Please use this identifier to cite or link to this item:
http://hdl.handle.net/11718/10075
Title: | Classification of pathological stages of prostate cancer using penalized splines |
Authors: | Banerjee, Tathagata Maiti, Tapabrata Mukhopadhyay, Pushpal |
Keywords: | Logistic Regression;Nomogram;Organ-Confined Disease;Receiver-Operating Characteristic Curve |
Issue Date: | 29-Oct-2010 |
Abstract: | We propose a penalized splines (P-splines) based method to predict the pathological stage of localized prostate cancer. A combination of prostate-specific antigen, Gleason histological score, and clinical stage from a cohort study of 834 prostate cancer patients are used to build the P-splines model. It turns out that the proposed methodology results in improved prediction of pathological stage compared to usual logistic regression after removing a few outliers. The improvement is shown to be statistically signifi- cant. Receiver-operating characteristic (ROC) curve is drawn and we show that the increase in area under the ROC curve over the commonly used logistic regression based classification method is also statistically significant. © 2005 Elsevier B.V. All rights reserved. |
Description: | Computational Statistics and Data Analysis, Vol. 51, (2006), pp. 1147 - 55 |
URI: | http://hdl.handle.net/11718/10075 |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Classificationofpathological.pdf Restricted Access | 286.24 kB | Adobe PDF | View/Open Request a copy |
Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.