Please use this identifier to cite or link to this item: http://hdl.handle.net/11718/23198
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVishwanathan, Saritha S.-
dc.contributor.authorFragkos, Panagiotis-
dc.contributor.authorFragkiadakis, Kostas-
dc.contributor.authorParoussos, Leonidas-
dc.contributor.authorGarg, Amit-
dc.date.accessioned2020-08-20T05:43:20Z-
dc.date.available2020-08-20T05:43:20Z-
dc.date.issued2018-10-03-
dc.identifier.citationVishwanathan, S., Fragkos, P., Fragkiadakis, K., & Paroussos, L. (n.d.). Energy system transitions and macroeconomic assessment of the Indian building sector. Building Research & Information, 47(1), 38-55. https://doi.org/10.1080/09613218.2018.1516059en_US
dc.identifier.issn14664321-
dc.identifier.urihttp://hdl.handle.net/11718/23198-
dc.description.abstractIndia’s energy sector has grown rapidly in recent years with buildings playing a major role as they constitute about 40% of India’s final energy demand. This paper provides a quantitative model-based assessment of the evolution of India’s building sector in terms of both energy systems transition and its macroeconomic implications. The coupling of a bottom-up technology-rich energy system model with a macroeconomic computable general equilibrium (CGE) model provides an innovative approach for the in-depth robust analysis of the energy transition in India’s building stock and the induced macroeconomic and employment impacts on the Indian economy. Two main scenarios are explored, namely: the business-as-usual (BAU) and the advanced nationally determined contribution (Adv. NDC) scenarios. The investigation shows that efficiency improvements are vital to counteract the upward pressure on energy demand in the building sector. Energy demand in the building sector results in an increase of CO2 emissions by 27% between 2015 and 2030 due to the technology transition from inefficient solid fuels (traditional biomass) to cleaner energy (liquefied petroleum gas (LPG), piped natural gas (PNG)) before shifting to electricity. The Adv. NDC scenario also leads to a shift in employment from agriculture and towards sectors that benefit from the implementation of Adv. NDC, especially in the construction sectors, electricity and manufacturing sectors.en_US
dc.language.isoen_USen_US
dc.publisherTaylor and Francisen_US
dc.subjectBuilding stocken_US
dc.subjectComputable general equilibrium (CGE) modelen_US
dc.subjectEnergy demanden_US
dc.subjectEnergy system modelen_US
dc.subjectMacroeconomic assessmenten_US
dc.subjectNationally determined contributionen_US
dc.subjectTechnology transitionsen_US
dc.subjectIndiaen_US
dc.titleEnergy system transitions and macroeconomic assessment of the Indian building sectoren_US
dc.typeArticleen_US
Appears in Collections:Journal Articles

Files in This Item:
There are no files associated with this item.


Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.