Please use this identifier to cite or link to this item: http://hdl.handle.net/11718/25186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRamamoorthi R.V.
dc.contributor.authorSriram K.
dc.contributor.authorMartin R.
dc.date.accessioned2022-02-11T10:13:48Z-
dc.date.available2022-02-11T10:13:48Z-
dc.date.issued2015
dc.identifier.citationRamamoorthi, R. v., Sriram, K., & Martin, R. (2015). On posterior concentration in misspecified models. Bayesian Analysis, 10(4). https://doi.org/10.1214/15-BA941
dc.identifier.issn19360975
dc.identifier.urihttps://www.doi.org/10.1214/15-BA941
dc.identifier.urihttp://hdl.handle.net/11718/25186-
dc.description.abstractWe investigate the asymptotic behavior of Bayesian posterior distributions under independent and identically distributed (i.i.d.) misspecified models. More specifically, we study the concentration of the posterior distribution on neighborhoods of f*, the density that is closest in the Kullback-Leibler sense to the true model f0. We note, through examples, the need for assumptions beyond the usual Kullback-Leibler support assumption. We then investigate consistency with respect to a general metric under three assumptions, each based on a notion of divergence measure, and then apply these to a weighted L1-metric in convex models and non-convex models. Although a few results on this topic are available, we believe that these are somewhat inaccessible due, in part, to the technicalities and the subtle differences compared to the more familiar well-specified model case. One of our goals is to make some of the available results, especially that of Kleijn and van der Vaart (2006), more accessible. Unlike their paper, our approach does not require construction of test sequences. We also discuss a preliminary extension of the i.i.d. results to the independent but not identically distributed (i.n.i.d.) case. � 2015 International Society for Bayesian Analysis.
dc.language.isoen_US
dc.publisherInternational Society for Bayesian Analysis
dc.relation.ispartofBayesian Analysis
dc.subjectBayesian
dc.subjectConsistency
dc.subjectKullback-Leibler
dc.subjectMisspecified
dc.titleOn posterior concentration in misspecified models
dc.typeArticle
dc.contributor.affiliationMichigan State University, East Lansing, MI, United States
dc.contributor.affiliationIndian Institute of Management, Ahmedabad, India
dc.contributor.affiliationUniversity of Illinois at Chicago, United States
dc.contributor.institutionauthorRamamoorthi, R.V., Michigan State University, East Lansing, MI, United States
dc.contributor.institutionauthorSriram, K., Indian Institute of Management, Ahmedabad, India
dc.contributor.institutionauthorMartin, R., University of Illinois at Chicago, United States
dc.description.scopusid6701653979
dc.description.scopusid55755644500
dc.description.scopusid57213988855
dc.identifier.doi10.1214/15-BA941
dc.identifier.endpage789
dc.identifier.startpage759
dc.identifier.issue4
dc.identifier.volume10
Appears in Collections:Open Access Journal Articles

Files in This Item:
File SizeFormat 
on_posterior_concentration_2015.pdf386.24 kBAdobe PDFView/Open


Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.