Please use this identifier to cite or link to this item: http://hdl.handle.net/11718/19338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSriram, Karthik
dc.contributor.authorRamamoorthi, R. V.
dc.contributor.authorMartin, R.
dc.date.accessioned2017-06-01T11:38:29Z
dc.date.available2017-06-01T11:38:29Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/11718/19338
dc.description.abstractWe investigate the asymptotic behavior of Bayesian posterior distributions under independent and identically distributed (i.i.d.) misspecified models. More specifically, we study the concentration of the posterior distribution on neighborhoods of f*, the density that is closest in the Kullback-Leibler sense to the true model f0. We note, through examples, the need for assumptions beyond the usual Kullback-Leibler support assumption. We then investigate consistency with respect to a general metric under three assumptions, each based on a notion of divergence measure, and then apply these to a weighted L1-metric in convex models and non-convex models. Although a few results on this topic are available, we believe that these are somewhat inaccessible due, in part, to the technicalities and the subtle differences compared to the more familiar well-specified model case. One of our goals is to make some of the available results, especially that of Kleijn and van der Vaart (2006), more accessible. Unlike their paper, our approach does not require construction of test sequences. We also discuss a preliminary extension of the i.i.d. results to the independent but not identically distributed (i.n.i.d.) case.en_US
dc.language.isoen_USen_US
dc.publisherBayesian Analysisen_US
dc.subjectBayesianen_US
dc.subjectConsistencyen_US
dc.subjectKullback-Leibleren_US
dc.subjectMisspecifieden_US
dc.titleOn posterior concentration in misspecified modelsen_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
File Description SizeFormat 
On posterior concentration_Karthik Sriram_Bayesian Analysis_2015.pdf
  Restricted Access
386.24 kBAdobe PDFView/Open Request a copy


Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.