Please use this identifier to cite or link to this item: http://hdl.handle.net/11718/17290
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNarayanaswami, Sundaravalli
dc.contributor.authorNarayan, Rangaraj
dc.date.accessioned2016-01-08T04:29:07Z
dc.date.available2016-01-08T04:29:07Z
dc.date.copyright2015
dc.date.issued2015
dc.identifier.citationNarayanaswami, S., & Rangaraj, N. (2015). A MAS architecture for dynamic, realtime rescheduling and learning applied to railway transportation. Expert Systems with Applications, 42(5), 2638-2656.en_US
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/11718/17290
dc.description.abstractRescheduling disrupted railway traffic is computationally hard even for small problem instances. Disruptions may not be known beforehand and can manifest themselves even when trains are en-route, and they are usually resolved by human experts. Wide geographical distribution, a dynamically changing environment, complex interdependencies between multiple components, operational criticality and uncertainty being characteristic of railway transportation, human resolutions are inconsistent, scale-inefficient and potentially infeasible with deadlocks. We present a multi-agent system (MAS) model for dynamic and real-time rescheduling (DRR) of bi-directional railway traffic on a single track in this paper. A computational framework to dynamically dispatch the disrupted trains in real-time, based on instantaneous system parameters and to reschedule conflicting trains with inherent deadlock avoidance is incorporated in the agents’ model. A learning architecture is implemented as a proof-of concept to resolve disruptions quickly and to enhance autonomy. The model is evaluated against integer optimal solutions generated by a Mixed-Integer Linear Programming (MILP) model using realistic data. Detailed discussions on architecture, implementation using JADE (Java Agent DEvelopment) toolkit, experimental results, performance analysis, evaluation of the model, insights and limitations are reported. The numerical performance measures of the model are total weighted delay of all trains at their destination terminals and computational time for resolution. The distinguishing research contributions in this paper are a MAS architecture for railway rescheduling, dynamic dispatch priority assignment using bidding and a learning procedure that enhances autonomy.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.subjectConflicten_US
dc.subjectDeadlocksen_US
dc.subjectDisruptionen_US
dc.subjectDynamic priorityen_US
dc.subjectResolutionen_US
dc.subjectMulti-agent system (MAS)en_US
dc.subjectSingle-track bi-directional railway trafficen_US
dc.subjectDynamic real-time reschedulingen_US
dc.titleA MAS architecture for dynamic, realtime rescheduling and learning applied to railway transportationen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
MAS architecture for dynamic.pdf
  Restricted Access
2.52 MBAdobe PDFView/Open Request a copy


Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.