Please use this identifier to cite or link to this item:
http://hdl.handle.net/11718/23067
Title: | Inventory allocation in robotic mobile fulfillment systems |
Authors: | Roy, Debjit Tessensohn, Tim Lamballais Koster, René B.M. De |
Keywords: | Material handling;Mobile fulfillment;Queuing systems;Robotics;Warehousing |
Issue Date: | 2020 |
Publisher: | Taylor and Francis |
Citation: | Lamballais, T., Roy, D., & De Koster, M. (2020). Inventory allocation in robotic mobile fulfillment systems. IISE Transactions, 52(1), 1-17. doi: 10.1080/ 24725854.2018. 1560517 |
Abstract: | A Robotic Mobile Fulfillment System is a recently developed automated, parts-to-picker material handling system. Robots can move storage shelves, also known as inventory pods, between the storage area and the workstations and can continually reposition them during operations. This art- icle shows how to optimize three key decision variables: (i) the number of pods per SKU; (ii) the ratio of the number of pick stations to replenishment stations; and (iii) the replenishment level per pod. Our results show that throughput performance improves substantially when inventory is spread across multiple pods, when an optimum ratio between the number of pick stations to replenishment stations is achieved and when a pod is replenished before it is completely empty. This article contributes methodologically by introducing a new type of Semi-Open Queueing Network (SOQN): cross-class matching multi-class SOQN, by deriving necessary stability conditions, and by introducing a novel interpretation of the classes. |
URI: | http://hdl.handle.net/11718/23067 |
ISSN: | 2472-5862 |
Appears in Collections: | Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Inventory allocation.pdf Restricted Access | 2.83 MB | Adobe PDF | View/Open Request a copy |
Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.