
INDIAN INSTITUTE OF MANAGEMENT

AHMEDABAD • INDIA
Research and Publications

A competitive genetic algorithm for single row facility
layout

Ravi Kothari
Diptesh Ghosh

W.P. No. 2012-03-01
March 2012

�
�

�
�

The main objective of the Working Paper series of IIMA is to help faculty members,
research staff, and doctoral students to speedily share their research findings with

professional colleagues and to test out their research findings at the pre-publication stage.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD – 380015

INDIA

W.P. No. 2012-03-01 Page No. 1



IIMA • INDIA
Research and Publications

A competitive genetic algorithm for single row facility
layout

Ravi Kothari
Diptesh Ghosh

Abstract

The single row facility layout is the NP-Hard problem of arranging facilities with given
lengths on a line, so as to minimize the weighted sum of the distances between all pairs of
facilities. Owing to the computational complexity of the problem, researchers have developed
several heuristics to obtain good quality solutions. In this paper, we present a genetic algorithm
to solve large SRFLP instances. Our computational experiments show that an appropriate
selection of genetic operators can yield high quality solutions in spite of starting with an initial
population that is largely randomly generated. Our algorithm improves the previously best
known solutions for the 24 instances of 43 benchmark instances and is competitive for the
remaining ones.
Keywords: Facilities planning and design, Single Row Facility Layout, Genetic algorithm

1 Introduction

The single row facility layout problem (SRFLP) is the problem of obtaining a linear layout of facilities
so as to minimize the weighted sum of the distances between all pairs of facilities. The weights for
each of the pairs of facilities as well as the lengths of each of the facilities are known beforehand,
and the distance between a pair of facilities is defined as the distance between their centroids. The
number of facilities in a particular instance is called the size of the instance. This problem was first
proposed in Simmons (1969) and was shown to be NP-Hard in Beghin-Picavet and Hansen (1982).
Formally stated the objective of SRFLP is to minimize the cost expression

z =
∑

1≤i<j≤n

cijdij ,

where cij is the weight and dij is the distance between the pair of facilities (i, j). Since the distance
dij between the pairs of facilities depends on the linear arrangement of the facilities, the solution to
the SRFLP is a permutation of facilities that minimizes the above cost expression.

The SRFLP has been used to model numerous practical situations. It has been used as a
model for arrangement of rooms in hospitals, departments in office buildings or in supermarkets
(Simmons 1969), arrangement of machines in flexible manufacturing systems (Heragu and Kusiak
1988), assignment of files to disk cylinders in computer storage, and design of warehouse layouts
(Picard and Queyranne 1981). There are also large number of applications of the special case of the
SRFLP in which the facilities have equal lengths. These include the triangulation problem of input
output tables in economics (Laguna et al. 1999), and ranking of teams in sports (Mart́ı and Reinelt
2011).

In the literature, several exact methods have been applied to solve the SRFLP to optimality.
These methods include branch and bound (Simmons 1969), mathematical programming (Love and
Wong 1976, Heragu and Kusiak 1991, Amaral 2006; 2008), cutting planes (Amaral 2009), dynamic

W.P. No. 2012-03-01 Page No. 2



IIMA • INDIA
Research and Publications

programming (Picard and Queyranne 1981, Kouvelis and Chiang 1996), branch and cut (Amaral and
Letchford 2012), and semidefinite programming (Anjos et al. 2005, Anjos and Vannelli 2008, Anjos
and Yen 2009, Hungerländer and Rendl 2011). These methods have been able to obtain optimal
solutions to SRFLP instances with up to 42 facilities.

Researchers have focused on heuristics for solving larger sized SRFLP instances. These heuristics
are of two types; construction and improvement. Construction heuristics for the SRFLP have been
presented in Heragu and Kusiak (1988), Kumar et al. (1995), and Braglia (1997). However these have
later been superseded by improvement heuristics. Most improvement heuristics for the SRFLP are
metaheuristics, e.g. simulated annealing (Romero and Sánchez-Flores 1990, Kouvelis and Chiang
1992, Heragu and Alfa 1992), ant colony optimization (Solimanpur et al. 2005), scatter search
(Kumar et al. 2008), tabu search (Samarghandi and Eshghi 2010), particle swarm optimization
(Samarghandi et al. 2010), and genetic algorithms (Datta et al. 2011). Among these the genetic
algorithm implementation in Datta et al. (2011) yield best results for benchmark SRFLP instances
of large sizes.

The only application of genetic algorithm to the SRFLP is in Datta et al. (2011). In that paper,
the authors demonstrate that genetic algorithms using basic genetic operators can yield low cost
solutions to large SRFLP instances. In this work, we examine a large number of options available
for the basic genetic operators and finally present a genetic algorithm which is competitive for large
sized SRFLP instances. The largest sized instance reported in Datta et al. (2011) has 80 facilities,
while in the current work, we examine instances with size up to 110.

Our paper is organized as follows. In Section 2 we introduce our genetic algorithm GA-KG for
solving large instances of the SRFLP. We then report the results of our computational experiments
with this genetic algorithm in Section 3 and compare our results with those available in the published
literature. We conclude the paper in Section 4 with a summary of the work.

2 Our genetic algorithm

A genetic algorithm (see, e.g., Goldberg 1989) is an evolutionary search algorithm which simulates
the natural evolution based on the principle of the survival of the fittest. An important component
of a genetic algorithm is to map the phenotypic space to the genotypic space and design the rele-
vant genetic operators to simulate the process of evolution. This mapping to the genotypic space
essentially decides the representation of the solutions for the problem under consideration. The rep-
resentations that have been widely used in the genetic algorithm literature are binary representation,
real representation, integer representation and the permutation representation.

A genetic algorithm begins with an initial population consisting of a set of solutions (also known
as the individuals or chromosomes) and evolves it over several generations by application of genetic
operators such as selection, crossover, and mutation. The selection operator selects good quality
solutions from the population to form a mating pool. The quality of a solution is generally decided
by the value of a fitness function. In optimization problems with a minimization objective like the
SRFLP, the fitness function is typically the inverse of the objective function value of the solution. The
members of the mating pool have comparatively high fitness function values and are subsequently
used for the crossover operation. The crossover operator generates child solutions by crossing parent
solutions selected from the mating pool with a probability of crossover pc. The children generated
are then subjected to the mutation operator which creates slight perturbations with a very small
probability of mutation pm. After every generation, the algorithm uses an elite preserving mechanism
which ensures that only the good quality solutions move to the next generation for the evolution.
The weak solutions are eliminated with the hope that the fitter solutions in a particular generation
will generate better solutions in subsequent generations and finally result in a good quality solution

W.P. No. 2012-03-01 Page No. 3



IIMA • INDIA
Research and Publications

for the problem under consideration. This process of evolution of generation continues till a stopping
criterion is reached.

In the remainder of this section we describe the components of our genetic algorithm implemen-
tation that we use for solving large sized SRFLP instances.

2.1 Solution representation

The representation of solutions in a genetic algorithm to solve a SRFLP is natural, since the solutions
are simply permutations of facilities. So we use a permutation representation of solutions in our
genetic algorithm.

2.2 Generation of the initial population

A population generation method for a genetic algorithm creates an initial generation of solutions
which are then modified by the algorithm. There are two considerations while generating this initial
population. The fitness of the solutions in the population should be high enough, and the solutions
themselves should be diverse in the genotypic space to prevent premature convergence. Population
generation methods are usually tailored to the problem that is being solved. For the SRFLP, we
present four methods to generate solutions in the initial population. These methods have also been
used in Datta et al. (2011).

Random initialization (RND) In this method, a solution generated is simply a random per-
mutation of the set of all facilities that define the problem.

Worst pair together (WPT) In this method, a solution is obtained by arranging facilities into
multiple subsequences, and finally merging the subsequences to obtain a permutation of facilities.
Initially, there are no subsequences, and all pairs (i, j) of facilities are ordered in non-increasing
values of cij(li + lj)/2. Pairs of facilities are considered for adding to subsequences in this order.
If both the facilities in the pair being considered are parts of existing subsequences, then that
pair is ignored. If one of the two facilities is a part of an existing subsequence, then the other is
located at one of the two ends of that subsequence with the objective of minimizing the cost of the
subsequence. If neither of the two facilities belong to any existing subsequence, then the pair forms
a new subsequence and the next pair in the ordering is considered. After all the pairs have been
considered, all the remaining subsequences are joined to the first subsequence obtained at the start
of the process, one at a time with the objective of achieving a lowest cost ordering every time a new
subsequence gets joined. Note that this method is deterministic.

Flow based permutation (FBP) In this method, the facilities are considered in non-decreasing
order of their average weight values wi =

∑n
j=1 cij li. A permutation of facilities is obtained by

placing the first two facilities next to each other, and then placing the j-th facility, j = 3, . . . , n, in
the ordering on the unoccupied side of the (j − 2)-th facility. This method is also deterministic.

Length based permutation (LBP) In this method, the facilities are considered in non-decreasing
order of their lengths. The first two facilities in this ordering are placed next to each other. The
j-th facility, j = 3, . . . , n, in the ordering is placed on the unoccupied side of the (j − 2)-th facility.
This method is again a deterministic method.

W.P. No. 2012-03-01 Page No. 4



IIMA • INDIA
Research and Publications

Our initial experiments showed that the solutions generated by the RND method typically had
significantly higher costs (and hence lower fitness) than those generated by the other three methods.
In the genetic algorithm described in Datta et al. (2011), in order to generate a population of size N ,
N/2 solutions are generated using the RND method and each of the other N/2 solutions is generated
by randomly choosing one among WBT, FBP, and LBP methods. This was possibly done to ensure
that solutions generated by the WBT, FBP, and LBP methods were chosen in the mating pool for
the next generation. However, since the fitness of solutions generated by these three methods was
much higher than those generated by the RND method, their selection was almost certain even if
the population did not contain too many copies of these solutions. On the other hand, reducing
the number of solutions that were generated by these three methods allows us to generate more
solutions by the RND method, which in turn increases the diversity of the initial population. In our
genetic algorithm implementation therefore, we generate N − 3 solutions using the RND method
and one each using WBT, FBP, and LBP methods. Measuring the diversity of populations using
the deviation distance measure (see, e.g., Sörensen 2007) we found that the diversity of our initial
population was 10.3% higher on average than that in Datta et al. (2011).

2.3 Creation of a mating pool

Given a generation of solutions, the first step in creating the next generation is to create a mating
pool for reproduction in a genetic algorithm. The solutions in the mating pool are subsequently
subjected to crossover and mutation operations to create candidate solutions for the next generation.
The solutions in a mating pool are selected from the population based on their fitness values. This
may allow multiple copies of the same solution in the mating pool. Hence a mating pool encourages
fitter solutions and eliminates the weaker ones. In general the size of the mating pool is same as
that of the population.

Several methods of creating a mating pool have been described in the literature. However the
following two methods have been most widely used.

Roulette wheel selection In a roulette wheel selection method, solutions from a generation are
chosen to be members of the mating pool with probabilities that are proportional to their fitness
values. Hence this method is biased towards selecting solutions which have better objective function
values, and ensures that bad quality solutions have a very low chance of being propagated across
generations in the genetic algorithm.

Tournament selection Tournament selection involves running several tournaments among k so-
lutions chosen at random from a population. The winner of each tournament is selected to be a
member of the mating pool. Generally, the fittest among the chosen solutions is the winner of a
tournament. The parameter k is known as the size of the tournament. Another way of selecting
solutions to enter the mating pool is to choose the fittest solution with a user-specified probability
p, the second fittest solution with probability p · (1 − p), the third fittest solution with probability
p · (1 − p)2, and so on. A tournament selection method that has been found to be very effective
is the binary tournament selection. In this method two solutions are randomly selected from the
population and the best solution based on the fitness value is selected for the mating pool. The
process is repeated till the desired size of the mating pool is achieved.

Our initial experiments showed that the mating pool obtained using a roulette wheel selection
method usually generates populations with higher average fitness but with lower diversity than a
binary tournament selection method. Consequently, if the roulette selection method is used, the
genetic algorithm converges prematurely and outputs solutions which are worse than those output

W.P. No. 2012-03-01 Page No. 5



IIMA • INDIA
Research and Publications

when the binary tournament selection is used. In our genetic algorithm implementation therefore,
we use the binary tournament selection operator to create a mating pool.

2.4 The crossover operation

The crossover operation mates solutions in the mating pool to create a population of solutions
which, after mutation, will be candidates for selection into the next generation of solutions. Since
the SRFLP is a problem in which a solution is a permutation of facilities, we restrict our choice of
crossover operators among those which are specifically designed for such problems. The operators
from which we select the crossover operator for our implementation of the genetic algorithm are the
following.

Partially-matched crossover (PMX) In this crossover operation, two parent solutions from
the mating pool generate a child solution. Two parent solutions P1 and P2 are chosen from the
mating pool with a probability pc. A random segment of facilities, called a crossover segment, is
then selected from P1 and copied to same location in the child solution. Let the segment consist of
facilities from position s to position t in P1. Next the facilities in P2 from position s to position t
which are not a part of the crossover segment are considered. Let πi be such a facility, and let πc

i be
the facility from the crossover segment that occupies the same position in the child solution. Then
πi is placed in the same position that πc

i occupies in P2. The facilities that have not been assigned
positions in the child solution so far are then assigned positions in the same order in which they
appear in P2.

Cycle crossover (CX) In this crossover operation, two parent solutions from the mating pool
create a child solution. Two parent solutions P1 and P2 are chosen from the mating pool with a
probability pc. Facilities are first assigned to the child solution using a P1 cycle. To do this, a facility
π1
i is chosen from P1 and added to the same location in the child solution. Let π2

i be the facility in
P2 at the same position. Then π2

i is added in the child solution in the same position that it occupies
in P1. Let this be the j-th position. Next the facility π2

j in the j-th position in P2 is considered.
This process continues until no further facilities can be added to the child solution. This completes
the P1 cycle. Facilities are then assigned to the child solution using a P2 cycle which is similar to
a P1 cycle, but starting from a facility in P2. The CX operation continues to alternate between P1

and P2 cycles until the child solution is complete.

Order 1 crossover (OX1) This technique starts with choosing two parent solutions P1 and P2

from the mating pool with a probability pc. Then a sub-permutation of facilities is randomly selected
from P1 and is copied to the child solution at the same location. Let this sub-permutation occupy
positions i through j. The remaining positions in the child solution are filled up by the facilities
from P2. To do this an ordering of facilities is created by appending the sequence of facilities from
the first position to the j-th position in P2 to the sequence of facilities from the (j + 1)-th position
to the n-th position in P2. The empty positions in the child solution are then assigned facilities in
this order starting from the (j + 1)-th position in the child solution and wrapping around. While
assigning the facilities, those which are already present in the child solution are omitted.

Order-based crossover(OX2) This technique begins by choosing two parent solutions P1 and
P2 from the mating pool with a probability pc. After this two random crossover points i and j are
selected. The sub-permutations of P1 from the first position to the i-th position and from the j-th
position to the n-th position are copied to the same positions in the child solution. The remaining
positions in the child solution are filled with facilities between the (i+ 1)-th and (j− 1)-th positions
in P1 but in the order in which they occur in P2.

W.P. No. 2012-03-01 Page No. 6



IIMA • INDIA
Research and Publications

We performed preliminary experiments with the four crossover operators on problems of size
between 60 and 80. We used the initial population generation method and the selection operator
which we have specified earlier in this section. Our experiments showed that the genetic algorithm
using the PMX crossover operator generated the lowest cost solutions among the four. Hence in our
genetic algorithm we use the PMX crossover operator.

2.5 The mutation operation

After generating the children from the crossover operator, each child is subjected to a mutation
operator. In mutation, a solution is changed in a minor way with a small mutation probability pm,
thereby preventing a premature convergence of the algorithm to sub optimal solutions. We tested
out the following two widely used mutation operators for permutation representations.

Insert Mutation In this mutation, two facilities in the solution are selected at random with low
probabilities pm and then the second facility is moved to follow the first facility in the solution. All
the remaining facilities are adequately shifted to finally obtain a mutated child solution.

Swap Mutation In this mutation, two facilities are selected with a small probability pm and their
locations in the solution are interchanged to obtain a mutated child solution.

We performed preliminary experiments with the two mutation operators on problems of size
between 60 and 80. We used the initial population generation method, the selection operator, and
the crossover operator which we have specified earlier in this section. Our experiments showed that
the genetic algorithm using the insertion mutation operator generated distinctly better solutions
than those generated using the swap mutation. Hence in our genetic algorithm we used the insertion
mutation operator.

2.6 Elite preservation

In a genetic algorithm incorporating only selection, crossover, and mutation operations, solutions
of one generation are almost never carried over to the next generation. This is a weakness of the
algorithm, since a good solution in a generation is capable of generating other good solutions in
subsequent generations as long as the average solution fitness in those generations are not signifi-
cantly superior to the fitness of the solution. In order to overcome this weakness, genetic algorithms
use an elite preservation operation in which good solutions in a generation are copied to the next
generation.

In our genetic algorithm implementation, we use an elite preservation operation in which we
pool together the solutions from the previous generation and all the mutated children, and finally
choose the best N solutions from this pool to form the next generation. This is identical to the elite
preservation operation used in Datta et al. (2011).

In summary, the genetic algorithm that we present in this paper, which we call GA-KG, uses
three parameters; population size (N), crossover probability (pc), and mutation probability (pm)
and has the following components:

1. Initial population generation with N − 3 solutions using the RND method, and one each using
WBT, FBP, and LBP methods;

W.P. No. 2012-03-01 Page No. 7



IIMA • INDIA
Research and Publications

2. Mating pool generation using binary tournament selection.

3. Crossover using the PMX crossover operator;

4. Mutation using the insertion mutation operator; and

5. Elite preservation which chooses the best N solutions from a combined pool of the solutions
in the previous generation and the mutated child solutions.

In the next section we describe the results of our computational experience with GA-KG on large
sized SRFLP instances.

3 Computational experience

We coded our genetic algorithm in C and compiled it using a gcc4 compiler. We ran our experiments
on a personal computer with Intel i-5 2500 3.30 GHz processor with 4GB RAM running Ubuntu
Linux version 11.10. Based on preliminary experiments we chose to implement GA-KG with a
population size N = 60. Following the implementation in Datta et al. (2011) we allowed the
crossover probability pc to be randomly chosen among values 0.6, 0.7, 0.8, 0.9, and 0.95, and the
mutation probability pm to be randomly chosen between 0.001 and 0.05. Each run of GA-KG was
allowed to generate a maximum of 5000 generations or till the population converged. Since GA-KG
is stochastic, we performed 200 GA-KG runs and chose the best solution obtained as the output of
GA-KG.

We compared the performance of GA-KG with results from the published literature on three
classes of benchmark instances. The first class of 20 instances are the Anjos instances used in Anjos
and Yen (2009) and subsequently by other researchers. This class contains five instances each of
size 60, 70, 75, and 80. The second class of 20 instances was used in (Anjos and Yen 2009) and in
Hungerländer and Rendl (2011). It consists of instances based on QAP benchmarks and are called
sko instances. There are five instances each of sizes 64, 72, 81, and 100. The third class is a set of
three instances of size 110 considered in Amaral and Letchford (2012).

Table 1 presents a comparison of the results obtained by GA-KG with those known from the
literature for Anjos instances. The first two columns of the table give the name of the instance and its
size. The third column reports the costs of the best solutions known for the instance in the literature.
The fourth column presents the cost of the best solution for this problem obtained by the genetic
algorithm implementation in Datta et al. (2011). We include this since it is the only other genetic
algorithm for the SRFLP to the best of our knowledge. The last column reports the cost of the
best solution obtained by GA-KG. The figures marked in boldface in Table 1 indicate the five Anjos
instances in which GA-KG generates the solutions with costs lower than those previously known
in the literature. In the other 15 instances, it matches the best known results from the published
literature. GA-KG produces better solutions than the ones reported in Datta et al. (2011) in 11
of the 20 Anjos instances. The average time per run of the GA-KG implementation is 6.3 seconds,
10.0 seconds, 12.5 seconds, and 16.6 seconds for instances of size 60, 70, 75, and 80 respectively.
The layouts for the instances in which we have improved the previously known best solutions are
provided in the Appendix.

Table 2 presents a comparison of the results obtained by GA-KG with those known from the
literature for the QAP based sko instances. The first two columns of the table give the name of
the instance and its size. The third column reports the costs of the best solutions known from
Hungerländer and Rendl (2011). We tested the implementation in Datta et al. (2011) on these
instances and report the costs of the best solutions obtained from the implementation in the third
column. The last column of the table reports the cost of the best solutions obtained by GA-KG. Here
too the figures marked in boldface in Table 1 indicate the sko instances in which GA-KG generates

W.P. No. 2012-03-01 Page No. 8



IIMA • INDIA
Research and Publications

Table 1: Results for Anjos instances of sizes from 60 to 80

Instance Size Besta DA&Fb GA-KG

Anjos-60-01 60 1477834.0 1477834.0 1477834.0
Anjos-60-02 60 841792.0 841792.0 841776.0
Anjos-60-03 60 648337.5 648337.5 648337.5
Anjos-60-04 60 398468.0 398511.0 398406.0
Anjos-60-05 60 318805.0 318805.0 318805.0

Anjos-70-01 70 1528621.0 1529197.0 1528537.0
Anjos-70-02 70 1441028.0 1441028.0 1441028.0
Anjos-70-03 70 1518993.5 1518993.5 1518993.5
Anjos-70-04 70 968796.0 969130.0 968796.0
Anjos-70-05 70 4218017.5 4218230.0 4218002.5

Anjos-75-01 75 2393456.5 2393483.5 2393456.5
Anjos-75-02 75 4321190.0 4321190.0 4321190.0
Anjos-75-03 75 1248537.0 1248551.0 1248423.0
Anjos-75-04 75 3941981.5 3942013.0 3941816.5
Anjos-75-05 75 1791408.0 1791408.0 1791408.0

Anjos-80-01 80 2069097.5 2069097.5 2069097.5
Anjos-80-02 80 1921177.0 1921177.0 1921136.0
Anjos-80-03 80 3251368.0 3251413.0 3251368.0
Anjos-80-04 80 3746515.0 3746515.0 3746515.0
Anjos-80-05 80 1588901.0 1589061.0 1588885.0

a: Best refers to the best solutions among
Datta et al. (2011) and upper bounds obtained in
Hungerländer and Rendl (2011)

b: DA&F refers to Datta et al. (2011)

the solutions with costs lower than those previously known in the literature. GA-KG outperforms
the previously best known results in 17 out of the 20 instances. In two instances the cost of the best
solution obtained by GA-KG equals those obtained previously in the literature. In the remaining
instance the best solutions were those reported in Amaral and Letchford (2012). The average time
per run of the GA-KG implementation is 7.3 seconds, 10.9 seconds, 16.9 seconds, and 34.2 seconds
for instances of size 64, 72, 81, and 100 respectively. The layouts for the instances in which we have
improved the previously known best solutions are provided in the Appendix.

In the third set of benchmark problems considered, GA-KG using the parameters specified earlier
was able to generate good solutions in one of the three instances. However, when the population
size was increased to N = 200 and the maximum number of generations to 10000, we obtained
results that were better than those published in Amaral and Letchford (2012) in two of the three
instances. The costs of the best solutions that GA-KG output for these problems is presented in
Table 3. The first four columns provide the details of the instances, the fifth column reports the
costs of best solutions in Amaral and Letchford (2012) and the last column presents the costs of
the best solutions obtained by GA-KG. The figures marked in boldface indicate the instances in
which GA-KG produced better results than is known in the literature. The average time per run
of the GA-KG implementation is 68.0 seconds for these instances when N = 60 and 111.2 seconds
when N = 200. The layouts for the instances in which we have improved the previously known best
solutions are provided in the Appendix.

W.P. No. 2012-03-01 Page No. 9



IIMA • INDIA
Research and Publications

Table 2: Results for sko instances of sizes from 64 to 100

Instance Size H&Ra A&Lb GA-DA&Fc GA-KG

sko-64-01 64 97194.0 96930.0 97218.0 97057.0
sko-64-02 64 634332.5 634332.5 634345.5 634332.5
sko-64-03 64 414384.5 414356.5 414323.5 414323.5
sko-64-04 64 298155.0 297358.0 297532.0 297261.0
sko-64-05 64 502063.5 501922.5 502300.5 501922.5
sko-72-01 72 139231.0 139174.0 139191.0 139150.0
sko-72-02 72 715611.0 712261.0 712370.0 712253.0
sko-72-03 72 1061762.5 1054184.5 1055400.5 1054110.5
sko-72-04 72 924019.5 920693.5 919841.5 919590.5
sko-72-05 72 430288.5 428305.5 428954.5 428228.5
sko-81-01 81 207063.0 205475.0 205341.0 205413.0
sko-81-02 81 526157.5 523021.5 521391.5 521391.5
sko-81-03 81 979281.0 970920.0 971797.0 970897.0
sko-81-04 81 2035569.0 2032634.0 2032045.0 2031803.0
sko-81-05 81 1311166.0 1303756.0 1303327.0 1302733.0
sko-100-01 100 380562.0 378584.0 378697.0 378378.0
sko-100-02 100 2084924.5 2076714.5 2079182.5 2076037.5
sko-100-03 100 16216076.5 16177226.5 16155456 16160222.0
sko-100-04 100 3263493.0 3237111.0 3242000.0 3233197.0
sko-100-05 100 1040929.5 1034922.5 1033452.5 1033356.5

a: H&R refers to upper bounds obtained inHungerländer and Rendl (2011)
b: A&L refers to upper bounds obtained inAmaral and Letchford (2012)
c: GA-DA&F refers to our implementation using the same method as in

Datta et al. (2011)

Table 3: Results for Amaral instances of size 110

Instance Size l-range c-range A&La GA-KG

Amaral-110-01 110 [7,23] [0,100] 144331884.5 144302160.0
Amaral-110-02 110 [5,14] [0,100] 86065390.0 86056632.0
Amaral-110-03 110 [3, 7] [0,5] 2234803.5 2234876.5

a: A&L refers to upper bounds obtained in Amaral and Letchford (2012)

From our computational experiments it is clear that the GA-KG implementation is superior to
other implementations known in the literature.

4 Summary

In this paper, we propose a genetic algorithm called GA-KG for solving large instances of the single
row facility layout problem (SRFLP). Our implementation generates an initial population using a
combination of four approaches to generate feasible solutions to the SRFLP. It then creates successive
generations in four steps. In the first step a mating pool of solutions is created using the binary
tournament selection operator. In the second step, solutions from the mating pool are selected
to generate child solutions through a PMX crossover mechanism. In the third step, children thus

W.P. No. 2012-03-01 Page No. 10



IIMA • INDIA
Research and Publications

generated are subjected to an insertion mutation operation. Finally the new generation is created
using an elite preservation operation.

We compared the performance of GA-KG with that of other algorithms known in the literature
for solving large sized SRFLP instances. Our test bed consisted of 40 instances with sizes ranging
from 60 to 110. We found that GA-KG output solutions that matched the best known solutions
in 17 of the 43 instances. In 24 instances, it produced solutions which are superior to the best
solutions known in the literature. In the other two instances, the solutions output by GA-KG were
marginally worse than the best solutions known in the literature. The times required per run of
the proposed algorithm are comparable to the fastest algorithms known in the literature for these
problems. Hence the GA-KG algorithm that we propose in this paper is an algorithm of choice to
solve large sized single row facility layout problems.

References

Amaral, A. and Letchford, A. N. (2012). A polyhedral approach to the single row facility layout
problem. Available at http://www.lancs.ac.uk/staff/letchfoa/articles/SRFLP-rev.pdf.

Amaral, A. R. S. (2006). On the exact solution of a facility layout problem. European Journal of
Operational Research, 173(2):508–518.

Amaral, A. R. S. (2008). An Exact Approach to the One-Dimensional Facility Layout Problem.
Operations Research, 56(4):1026–1033.

Amaral, A. R. S. (2009). A new lower bound for the single row facility layout problem. Discrete
Applied Mathematics, 157(1):183–190.

Anjos, M., Kennings, a., and Vannelli, a. (2005). A semidefinite optimization approach for the
single-row layout problem with unequal dimensions. Discrete Optimization, 2(2):113–122.

Anjos, M. F. and Vannelli, A. (2008). Computing Globally Optimal Solutions for Single-Row Layout
Problems Using Semidefinite Programming and Cutting Planes. INFORMS Journal on Comput-
ing, 20(4):611–617.

Anjos, M. F. and Yen, G. (2009). Provably near-optimal solutions for very large single-row facility
layout problems. Optimization Methods and Software, 24(4-5):805–817.

Beghin-Picavet, M. and Hansen, P. (1982). Deux problèmes daffectation non linéaires. RAIRO,
Recherche Opérationnelle, 16(3):263–276.

Braglia, M. (1997). Heuristics for single-row layout problems in flexible manufacturing systems.
Production Planning & Control, 8(6):558–567.

Datta, D., Amaral, A. R., and Figueira, J. R. (2011). Single row facility layout problem using a
permutation-based genetic algorithm. European Journal of Operational Research, 213(2):388–394.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.

Heragu, S. S. and Alfa, A. S. (1992). Experimental analysis of simulated annealing based algorithms
for the layout problem. European Journal of Operational Research, 57(2):190–202.

Heragu, S. S. and Kusiak, A. (1988). Machine Layout Problem in Flexible Manufacturing Systems.
Operations Research, 36(2):258–268.

Heragu, S. S. and Kusiak, A. (1991). Efficient models for the facility layout problem. European
Journal Of Operational Research, 53:1–13.

W.P. No. 2012-03-01 Page No. 11

http://www.lancs.ac.uk/staff/letchfoa/articles/SRFLP-rev.pdf


IIMA • INDIA
Research and Publications

Hungerländer, P. and Rendl, F. (Unpublished results, 2011). A computational study for the single-
row facility layout problem. Available at www.optimization-online.org/DB_FILE/2011/05/

3029.pdf.

Kouvelis, P. and Chiang, W.-C. (1992). A simulated annealing procedure for single row layout prob-
lems in flexible manufacturing systems. International Journal of Production Research, 30(4):717–
732.

Kouvelis, P. and Chiang, W.-C. (1996). Optimal and Heuristic Procedures for Row Layout Problems
in Automated Manufacturing Systems. Journal of the Operational Research Society, 47(6):803–
816.

Kumar, R. K., Hadejinicola, G. C., and Lin, T.-L. (1995). A heuristic procedure for the single-row
facility layout problem. European Journal of Operational Research, 87(1):65–73.

Kumar, S., Asokan, P., Kumanan, S., and Varma, B. (2008). Scatter search algorithm for single row
layout problem in fms. Advances in Production Engineering & Management, 3(4):193–204.

Laguna, M., Mart́ı, R., and Campos, V. (1999). Intensification and diversification with elite tabu
search solutions for the linear ordering problem. Computers & OR, 26(12):1217–1230.

Love, R. F. and Wong, J. Y. (1976). On solving a one-dimensional space allocation problem with
integer programming. INFOR, 14(2):139–144.

Mart́ı, R. and Reinelt, G. (2011). The Linear Ordering Problem. Springer-Verlag Berlin Heidelberg.

Picard, J.-C. and Queyranne, M. (1981). On the one-dimensional space allocation problem. Opera-
tions Research, 29(2):371–391.

Romero, D. and Sánchez-Flores, A. (1990). Methods for the one-dimensional space allocation prob-
lem. Computers & Operations Research, 17(5):465–473.

Samarghandi, H. and Eshghi, K. (2010). An efficient tabu algorithm for the single row facility layout
problem. European Journal of Operational Research, 205(1):98–105.

Samarghandi, H., Taabayan, P., and Jahantigh, F. F. (2010). A particle swarm optimization for the
single row facility layout problem. Computers & Industrial Engineering, 58(4):529–534.

Simmons, D. M. (1969). One-Dimensional Space Allocation: An Ordering Algorithm. Operations
Research, 17(5):812–826.

Solimanpur, M., Vrat, P., and Shanker, R. (2005). An ant algorithm for the single row layout
problem in flexible manufacturing systems. Computers & Operations Research, 32(3):583–598.

Sörensen, K. (2007). Distance measures based on the edit distance for permutation-type represen-
tations. Journal of Heuristics, 13:35–47. 10.1007/s10732-006-9001-3.

W.P. No. 2012-03-01 Page No. 12

www.optimization-online.org/DB_FILE/2011/05/3029.pdf
www.optimization-online.org/DB_FILE/2011/05/3029.pdf


IIMA • INDIA
Research and Publications

Appendix

We provide details of the solutions for the instances in which we have improved the best solution
known in the literature. Note that the facilities are numbered from 0 through n− 1 where n is the
problem size.

Instance Size Cost Permutation

Anjos-70-01 70 1528537.0 52 46 64 1 39 27 61 21 14 7 31 8 62 30 68 50 67 0 3 15
63 60 40 37 55 66 69 43 9 25 13 18 32 41 48 4 29 35 22
54 59 12 17 20 23 26 53 10 11 57 5 58 51 6 19 65 2 33
44 45 24 42 47 16 28 56 38 34 36 49

Anjos-75-03 75 1248423.0 46 68 41 9 18 32 14 16 42 50 40 45 28 22 67 25 59 3 38
73 63 60 55 19 35 11 26 12 47 70 10 64 56 4 66 44 20 27
34 23 8 74 57 72 39 6 31 5 48 51 58 33 2 15 61 30 29 43
36 1 37 65 69 17 71 7 24 54 52 62 13 0 53 49 21

Anjos-75-04 75 3941816.0 35 59 4 13 14 49 6 74 9 41 61 36 7 69 29 46 21 56 19 40
28 39 32 38 45 11 2 63 34 64 15 51 27 52 43 72 33 17 23
44 12 31 0 66 1 18 54 47 55 62 65 25 22 57 58 53 42 70
3 30 10 73 60 50 5 24 26 67 68 37 71 48 8 16 20

Anjos-80-02 80 1921136.0 21 56 17 23 9 16 54 4 57 13 45 14 55 31 73 46 11 53 40 28
15 32 76 0 71 26 27 22 24 34 20 5 66 2 52 19 3 37 38 35 8
39 33 7 64 1 49 43 61 41 74 12 25 67 18 58 75 72 29 69 6
78 36 70 30 51 63 77 59 79 50 68 62 48 42 47 44 60 65 10

Anjos-80-05 80 1588885.0 24 16 47 40 57 59 68 77 12 48 41 71 11 28 15 50 13 63 25
27 23 14 55 4 56 49 45 22 62 39 44 19 79 3 17 76 38 31 2
58 64 54 65 70 34 52 42 5 43 53 74 78 33 29 61 35 32 75 8
18 30 7 69 0 21 10 73 36 9 67 66 20 72 60 26 37 51 46 6 1

sko-64-03 64 414323.5 14 11 60 8 55 40 41 48 12 28 3 51 21 22 15 45 35 50 63
54 20 26 30 2 43 13 57 56 23 52 9 24 62 42 17 46 29 34
16 37 33 44 0 38 4 59 25 27 39 10 53 1 7 32 36 18 31 47
19 6 49 58 61 5

sko-64-04 64 297261.0 30 59 41 35 42 26 62 5 17 19 45 50 2 51 60 39 13 47 27
8 21 3 23 11 61 38 54 28 4 63 15 12 48 57 46 43 20 34
22 44 6 0 36 33 25 49 37 1 16 24 55 32 9 18 7 29 40 31
53 10 52 56 58 14

sko-64-05 64 501922.5 35 8 17 21 28 62 48 19 45 60 11 51 13 9 63 12 57 54 41
15 5 4 42 50 46 30 26 3 2 22 39 27 59 47 23 29 55 20 34
44 40 53 10 38 32 33 37 31 7 6 56 36 0 43 1 18 16 25 49
52 24 14 58 61

sko-72-01 72 139150.0 11 52 30 63 59 17 34 7 55 9 69 26 29 16 66 20 1 13 21
27 25 46 64 51 22 60 28 0 6 37 58 45 48 32 49 12 36 62
31 38 15 8 5 70 43 54 56 35 50 67 41 39 47 40 14 18 57
19 65 42 3 61 71 68 24 4 10 44 53 23 2 33

sko-72-02 72 712253.0 11 58 0 31 13 12 22 51 46 36 62 64 52 2 42 27 69 21 34
9 32 45 6 59 48 37 1 26 29 49 20 30 24 28 7 66 50 41 54
43 25 23 56 15 38 68 35 67 60 3 65 71 14 5 47 18 53 16
70 39 8 55 19 44 10 63 61 17 40 57 4 33

W.P. No. 2012-03-01 Page No. 13



IIMA • INDIA
Research and Publications

Instance Size Cost Permutation

sko-72-03 72 1054110.5 30 13 55 59 17 38 16 66 8 27 25 29 9 69 58 60 61
20 7 49 45 12 62 64 21 63 22 47 32 53 26 15 34
46 52 5 42 36 11 24 68 51 41 23 67 18 65 31 10 44
39 56 43 28 35 3 0 33 70 19 54 40 50 37 48 1 2 4 14 71 6 57

sko-72-04 72 919590.5 11 2 55 63 23 71 44 49 35 40 19 10 64 60 14 3 65
42 61 62 36 57 33 68 24 5 52 17 4 18 38 8 67 66
15 53 47 50 41 39 43 56 54 30 37 59 28 45 22 48 21
13 34 32 70 69 12 9 29 6 26 27 0 46 51 25 20 1 31 58 16 7

sko-72-05 72 428228.5 50 28 33 39 70 8 43 22 0 6 32 37 54 15 40 57 58
45 64 5 18 14 19 13 48 65 67 60 35 3 56 4 44 68
24 12 23 10 42 25 31 46 51 41 61 62 21 49 36 20 11
1 34 71 16 30 66 63 59 38 47 29 27 53 26 69 9 17 55 2 52 7

sko-81-01 81 205341.0 7 46 59 53 52 9 39 70 27 71 45 15 75 63 76 56 19 23 28 54
21 42 74 58 72 0 61 77 67 26 44 12 51 57 62 36 17 6 50 4
78 41 31 11 43 1 10 79 38 34 69 35 30 37 48 18 14 22 40 13
3 5 80 20 25 16 55 32 47 8 33 66 64 68 49 24 29 60 2 65 73

sko-81-02 81 521391.5 7 27 76 59 63 56 75 15 46 71 53 61 6 62 26 9 38 19 17 23
42 52 74 70 39 58 72 36 67 12 45 50 77 0 57 4 78 28 79 31
11 44 1 43 18 30 25 33 8 10 3 41 64 29 35 66 22 49 40 69 73
65 32 16 68 2 20 60 14 5 55 47 51 13 80 34 24 48 37 54 21

sko-81-03 81 970897.0 46 76 52 15 43 53 9 33 39 75 59 58 62 19 36 50 12 17 63 67
56 20 26 61 23 77 42 6 48 21 72 57 68 74 51 44 0 7 70 31
45 55 3 66 41 22 16 49 64 40 25 80 65 35 79 18 11 32 37 69
2 24 60 1 13 14 30 8 4 5 47 71 27 78 10 28 54 73 38 34 29

sko-81-04 81 2031803.0 73 65 7 24 25 64 68 22 50 2 13 80 19 49 1 29 60 20 11 27 5
43 8 10 18 16 14 69 47 32 45 38 71 39 33 31 48 59 3 66 36
55 77 41 53 9 17 34 35 54 0 44 51 26 61 57 74 63 46 62 72
30 12 67 56 75 76 23 52 37 15 42 58 6 40 4 28 21 78 70 79

sko-81-05 81 1302733.0 39 33 53 78 3 21 63 28 37 46 74 64 29 79 34 25 41 59 42
18 17 11 62 36 75 22 76 68 32 72 58 50 23 66 57 19 24 9 48
70 52 13 40 27 80 31 10 45 0 49 16 20 43 15 12 30 56 69 77
38 61 6 44 1 26 67 60 71 54 2 4 8 7 14 5 35 51 47 55 73 65

sko-100-01 100 378378.0 64 77 17 96 0 36 70 82 38 78 90 32 57 9 94 24 59 10 12 26
4 62 56 31 76 5 14 27 87 73 54 53 79 74 33 30 15 21 61 51
85 86 83 8 58 18 41 97 3 55 95 92 67 7 88 23 72 29 84 66
93 98 42 13 39 19 68 99 25 45 60 65 46 89 63 50 80 1 48 69
71 37 91 81 22 47 40 49 35 11 44 52 75 6 20 16 28 43 34 2

sko-100-02 100 2076037.5 32 28 16 98 2 52 11 60 76 40 35 75 47 49 93 37 71 6 25 39
67 7 80 42 13 58 99 69 68 19 45 34 66 44 91 48 50 51 20 1
97 46 65 89 43 85 18 0 81 22 3 55 54 27 14 56 88 5 33 79
73 86 36 15 21 30 78 83 74 12 82 70 62 53 61 95 29 84 8 63
59 94 10 31 24 87 72 17 92 9 64 41 23 38 4 26 57 96 90 77

sko-100-03 100 16160222.0 96 57 27 75 59 48 44 52 91 60 46 40 39 99 68 1 69 89 42
65 28 86 64 72 9 71 63 29 84 95 50 17 47 6 11 22 37 25
55 92 41 58 16 83 3 87 24 31 21 76 80 19 97 33 56 78 73
94 54 0 45 5 49 66 35 51 14 98 85 93 18 13 10 15 8 61
67 82 12 74 26 62 90 81 30 70 36 4 20 53 79 23 88 32 38
7 77 43 34 2

W.P. No. 2012-03-01 Page No. 14



IIMA • INDIA
Research and Publications

Instance Size Cost Permutation

sko-100-04 100 3233197.0 6 2 5 83 44 57 75 1 98 16 11 22 28 43 94 63 33 86 40 13
72 46 29 19 39 9 50 35 69 27 65 71 52 34 68 81 25 37 99
89 45 47 91 60 49 80 76 58 90 56 36 61 84 62 77 54 12
10 3 64 95 14 55 88 0 53 30 73 18 85 66 59 23 79 74 26
20 42 32 21 87 15 8 82 97 7 67 51 93 4 17 96 92 31 24
41 70 78 38 48

sko-100-05 100 1033356.5 77 75 2 49 47 44 29 11 57 9 59 64 61 22 84 95 3 27 73 81
53 35 20 38 23 79 34 74 6 60 36 70 82 15 87 41 8 69 26 96
94 1 92 78 52 17 4 90 63 19 45 56 33 40 25 98 31 0 80 13
86 67 66 32 93 72 65 39 10 55 28 43 30 88 21 46 99 7 76 42
48 97 14 18 83 37 58 50 68 91 51 5 16 24 12 62 71 85 54 89

Amaral-110-01 110 144302160.0 39 18 61 72 74 66 64 8 108 10 75 2 85 109 32 3 107 91
13 6 78 54 21 23 38 92 0 68 83 55 14 27 15 4 63 73 76
70 90 49 25 89 45 96 98 87 41 42 34 24 46 101 50 19 94
95 59 20 62 86 57 9 81 84 35 71 26 36 100 103 102 67 65
44 37 58 60 80 88 104 11 30 31 69 12 77 106 29 33 17
22 40 105 93 28 51 43 1 47 56 99 53 16 48 5 97 82 52 79 7

Amaral-110-02 110 86056632.0 63 61 0 12 32 10 103 68 73 24 53 15 4 56 85 54 46 95 33
79 13 57 2 69 100 90 74 47 50 45 8 98 55 25 14 87 38 75
67 1 83 106 29 99 41 21 92 27 6 34 76 91 72 70 107 22
3 89 84 93 5 82 77 51 71 81 59 23 48 9 96 16 18 30 62
52 42 65 44 37 60 40 28 19 26 88 43 104 94 80 78 109
49 35 105 101 58 108 97 36 64 102 17 20 66 86 31 39 11 7

W.P. No. 2012-03-01 Page No. 15


	Introduction
	Our genetic algorithm
	Solution representation
	Generation of the initial population
	Creation of a mating pool
	The crossover operation
	The mutation operation
	Elite preservation

	Computational experience
	Summary

