I 3L VAL

AHMEDABAD

Working Paper

B

w. P 493




A NOTE ON TWO-PHASE METHOD FOR A
CLASS OF METRIC MODELS IN
INDIVIDUAL SCALING

By

Vina Vani
&
M. Raghavachari

W P No. 493
February 1984

The main objective of the working paper
series of the IIMA is to help faculty
members to test out thelr research
findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-38001 %
INDIA



A NOTE Ol TWO-PEASE METHOD FOR A CLASS OF METRIC MODEL3 IN
INDIVIDUAL SCALING

VINA VANI
M.G., Science Institute, Ahmedabad, India

and

M, RAGHAVACHARI
Indian Institute of Mgnagement, Ahmedabad, India

1, Introduction

In this note, we discuss the typical problem in individual
scaling viz., finding a common configuration and weights
“attached to dimensions for each individual from the given
intgrpoint distances or scalar products. Tucker and

Messick [1963], Horan [1969] and others have developed
procedures for solving the problem, Carroll and Chang [1970]
defined a minimization criterion (STRAIN) in terms of product
moments computed from raw data. They use ah alternative least
square (ALS) method for estimating the configuration and
weights. Within the STRAIN frame work, Schonemann [1972]
presented an algebraic solution in the case of exact data.
Takane,sYoung and De Ieeuw [1977] proposed a procedure called,
ALSCAL in which the criterion function (SSTRESS) is in terms
of distances obtained from raw data. The c0nfiguratioﬁ and

weights are obtained by solving certain normal equations in

the least square method alternately.



In this note, we consider the problem within the STRAIN
framework and probose ‘a two-phase method., In the first

~ phase, the problem of determining the optimal weights (Wi)
for a given configuration (X) is posed as a standard quadratic
programning problem for which efficient finitely convergent
algorithms are available, In the second phase, for a given
set of welghts (W), a:system of equations is developed for
obtaining the configuration X. The relation to the quadratic
programming problem to obtain Wi and the approach to obtain X
appeéar to be neé; An explicit solution to the problem is
\6btained'f9r one dimensional case and an approach is described
for the two dimensional problem. Humerical examples are given
for one and two dimensions cases. The solution obtained by
the proposed method is alsoc compared with the solution obtained

by Schonemann [1972] for the two-dimensional problem.

2. Problem Formilation

Given P, ¢t nx n, (1 =1, ... N) symmetric and positive semi-
definite matrices for N individuals, the mathematical problem

is to fdnd a n¥ t matrix X and t x t diagonal matrices

wi = diag (Wil, - e e w-t)}‘: i = l, LI ) Iq
such that

| N
CSTRAIN = X tr (P; - XW,x)° (2.1)
i=1 +



is minimim subject to t he condition

(2.2)

wirzor; i:l’ .-o'jl'r, I‘=l, P to

I, is the identity matrix of order t and tr(A) denotes the

trace of matrix A., When the optimal value of STRAIJ is zero,

we have

_ Py = XWX i=1, .o, K (2.3)

‘We call this as the Exact Case and in this case, P; s are

exactly decomposed into xwix'. When the optimal value of the
objective function in the problem‘given by (2.1) and (2.2) is
strictly positive, we are in the fallible case and we cannot

find exactly X and Wy such that (2.3) holds.

3. Proposed Procedure and its Relation to others

We propuse a procedure with two phases for solving the above

problem given by (2.1) and (2.2).



Phase At To find optimal Wi for any given X:

for any given X, the STRAIN is function of W; only and (2.1)
can be written as
| N W

STRAIN = ¥ tr(XW,X')° - 2 % tr(P.XW.X' )
i=1 i =1 ¢4

I
+ T tr (@) (3.1)

i=1

From (3.1), if&can'be seen that the objective function (2.1)
is quadratic and convex in Wipt i=1, ... 8, r=1, ... t.
Hote that Z tr(P&z) is a given quantity which does not
depend upo;flwir . Thus for a given X, the determination of
optimel W; = diag (wyq, ... Wwig)s 1= 1, ... N is a convex
quadrzatic programming problem with linear constraints (2,2).
To solve this problem, efiicient finitely convergent
algorithms are available. See for example, Wolfe [1959],

Cottle and Dantzig [1968]} and Ravindran [1972)}. Thus cxact

optimim Wi, S are obtained dircetly for a given X.

Phase B: To obtain X for given Wy

In this phase, using the valucs of wi, i=1, ... N obtained
in Phase A, configuration X is estimated so that STRAIN as a

‘function of X only is minimum,



Iet X be an optimum solution to (2.1) for given Wi
satisfying (2.2). Then a nccessary condition satisfied by
optimal X is clearly é?n (STHAI) = 0 or from (3.1),

i

z (xwix - P) XW =0 (3.2)
i=1

Iet yr(r = 1, vs. t) be a column vector of X. Then

X = (yl - yt). With this notation, (3.2) can be written

as N
PUYIVL T T eeeees T 2V Y T QN
t e vt s o e DR -:-o (3'3)
\ ' -
Zga¥aVy Vg T oeeeees T Zpe¥e¥y Yy T Q¥

Where Zngy S = ly +.v. T are the diagonal elements of

W
A, = Z W, w, , =1y .u, t 3
r g=1 1 'ir

N

T iElP& Vips T

and

l’ * o8 t

Solviag for X in (3.2) is equivalent to solving equations
in (3.3) for Y15 Yor ees Fyo (3.3) is a system of
non-lincar homogeneous equations of third degree. We are

looking for a non-trivial solution. The equations in (3.3)



can be solved, for example, by ilcwton-Ranhson method or

some other avnropriate numcrical alulysis method, PFhase A

and phese B are iterated till a satisfactory level of SIRALL

ig attained. Initially to sEart phase A, we can take X to

be o gram factor of P = % -g Pi'
i=1

is mentioned before, Schonemann [1972] presented a solution

for cxact data and indicated a heuristic method for non-

cxact data. In the ALSCAL method proposed by Takane, Young

and Do Iceuw [19773, W, (1=1, ... H) are obtoined by

solving normal equations in the leust squares e thod which

may ontail the violation of non-negativity constraint (2.2)

and further adjustment has to be made to make them non-

nogative, As pointed out in this note, the determination of

W, satisfying (2.1) and (2.2) for a given X, poses no proplem

since optimal wi are obtained directly solving a quadratic

programming problem. It can be seen that the minimization

criterion defined in AISCAL in terms of distances is also a

convex , quadratic function of wi (1 =1, ... §), This implies

the validity of the gquadratic programuing formilation in this

situ-tion as well. Thus the proposed method 1s superiof and

direct for determining wi for any given X over ALSCAL or any

other methed., Thus the main problem in Individual Scaling is

the problem of determining the configuration X for given

Wy (1 =1, ... §). The equations in (3.3) can be solved by



mumerical analysis methods, We discuss below the special
cases for t = 1 and t = 2, since in most apnlications one is

interested in lower dimensions only.

4, Speclalization to t =1and t= 2

Since phase 4 can be implemented exactly for a given X, we
discuss the specialization for t = 1 and t = 2 only for
phase B, For t = 1 gnd t = 2 the algebra in phase B is
simplified and we give below o few results for these cases.
We obtain o closed form solution X for given wi for the case

t =1,

Case (1) 3 t = 1:

In this case (3.3) reduces %o

N
2 -

where X is a n x 1 column vector. From (4,1), we have

[, - 2, (32 le) IlJx=o (., 2)
where
N
_ 2
211 % 2 Vi1



(4.2) implies that X is an eigen vector of Q; corresponding

) n
to the eigen value zll_z x?l.

=1
We find the eigen values and corresponding eigen vectors of
Q1. We select the eigen vector corresponding the eigen value
for which

n .
( 5 x§1 ) = ( Eigel; va;ge )
=1 11

Thus a closed form solution to (3.3) for t 1 is obtained.

Cage (ii): t = 2:

In this case, from (3.3), we have

1) t —
Z11 VY1 Y1t 235 VoV ¥y T QY
&,3)
[ 1
By Y1¥1 Yo t Zpp V¥V = QpYp

A closed form solution to &.3) seems difficult to obtain. As
mentioned before we could obtain yq, ¥, by numerical analysis
approach. We however, give a remark in the spirit of the
method used for t = 1 case, and relate the solution to the

elgen vectors of some matrix.



Let p; =y; y; and P, = y5 y,. We have from (+.3),
[€Qy = 755 By 1) (Qy - 299 B 1) - Z:]2,2?“2 Iy, =0 (4 .4)

' 2
[(Ql - le ﬁl In) (Qz - 222 52 In) - zl?_ 0 (I+05)

P‘a In:I Y2

Suppose g, and B, are known, Wefind the eigen values and

corresponding eigen vectors of R and R’ where
R = QQ -228, @ =218 & (+.6)

(4+.4) and &+.5) imply that there exists an eigen value
E of R, such that

p2o 21 fube Fa2 4.7
%12

The right side of (4.7) is calculated for each of the eigen
values of R, We select those elgen vectors y, and y, from
the set of eigen vectors R and R respectively for which
y1'yy = By s ¥a'Vo = By and (7,'v)% =4 obtained by (+.7).
Thus a solution is obtained when p; a.nci"ﬁ2 are known. A
possibility is to try for several pairs of values (Bl, 52)
and obtain y; and y, satisfying yj:¥; = By Yo Vo = Bp ana
-(yi’ y2)a= p-2 with ;.cz given by &.7).
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5, Numerical Examples

Numerical exammles for t = 1 and t = 2 cases, covering phase A
and phase B methods are given below., We have taken t he same
exampie considered by Schonemann [1972] for fallible data. For
this example, we obtain one-dimensional and two-dimensional

configurations and the weights. For t = 2, results are compared

with the results obtained by Schonemann [1972].

Example 1:
Here N = 3, n=4%, t = 1 and Py 2o, FB are as in

Schonemann [1972]. Given Py, P, and Py matrices for three
individuals, we want to find a &+ x 1, configuration matrix X

- and weights Wi1s Yo and Wiy assigned by three individuals,

Initial value of X is obtained as gram factor of P which is
given by X'= (2.1, 3.2, 1.0, 1.,07). For this X, we find
Wi1s Wpqp and w3l by solving a quadratic programaing problem as
wyp = 1.3891, Wy 0.4%99%%, Wap = 1.1115., Using these values,
Ql = ileE Wiq Is calculated, The eigen values gnd
corresponding eigen vectors are found. We found that eigen
vector X'= (2.180, 3.456, 0.910, 1.190) with I x7) = 18.9%
corresponding to the eigen value 64%+.84 satisfie;1(4.2).
Repeating phase A and phase B, after a few iterations, the
final solution is obtained as X'= (2,197, 3.482, 0.911, 1202);

wy1 = 1.33, Wy, = 0.56, Wig = 1.11 and STRAIN = 45,65,
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Example 21

Here we take the same data as in example 1 and final

two - dimensional (t = 2) configuration. Thus P, P, and fé
are as in Example 1, Here also we take for the initial

& x 2) matrix X as a gran factor of P and initinte phase &
to find W, Wé and wj. In phase B, we solve the equations
(4+.3) by Newton-Raphson method. Iterating phase A and

| phase B, after thirty iterations, 1t was found that the

values of wi and X remained the same upto two decimal places.

The final X and Wy (1 = 1, .2, 3) are given by

-

[ 0,90  2.03 ] W, = diag (0,97, 1.50)
. - 1.81 2.98 W, = diag (0,73, 0.49)
2.0 1.03 Wy = diag (1.30, 1.01)

L2.08 0.10 ) STRAIN = 0,942

Schonemann [1972] provosed the solution developed for exact
case as an approximation to the fallible case. For.this
problem, Schonemann [1972] obtained a solution for which
STRAIN = 1,219%%., The value of STRAIN obtained by the
proposed method is smaller than the value given in

Schonemann [1972].
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