Please use this identifier to cite or link to this item: http://hdl.handle.net/11718/27578
Title: Delta-perturbation of bilevel optimization problems: an error bound analysis
Authors: Antoniou, Margarita
Sinha, Ankur
Papa, Gregor
Keywords: Bilevel optimization;Optimistic bilevel problem;Pessimistic bilevel problem;Perturbation method;Error bound;Iterative heuristics;Population-based methods;Evolutionary Algorithms
Issue Date: 31-Aug-2024
Publisher: Elsevier
Abstract: In this paper, we analyze a perturbed formulation of bilevel optimization problems, which we refer to as delta-perturbed formulation. The delta-perturbed formulation allows to handle the lower level optimization problem efficiently when there are multiple lower level optimal solutions. By using an appropriate perturbation strategy for the optimistic or pessimistic formulation, one can ensure that the optimization problem at the lower level contains only a single (approximate) optimal solution for any given decision at the upper level. The optimistic or the pessimistic bilevel optimal solution can then be efficiently searched for by algorithms that rely on solving the lower level optimization problem multiple times during the solution search procedure. The delta-perturbed formulation is arrived at by adding the upper level objective function to the lower level objective function after multiplying the upper level objective by a small positive/negative . We provide a proof that the delta-perturbed formulation is approximately equivalent to the original optimistic or pessimistic formulation and give an error bound for the approximation. We apply this scheme to a class of algorithms that attempts to solve optimistic and pessimistic variants of bilevel optimization problems by repeatedly solving the lower level optimization problem.
Description: In this paper, we analyze a perturbed formulation of bilevel optimization problems, which we refer to as delta-perturbed formulation. The delta-perturbed formulation allows to handle the lower level optimization problem efficiently when there are multiple lower level optimal solutions. By using an appropriate perturbation strategy for the optimistic or pessimistic formulation, one can ensure that the optimization problem at the lower level contains only a single (approximate) optimal solution for any given decision at the upper level. The optimistic or the pessimistic bilevel optimal solution can then be efficiently searched for by algorithms that rely on solving the lower level optimization problem multiple times during the solution search procedure. The delta-perturbed formulation is arrived at by adding the upper level objective function to the lower level objective function after multiplying the upper level objective by a small positive/negative . We provide a proof that the delta-perturbed formulation is approximately equivalent to the original optimistic or pessimistic formulation and give an error bound for the approximation. We apply this scheme to a class of algorithms that attempts to solve optimistic and pessimistic variants of bilevel optimization problems by repeatedly solving the lower level optimization problem.
URI: http://hdl.handle.net/11718/27578
ISSN: 2214-7160
Appears in Collections:Open Access Journal Articles

Files in This Item:
File Description SizeFormat 
a1.pdf1.47 MBAdobe PDFView/Open


Items in IIMA Institutional Repository are protected by copyright, with all rights reserved, unless otherwise indicated.