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1 Introduction

One of the problems faced by researchers in the field of quanti-
tativé_economics relates to choice of appropriate functional forms
from amongst many that can be estimated on the basis of available
data on a given set of causal and effect variables. Most economic
phenamena could alternatively, be stated alternatively as an
effect variable y dependimgupon K causal variables, namely X1: Xoo
eee and X . A good understanding of emnomic reasoning both in
theory and practice will help a lot to specify, define and quanti-
fy the above mentioned variables but it seldom comes to one's
rescue while one battles to understand the mode of dependence
between y and x variables. The only way that appears to be availa-
ble at this stage is to collect adeguate data on these variables
and try to figure out the mode of dependence on the basis of the
data at hand. Algebraica%ly, the statment that y depends upon

4
Xyreoss X CAN be expressed as
(1.1) Y = f(Xl, FEX }C}{) u)

where f stands for 'function of' and y denctes error in the



function that persists in spite of best efforts to identify,
define and quantify the variables associated. with .the pheno-

menon that one wants to explain. This function may be linear:

e

(1.2) y=Bo+lel+...+ﬁkxk+u
exponential:

(1.3) log y

Il

Bo 4'ﬁlxl + eed +5k X, +u

doubl e~10g:

(1.4) log v = o + ﬁl -log X, + cee + 5k log xk + u

\

or, of any other form. The B coefficients and error tem u in

the above forms are understood to be different in case of diffe-
rent relations. In general, Taylor expansion can transform any
relation like (1) into a polynomial of appropriate degree. Such

a polynomial of second degree can be written as

' , 2, 2 A
(1.5) Y = BO + ﬁl Xl + aaw + Bk )(]{ +al xl + ouoq{){k +4co+ u
where terms of higher q{der of x's could be included if necessary.

Estimation of an economic relation, however, is only an inter-
mediate step because often the estimated relation is to be em=-
ployed to obtain forecast on the effect variable. Forecasts

will be close to true value if mistakes are avoided in respect



of evef§ step of the whole exercise including choice of right
functional form.. It is, therefore; better to examine this pro-

blem from the angle of getting good forecasts.

The problem has been discussed in .several texts on econametrics
and applied econometrics. One of these éfg7 provides a gocd
aecount for the benefit of applied economists but the dis-
cussion is not conclusive. The results reported in this note
will hopcfully narrow down the ambiguity that exists on the

subject.

2 An useful Statistic

Tn order’to understand the nature of the statistic in rela-
tively less algebraic term, we will start with a brief dis-
cussion of forecasts. Forecasts are of two typés. The first
is known as ex-ante forecast where the specified model is

used to generate data on effect variable for the sample

periods cr units depending upon whether the data is time-
series or cross-section. The other type of forecasts are known
ex—posﬁ.whcre the estimgzted model is used to obtain forecasts on
effect variable for th¥ periods or units outside the sample.
Obviocusly, the accuracy of ex-post forecasts will depend upon

the accuracy of ex-ante forecasts besides other factors.®

1. . .
Discussion on various factors that affect accuracy of forecasts
is available in / 1/ where the issues have been examined
empirically as well as theoretically.



It should be bome in mind that accuracy of ex~ante forecasts
helps in getting better ex-post forecasts but does not guarantee
the same because other factors, as pointed out above, have their
own role to.play. Therecfore, we may consider the accﬁracy of
eﬁ;anté forecasts as a pre-requisite for the accuracy of ex—post

forecasts.

Let us examine the problem of developing a measure for testing
the accuracy of ex-ante forecasts from alternative specifications
implied by the modd (1.1). Supposing that n observations are
available on the variables involved,then, for the i-th sample

unit, we can write relation (l.1l) as

7

(2.1) v; = £ (Xli' cenr Xy g u, )

Further, whatever may be the specified form, let us denote the
estimated form f(.) so that ex-ante forecast fram the specifica-

tion under consideration are given by

A A -
(2u2) yi =f (Xli) 'Yy Y, in)

v
-

i = 1)‘...' n
A
The ex-ante forecast, namely, v; will be perfect if it is equal
to the observed value vy for each i. The measure of closeness

will vary fram one form to other. For all estimating methods
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A
used the estimates Yy depend upen. ¥ . and i1f both are measured
‘around their respective means then closeness between the two can

be measured by finding correlation coefficient for the model.

A

(2.3) V.

g TBY; T Yy

where the error term uy tends towards zero as B approaches unity.
Sinex y, may be computed in relation to different forms of

f(xl, cees xk) the model (2.3) will yield as many correlations as
the number of forms of which the highest one may be denoted by
nE, usually known as correlation ratio. This is a measure of

explanatory power of the model. Thus we may write

maximum correlation from amongst those between

o

(2.4)

y and various forms of £(x;,.essX)

2 2
max (rkl’..‘) %)

It

where F denotes possible number of functional forms and qi is
correlation ratio corresponding to i-th forces. In particular
if f(xl,...,xk) is linear as in (l.2) and coefficients are

estimated by least squares procedure, ghen"qf = QE where

L !
(2.5) QE = maximum correlation between y and linear

form (1.2) of f(xl,...,xk)

The maximum is achieved when B's are estimated according to

least squares. From this it follows that



(2.6) rf 2 Qz.

Keeping the concept of y to be same and altering functioneal
forms of f(xl,...,xk), the choice should obviously go in favour

of the model that leads to higher value of n2.

Computation of qf can be made straight away for models like(1.2)
and (1.5) where same y is explained by alternative forms. It
cannot be done similarly in case of models like (1.3) and (1.4)
where estimated models yield estimates of log y rather than y.
The measure q? for model (l1.3) and (l.4) represent correlatién
between original log Yy and estimated log vy which is not the
same as correlation between Yy and Yy Estimates of effect
variable from all forms of f(xl,...,xk)must be transﬁ@#yéd back
into original dimension and correlations may be computédfin
terms of those to get comparable estimates of qf.

~

An estimate of forom a sample of size n is represented by Rz,

the multiple correlation, which can be defined as

A
(2.7) R2 = Square of correlation between ¥y and yi

A
when Yy is estimated from a linear form
o .

(L.2)according to least-squares,

To find similar measurcs. for models like (1.3) and (1.4)

one can proceed as follows. Let log Yy be represented by
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A
we and Wi be estimate of W then, wc can find
‘ A ) A
(2.8) z; = anti-log LA
A
so that 2y has same dimension as Y. We may now define a mea-
sure of explanatory power of models like (1.3) and (1.4} as

follows:

A
(2.9) R% = square of corxrelation between Yy and ;.

2 . . 2 .
The measure R) is an estimate of p’ when f(xl,...,xk) is expo~
nential. Therefore to see as to whether relation (2.6) is
valid in case of models (1.3) and (l.4) one can compare Ri
with Rz. Sometimes one is tempted to compare R2 with Ri defined

as

A
(2.10) Rf = square of correlation between Wy and w,

But such a comparison could be misleading because Rf cannot be
said to estimate r\?‘ in any sensc. The conclusions could also
be misleading in actual empirical situation as described in

the next scction.

3 DBupirical Results

The anomaly involved in irrelevant comparison of explanastory
powers is illustrated empirically in this section by using
linear and double log medels for explaining demand for schools

in Gujarat, Bank credit for scheduled Cammercial Banks in India



and Sugar for entire India. Data for demand for schools
function. are cross-section,sampled from those given in 1961
Census of Gujarat State; while for the other two functions
time-series data are usecd. éample period for bank credit
consists of annual data over the period 1948-49 to 1967-68 while
that for sugar are again annual figures over the period of

1855-56 to 1972—73.2

Using the data various modds were estimated. Results for linear
and double~log models are reported in the following table.

~ Table 1
Estimated Demand Functions

7

Demand
Variable Form Estimated Model
Bank Linear C = -41,4940,437D40,97DD4+8,.,991
Credit Doubl e~
log Log C = 0417 + 0,32 10og TD+0.55 log DD +
s
~ 0.44 log I
Schools Linear S = 0.05 + 0,13P -~ 0.12B
Doubl e- Log S = -1.,89 + 1,01 log P - 0.11 log B
log
Sugar Linear SU = -6251,62 - 5.00 PS + 1.29 PG +

L 3
183,08UP ~ 26,83TC -~ 0.61CC

Double- log SU = -4,14 -~ 0.46 1log PS +8.11 log PG +

log
5.09 log UP - 1.84 log TC i0.14 log Cq

2Data are reported in Misra Zl? and to be made available with
details on demand.



The symbols stand for:

) m H g

[os]

PS
PG
Uup
TC

cC

(1] (13 X e (X3 .. . e0 (] TS (1] ’e

L]

Demand for bank credit

"Time deposit with schedul ed banks

Demand deposit with scheduled banké
Loan rate

Demand for schools

Population

Number of business houses

Demand for Sugar

Price of Sugar

Price of Gur

Urban Population

Tea Consumption

Coffee Consumption

We skip over discussion on relevance, and significance of esti-

mated results and concentrate upon comparison of explanatory

power alone for the purposes of this note. Most' computer

programmes provide results for Rz, as defined in (2.7), for

linear models and h% , as defined in (2.10), for double-log

'Y
models. We have als:> canputed R2

1+ @ defined in (2.9), for

doubl e-1og models and present the results in the following

table:
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Table 2

Alternative Estimates of Explanatory Power

Demand variable R2 Ri R2l

Barnk Credit 0.990 0.987 0.990
Schools 0.940 0.980 0.940
Sugar 0.860 0.970 0.880

The results, as given above, do not suggest that a high or low

magnitude of Rf does always imply high or low magnitude of Rzl.
For bank credit equation Ri < R2 but Rzl = Rz, for schools
2 2 252 2

equation Ri > rR? but R 1 ¢ R", and for sugar Ry >R“ and R2l > R%,
Thus all kinds of relations are possible and RE does not bear
any definife relation with Rzl. Remembering that R21is the con-
cept that resembles qf and the fact that it does not bear any
relation with Rz* we conclude that measures such as RZ* should
not be used to compare explanatory power of econometric models,
At the same time, a meaningful canparison is possible if one
computes measures comparab%e to Qf and then finds out the

model that leads to hdéhest magnitude of qf. Tt is desirable
that enough number of alternative models are estimated and

high magnitdde of q? is considered as only one of the several

other relzvant factors to choose the model for inference and



