) Tx; <w;(b)

ieN

[y eRl, Ty, SW} implies {z piu;(x;) 2 ):piui(yi)}} . Since
ieN 1eN ieN

{x eRl/ Tx; < w} is non-empty, closed and bounded and since the
ieN

function x— ¥ pju;(x;)::R? - R is continuous, F(p,w) # ¢. Further

1eN

since each u; is concave, F(p,w) is a convex subset of ®%. Hence F

X X%, »>— K2 is a non-empty valued, convex valued

correspondence. This correspondence is what we call the weighted

social choice rule. Further for each (p,w)eX x R4+, F(p,w) 1s a

closed and bounded subset of R".

Under our assumptions (p,w)e X x R.:[xe F(p,w)] implies

[ x, =w].

1eN

Theorem 1 : F is a upper-hemicontinuous i.e. if <(xk,pk,wk)/k eN> is

a sequence in ®° xXx®,, with x*eF(p*, w*) V k e X and

lim [xk,p“,w“)= (x, p, W)€ 2 X X X Ry, , then xeF(p,w).
—>w

Proof :- Let <(xk,pk,wk)/k eN> and (x,p,w) be as required in the

statement of Theorem 1. Towards a contradiction suppose
xgF(p,w). Since yx¥ <wkvkeX Iim x¥ =x, lim w* =w,clearly,

ieN ko koo

¥ x; <w. Hence there exists ye ®" :

ieN

Tyi<wand Tpiui(y;)> Tpiui(x;). Clearly there exists jeN : p>0
ieN ieN ieN
and u;(y;)>u;(x;). Since u; is strictly increasing y;>x;>0. Hence by
the continuity of u;, there exists 5>0 : y;-6>x;>0 and



T piui(yi)+p;juj(y; 5)} [ zpiui(xi)}@ 0. By the continuity of u;,

i#] ieN

ieN and since iim p* =p, hm x*, we get,

k—>a

im 3 p! o, v) - (xbept (y, 8)-u,(x) |
—zpllul(ymu,(x,)hp,[u,(yj 8)-u;(x,)]

HCHCCEIM] e N :VkZMl
£ o[- uixh)+p¥[ujiy; -8)-ujc) |- 2> 0

i#]

Kk Iwk—w|<—6—
NOW,klimw :w—)3M2€NIVk2M2, 4
-

.;Zy, +(y; —8):2“),i —SSW—5<W—-%<W"
1#) ieN

Let M = max (M,, M,). Thus for k> M, x*¢F(p*,w"), contradicting
our hypothesis.

Hence xeF(p,w).

Q.ED.

Theorem 2 :- V(p,w)eX x R+ and t>0 : F(tp,w) = F(p,w)

Proof :- Let xeF(p,w). Thus xe %} and > x,<w. Let yeF(tp,w).

Thus Ttpui(yi)z Ttpjui(x;). Thus Tpui(yi) = Tpui(x;). Since

ieN 1eN ieN ieN

Y yi <w, Tpiui(yi) = Tpjui(x;). Thus xeF(tp,w). Thus
ieN ieN ieN

F(p,w)cF(tp,w). Thus F(tp,w)c F(;tp,w) = F(p,w) since %>O.

Thus F(p,w)=F(tp,w).

QED.

Suppose we assume in addition to our ‘blanket’ hypothesis about
u': R,—>R, the following :

Strict Concavity :-VieN,a,be R, with a#b and te(0,1):u;(ta+(1-
t)b)>tu;(a)+(1-t)ui(b).




Then for peX, the function U,: %% —» %, defined by

Up(x)= =pju;(x;)vx eR? satisfies strict concavity i.e. Va,be ®: with
ieN

azb and te(0,1):u;(ta+(1-t)b)>tu;(a)+ (1-t)ui(b).

For (p,w)eX x R, xeF(p,w)«> [x is a feasible allocation, and
whenever y is a feasible allocation, Uy(x)=Up(y)]. Thus if

X,yeF(p,w) with xzy, then -21—x +%y is a feasible allocation with

Up(%x +%yj > U,(x) = Up(y), contradicting x or for that matter y

belongs to F(p,w). Hence we have the following:

Theorem 3: Let y; satisfy strict concavity for all ieN. Then
V({p,w)eX x R : F(p,w) is a singleton.

When F:X x R+ >— R is a singleton V(p,w)e X x R, we write
F(p,w)y={f(p.W)} V(p,w)eX x R+..

Theorem 4 :- Let y; satisfy strict concavity for all ieN. Then the
function £: XxR.— K" is continuous.

Proof :- Let <(p“,w“)/k eN) be a sequence in XxR. with

lim (pk ,wk) =(p,w) €

koo

X x R+ Suppose towards a contradiction (f(p*,w* )/k %) does not
converge to f(p,w). Hence there exists

€>0:{k e N/f(p*,w*)-£(p,w)| 2e}=¥, is an infinite subset of ¥. Since
lim wk =w and Zfi(pk,wk)z wkvk ex,the set {f(pX,w)/ke,} is a

kow

bounded subset of R". Hence there exists a subsequence
(£lp™, w™)/m e 8) with k(m)e X, Yme N, such that

lim f{pk‘m),wk(‘“)) =x. By Theorem 1, xeF(p,w), since

m—»oo

lim p*™ =pand lim w*™ =w. But

implies |x - f(p,w)| >e. Thus x#f(p,w). This contradicts F(p,w) is
single valued and proves the theorem.

f(p ™ w ™)~ f(p, w)| >e Vm e R
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4. The Value Function :- Let V:X x R.+— R+ be defined by
V(p,W)= Tpju;(x;) for xeF(p,w). Clearly V is well defined. V is

ieN

called the value function. -
Theorem 5 :- (1) V is continuous

(i) VpeX, the function V(p,:) : R—>R, is strictly
increasing;

(i) Vwe R, the function V(:,w) : X—>R, is convex
ie. Vp,preX and te[0,1], V(tp+(1-t)p*,W)<tV(p,w)+(1-t) V(p*,w)

(1v) V(p,w)eX xR and t>0 : V(tp,w)=tV(p,w).
Proof :- (i) Let <(pk,wk)/k eN) be a sequence in X x R+ with

lim (pk,wk)= (p,w)e XxR.+. Towards a contradiction suppose,

k—> o

(v(p“,w“)/k ex) does not converge to V(p,w). Hence there exists
€>0: {ke N/Mp*,w*)-v(p,w) 2e}=¥, is an infinite set. For ke X, let
XkeF(pk,Wk). Since klim wk=w and Zx}‘ =wk, {x“/keNl} is a

—> ieN
bounded set. Hence there exists a subsequence <xk(m) /m eN) of
<xk Ik ex> such that k(m)e 8;Vme N and with lim x*™ =«

m-—w

Clearly, xe ®% with yx;.<w. By Theorem 1, xeF(p,w). Thus
ieN

V(p,w) = Zpjui(x;). Now, V(pk,wk)= Ty (xf) Vke .

ieN ieN
S lim V™, w ™) = lim ¥ pF®y;(xE™ ) = T pu (x,) = V(p,w),
iEN

o m—>0jeN

contradicting [V(p*™,w"™)-V(p,w)| 2 Vme N. Thus
lim v(p*,w*)=V(p,w). This proves (1).

(ii) Let w*>w>0 and let V(p,w)= ¥ pu;(x;) for some xeF(p,w).
i=1

n . *__ .
Thus yx; <w Let ye ®2 with y=x;+~ " ieN. Thus Ty, <w*.
ieN

i=1 n
Since y; is strictly increasing, u;(y;)>u;(x;),ieN. .. V(p,w*) >
Zpiui(yx) > zpiui(xi) = V(p,w).



(iii) Let p,p*eX and te[0,1]. Let ye ®° with Ty; =w. Thus
i=1
V(p,W)= zpui(y;) and V(p*,w) > pju,(y,). Thus tV(p,w)+(1-t)
ieN ieN

V(p*,w)= Y[tp, +(1-t)]u,(y;). Thus tV(p,w)+(1-t)V(p*,w)= V(tp+

(1-)p*,w).
(iv) Follows directly from Theorem 2.
QE.D.

Now suppose that each u;:R.—R. is continuously differentiable
with
(1) Duy(h)>0vheR,+ and (ii) lim Du; (h) = +e.

Let pe ®}, ={xe®2/x>0VieN}. For w>0, consider the problem:

2 pjuj(x;)—>max
ieN

S.t. Ix; <w,XERE.
1eN

It 1s easy to see that if x* solves the problem then x*e %2, . Hence
by standard methods (discussed in Lahiri [2000]) there exists A>0 :

piDui(x;" )=k, ieN and .sz{ = w.Suppose that each u;: R, >R, is

strictly concave. Then for (p,w)e XxR.,
piDui(fi(p,w))=A, ieN and sfi(p,w)=w.

ieN
Theorem 6:- Suppose in addition to above that £ X x R,.—>R? is
differentiable in ®2, xR.. Then, V(p,w)e R, xR

%vmw) =u(f(p,w)).
__Pl'OOfI- V(p,W)= 2 piui (fi (P, W)V (p,w) e Ry xR, .Thus
ieN

ofj(p,w) _

N _ it (p,w)) + T piDuj(fj (p W) —_ u(E(p,w)) +
i je i
of; .
AT ’g’w). Now, under our assumption ¥ fj(p,w)=W V(p,W)e
jeN i jeN

o (p,
®", XRy . Thus, ¥ i)

jeN i
Q.E.D.

=0.This proves the theorem.



5. The Expenditure Function :- Let (p,v)eX x R+ and VieN,
u;: R+ R be strictly increasing, concave, continuous with u;(0)=0
VieN. Suppose Jlim u;(h) = +oVi €N, Consider the problem:

¥ Xi{ = min
1eN
s.t. Ypux)zvxeR.

Under our assumption the problem has a solution. Let G(p,v) be
the set of solutions for the above problem. Hence G: X xR—>—> %%
is a non-empty valued correspondence. This correspondence is
what we call the dual weighted social choice rule.

Theorem 7 :- (1) G is a convex valued; (i1) G is upper-
hemicontinous; i.e. if ((x*,p*,v*)/ke)is a sequence in R xXx%R,,
with x*e G(p*, v¥) V k e X and llgnm(xk,pk,vk)= (x,p, vIe R x X x

R+, then xeG(p,v); (i) V(p,v) eXxR. and t>0:
G(p,v)=G(tp,tv).

Proof :- (I) follows easily from the fact that VieN, u; is
concave.(ii1) 1s easy to establish.Hence let us prove (i1). Let
((*,p*, v )k ex) and (x,p,v) be as required in the statement of
Theorem 7. Towards a contradiction suppose xgG(p,v). Since
dpu(xf)2vivkeX, lim x* =x, ll{iinmv“ =v,clearly, > pu(x;)2v .

1eN koo 1EN

Hence there exists ye ®% : 3 pu,(y,) 2 vandyetY y, <> x, . Thus, there

ieN 1EN ieN

exists 3 > O such that 3y +8<Y vy, <Y x .Lete=

> . (x,-y,)-5>0. Now, pe X implies that there exists jeN:p;>0.

Thus, 2 PP (Y +8)> Y pu(y)2Y, since u; 1S strictly

increasing. Since lim x* =x,and Yy, +5 <Y x, there exists M;e N
v o~

k—>w®

such that Vk > M;: Yy, +8 <> x* .Further,
1EN ieN
2 P ()P (Y +8)>Y, umﬂ: =p and lim v =v implies that there

exists M,e N such that vk > Mzizmjp[‘ui(y,ﬂ pu,(y; +8)>v* .
Let M=max { M|, M,}.Thus,



Zy1 +8<Zx andz pru,(y,)+p'u,(y, +8)>v" , contradicting

X‘eG(p*, v¥) V k e N and thus proving the theorem.
QED.

Theorem 8: Let u; satisfy strict concavity for all ieN. Then
V(p,v)eX x R, : G(p,v) is a singleton.

Proof :- Suppose u; satisfies strict concavity for all ieN and
towards a contradiction suppose that there exists (p,v)eX x R, :
G(p,v) i1s not a singleton. Let x,ye G(p,v) withx#y. Let M =
{ieN/ pi>0}. Suppose x; >0 for some jeN\M. Let z € ®? with z; =
0 and z;=x;, for j #1. Thus, 3"z <3 x, and since p;
=0, > pu,(z) =Y pu,(x,)> v. This contradicts xe G(p,v).Thus, x; =0

ieN 1N

for all ieN\M. Similarly, y; = 0 for all ieN\M.
Now, x zy implies that there exists ieM such that x; . y;. Thus,

u (lx +ly.)>lu (x.)+—l—u,(yx) and u.(lx +ly )zlu (x, )+—l—u (y)VjeN\
{1}. By continuity of u;, there exists >0, such that, x +;y ~38>0
and u (—-x.+—;—y —5)>-—u (%, )+—-u.(yv). Thus,

p,u( X, +2yl Y pJuJ( X +2y1)>2pj( uj(xj)+luj(yj))2vand

J*l JEN

Z(—[x +y.1- 6)<Z [x, +y.]= Y x,, contradicting xe G(p,v) and

proving the theorem.
Q.E.D.

Let G(p,v) = {g(p,v)} for all (p,v) X x R. in the event that y;
satisfies strict concavity for all ieN.

Theorem 9: Let y; satisfy strict concavity for all ieN. Then the
function g: X x R+ —«7 is continuous.
Proof :- Let <(pk,vk)/k e&) be a sequence in X X ®, with

lim (P, V=(p,v)eX x ®,. Towards a contradiction suppose
N



(a0*,v*) /K eN> does not converge to g(p,v). Thus there exists €>0

8% = {ke N/|g(p*,v5)-g(p,v)| =€} is infinite. Consider the
allocation z“e ®" such that z¥ =u7! (v /p¥),2* =0 VieN\{1}. Thus,
Zp%‘ui(z]{)= vk, Thus, Zgi(pk,vk)s zlf VkeN. If lim zlf =+wo, then
ieN ieN k—o
lim v& / pX = +o0. Since lim V> 0, this means lim pk = 0. Since

—w®

k> k—w

lim p* =p€X, 31eN : p;>0. Without loss of generality assume

k>

pi>0. Then clearly (2} /k eN> is a bounded sequence. Thus
<g(pk,vk)/k eN) is a bounded sequence. Let <g(p“(m),v“‘m))/m eN) be
a subsequence of <g(p“,vk )/ k €N> such that k(m)e &,;Vme N and
lim g(p¥™ vk _y c;? By theorem 7, xeG(p,v). Thus x=g(p,v).

This contradicts 'g(pk Vo) - g, v)' >eVk en,. Thus

lim g(p*,v¥)=g(p,v). This proves the theorem.

Q.E.D.

1\

Let e: X x ®,—> %, be defined thus : e(p,v) = xx; where xeG(p,v).
ieN

Clearly e is well defined. Further V(p,v)eX x %, and t>0 : e(p,v)

= e(tp, tv). e is called the expenditure function.
Theorem 10 :- ¢ is continuous.

Proof :- Let <(p“,v“)/ k eN> be a sequence in X x ®, with

lim (p¥,vE)=(p,v) X x ®,. Towards a contradiction suppose

koo

<e(pk , vk) /k eN) does not converge to e(p,v) Hence there exists €>0:

N1={ke N/|ep*,v¥) - e(p, v} 2¢} is infinite. Let x*eG(p*,v¥), ke .
Thus e(p, vk)=iz:Nx‘i‘ . For reasons similar to that discussed in the
initial part of Theorem 9, (x* /k ex) is a bounded sequence. Hence
it has a subsequence (x*™ /m ex) such that k(m)e X, YmeN and

lim xX(™ = x. Since G is upper hemicontinuous, xe G(p,v).

m—
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L e(p,V)= Tx; = xxkm =¢(p™,v*™) contradicting

ieN ieN

‘e(pk,vk) — &(p, v)‘ >evk eX,. Thus, € is continuous.

Assume each y; is strictly concave and continuously differentiable
with (1) Du;(h)>0 Vhe ®_. ; (ii) lim Du; (h)=+wo,
—>

Let pe ®2, ={xe ®1/x>0VieN}and v>0.Thus there exists A>0 :

piDu;(gi(p,v)) = A, ieN.
e(p,v) = Tzilp,v), g(p,v)€ RY,. Suppose in addition that
ieN

g: X x ®,— R4, is differentable on ®2, x®,.. We then have the
following :
Theorem 11 :- V (p,v)e RL, X R,,:

at(p v)

e =-u;i(gi(p,V))
E (p9 V) .

Proof :- Since e(p,v)= T gj(p.v) V (p,v)e R}, X ®,, ,we have
jeN

-ap—lm V)= ;ag;:’v) v (p.v)e RL, X R,

Now under our assumptions, z pJuJ(gJ(p V)= ‘vV(p,v)e R XR,,.

- ui(gi(p,v)) + X p.Du (g (p, "))5:(9 V) =0.

JEN

L uEpV) + A s Blpv-o.
jeN Op

u,(g,(p,Vv))
JEZN (p,v) = et

Now > pu (g;(p.v)) =VV(p,v)€ R} XR,,

jeN

Hence, 3 pDu (g, v))éBg (p.,v)=1.

JEN

. og; B
..Xj)g_N—aT(p,v)—l.



\3

Finally, e(p,v)= z gi(p,v) V (p,v)e RY, X R,

implies ¥ E(" V)= z ig—(p WV (p,v)e R, X R,
jeN

s R(p, v)= I' This proves the theorem.

QE.D.
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