Please use this identifier to cite or link to this item: http://hdl.handle.net/11718/17282
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLaha, Arnab Kumar
dc.contributor.authorMahesh, K. C.
dc.date.accessioned2016-01-07T11:04:15Z
dc.date.available2016-01-07T11:04:15Z
dc.date.copyright2015
dc.date.issued2015
dc.identifier.citationLaha, A. K., & K.C., M. (2015). Robustness of tests for directional mean. Statistics: A Journal of Theoretical and Applied Statistics , 49(3), 522–536. http://doi.org/10.1080/02331888.2014.940351en_US
dc.identifier.issn0233-1888
dc.identifier.urihttp://hdl.handle.net/11718/17282
dc.description.abstractIn this paper we study the robustness of the likelihood ratio, circular mean and circular trimmed mean test functionals in the context of tests of hypotheses regarding the mean direction of circular normal and wrapped normal distributions. We compute the level and power breakdown properties of the three test functionals and compare them. We find that the circular trimmed mean test functional has the best robustness properties for both the above-mentioned distributions. The level and power properties of the test statistics corresponding to these functionals are also studied. Two examples with real data are given for illustration. We also consider the problem of testing the mean direction of the von-Mises–Fisher distribution on the unit sphere and explore the robustness properties of the spherical mean direction and likelihood ratio test functionals.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.subjectCircular normal distributionen_US
dc.subjectCircular trimmed meanen_US
dc.subjectLevel breakdown functionen_US
dc.subjectPower breakdown functionen_US
dc.subjectSpherical trimmed meanen_US
dc.titleRobustness of tests for directional meanen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
Robustness of tests for directional mean.pdf
  Restricted Access
680.59 kBAdobe PDFView/Open Request a copy


Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.