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Abstract

Meeting the profit target is often preferred over maximizing expected profit in uncertain

business environments. Research into the newsboy problem with satiation objective started

quite early. However, the progress has been slow, particularly in the multi-product setting.

We study the general multi-product newsboy problem with satiation objective. A discrete

formulation is adopted. Computational methods for evaluating and maximizing the satiation

probability (i.e., probability of meeting the profit target) are developed. Difficulties associated

with the conventional continuous formulation are also discussed.

1 Introduction

Traditionally, operations research/management models consider cost minimization (or profit

maximization) as the objective of the decision maker. This objective does not fit into many real

life situations, particularly when outcome uncertainty is high. Simon (1959) discussed problems

associated with the economic models that maximize expected profit in uncertain environments.

He argued that firms and managers would try to satiate (the profit target) rather than to

maximize (expected profit). Kahneman & Tversky (1979), in their prospect theory, argued

that human decisions are based on gains and losses w.r.t. a reference point (i.e., the profit

target), rather than the final value. If gains are given little weightage and losses are given large

weightage, the objective is satiation of the profit target1.

There are empirical evidences in support of the satiation objective. Lanzillotti (1958) explored

pricing objectives of twenty business organization; achieving targeted return on investment

(which is equivalent to profit target if cost is known) was the most cited choice. Shipley (1981)

found similar result in a survey of pricing objectives of 728 British manufacturing firms; about

two-third of the participants identified meeting the profit target as their main objective.

Satiation objective in the newsboy problem was first considered by Irwin & Allen (1978);

they adopted a continuous formulation and identified the necessary conditions for maximization

of the satiation probability (i.e., probability of meeting the profit target) in the single-product

∗Tel: +91 7405696960 Email address: avijitk@iimahd.ernet.in
1Prospect theory says that the value function (which the decision maker tries to maximize) is concave for gains,

convex for losses, and steeper for losses than for gains. If the concave function for gains is linear with zero slope
(little weightage) and the convex function for losses is linear with infinite slope (large weightage), the objective is
maximization of probability of meeting the profit target (i.e., satiation of the profit target).
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case. These conditions depend on the demand distribution function. Ismail & Louderback (1979)

solved the single-product satiating newsboy problem (SPSNP) for normally distributed demand

by iterative search; later, H.-S. Lau (1980) derived a closed-form solution for the same problem.

Sankarasubramanian & Kumaraswamy (1983) derived closed-form solutions for the SPSNP with

uniform and exponential demand distributions. Norland (1980); H.-S. Lau (1980) showed that

the optimum order quantity in the SPSNP does not depend on the demand distribution function

if stock-out cost is zero; they derived closed-form solution for this special case.

Solution of the SPSNP paved the way for the development of different extensions. For

example, A. H.-L. Lau & Lau (1988b) considered price-dependent demand, Khouja (1995)

considered price mark-down by the newsboy to sell excess inventory, and Khouja & Robbins

(2003) considered advertisement-dependent demand in the SPSNP. There are more such papers,

but our focus, in this paper, is on the multi-product extension of the SPSNP.

A. H.-L. Lau & Lau (1988a) were the first to explore the multi-product newsboy problem

with satiation objective. They considered the two-product problem with zero stock-out costs

and uniform demand; closed-form solution was obtained for the case of identical products (i.e.,

identical cost and demand parameters for both products). Li et al. (1990) studied a more general

version of the two-product problem by allowing the products to be non-identical; everything else

were similar to the problem solved by A. H.-L. Lau & Lau (1988a). They proposed an efficient

algorithm for finding the optimum order quantities. Later, they solved a similar problem with

independent exponential product demands (Li et al., 1991).

To the best of our knowledge, no progress has happened in the domain of the multi-product

satiating newsboy problem (MPSNP) after the works of A. H.-L. Lau & Lau (1988a); Li et al.

(1990, 1991). However, the study of Shao & Ji (2006) requires a mention here. They solved the

MPSNP with zero stock-out cost using fuzzy simulation. Product demands were modelled by

fuzzy variables and probability of an event was replaced by credibility of an event. However, we

can not use their method for the MPSNP with stochastic demand due to the differences between

fuzzy and stochastic modelling. Besides, they did not solve the problem optimally.

Our understanding of the MPSNP is limited to restricted two-product problems. In this

paper, we study the general MPSNP; non-zero stock-out costs are considered and no restriction

is imposed on product demands. We adapt a discrete formulation of the problem. It allows

us to develop computational method for finding and maximizing the satiation probability in

the general case. We also discuss limitations of the conventional continuous formulation of the

MPSNP (adapted by A. H.-L. Lau & Lau, 1988a; Li et al., 1990, 1991).

2 The discrete formulation

Following notations are used in this paper.

n Number of products (positive integer).

mi Unit profit for the ith product (positive).
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ci Unit purchase cost less salvage value for the ith product (positive).

si Unit stock-out goodwill loss for the ith product (positive).

Xi Stochastic demand for the ith product (integer-valued).

ai Lower limit of Xi (non-negative integer).

bi Upper limit of Xi (positive integer).

pi() Marginal probability mass function of Xi.

Pi() Marginal cumulative distribution function of Xi.

Qi Order quantity of the ith product (non-negative integer).

Πi(Qi, xi) Profit from the ith product for order quantity, Qi and realized demand, xi.

T Profit target. T represents the maximum assured target and T represents the

maximum achievable target.

X Demand vector. X = (Xi) = (X1, X2, . . . , Xn).

Ω Sample space of X. Ω = Ω1 × Ω2 × · · · × Ωn, where Ωi is the sample space of Xi,

i.e., Ωi = {ai, ai + 1, . . . , bi} for i = 1, 2, . . . , n.

p() Probability mass function of X. For independent demand, p(x) =
∏n

i=1 pi(xi).

Q Order quantity vector. Q = (Qi) = (Q1, Q2, . . . , Qn).

Π(Q, x) Total profit for ordering decision, Q and demand scenario, x.

IΠ(Q,x)≥T Indicator of Π(Q, x) reaching or exceeding T .

PT (Q) Satiation probability for ordering decision, Q.

In MPSNP, our objective is to

maximize
Q∈Nn

0

PT (Q) =
∑
x∈Ω

IΠ(Q,x)≥T p(x)

=

b1∑
x1=a1

b2∑
x2=a2

· · ·
bn∑

xn=an

IΠ(Q,x)≥T p(x), (1)

where N0 = N ∪ {0} and Nn
0 is the corresponding n-dimensional space.

The indicator function is defined as

IΠ(Q,x)≥T =

1 if Π(Q, x) =
∑n

i=1 Πi(Qi, xi) ≥ T,

0 otherwise.

(2)

Individual product profits (for i = 1, 2, . . . , n) are given by

Πi(Qi, xi) = sales revenue − over-stocking cost (if any) − under-stocking cost (if any)

= mi min{Qi, xi} − ci max{0, Qi − xi} − si max{0, xi −Qi}. (3)

Note that (2) and (3) are valid for the continuous formulation (i.e., real-valued Qi and xi for

i = 1, 2, . . . , n). Let us note down some properties of the MPSNP.
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Proposition 1. PT (Q) maximizing ordering decision, Q∗ ∈ Ω.

See Appendix A for a proof. The above result reduces the solution space from infinite Nn
0 to

finite Ω. This ensures computation in finite time.

Like Q, some restrictions can be placed on T too. By (3), the maximum value that Πi(Qi, xi)

can take is mibi (when xi = Qi = bi). Thus, Π(Q, x) ≤
∑n

i=1mibi ⇒ T =
∑n

i=1mibi. This

target is met only when Q = b. Any T > T is unachievable.

Lemma 1. Any T ≤
∑n

i=1 max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)} can be achieved with certainty,

where Q0i = {(mi + ci)ai + sibi}/(mi + ci + si) for i = 1, 2, . . . , n. The ith element of an

ordering decision that ensures the above is bQ0ic if Πi(bQ0ic, bi) ≥ Πi(dQ0ie, ai) and dQ0ie if

Πi(bQ0ic, bi) ≤ Πi(dQ0ie, ai).

It can be easily verified that Q0i ∈ (ai, bi), i.e., bQ0ic, dQ0ie ∈ Ωi for i = 1, 2, . . . , n.

Proposition 2. Maximum assured target, T =
∑n

i=1 max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)}, where

Q0i = {(mi + ci)ai + sibi}/(mi + ci + si) for i = 1, 2, . . . , n.

See Appendix B for proofs of the above results. Note that if T ≤ T or T ≥ T , the problem

has trivial solutions. Further computation is needed only if T ∈ (T , T ).

3 Satiation probability

For maximizing satiation probability, we should be able to compute it first. One way to

compute satiation probability for given T and Q is to check IΠ(Q,x)≥T ∀x ∈ Ω and calculate∑
x∈Ω IΠ(Q,x)≥T p(x). However, since the number of elements in Ω increases exponentially with

the number of products, time requirement for this method grows exponentially with n. Time

requirement increases further if demand ranges (bi − ai + 1) are high. Results in the following

subsection help in reducing the time requirement for computing PT (Q).

3.1 An important result

First, let us define profit cushion and cost distance.

Definition 1. Profit cushion at Q ∈ Ω for given T ∈ R, PCT (Q) and cost distance of x ∈ Rn

from given Q ∈ Ω, CDQ(x) are defined as

PCT (Q) =

n∑
i=1

miQi − T,

CDQ(x) =
n∑

i=1

[(mi + ci) max{0, Qi − xi}+ si max{0, xi −Qi}] .
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Though x ∈ Ω ⊂ Rn for the discrete formulation, we consider x ∈ Rn in the above definition

to facilitate some results to follow. Cost distance is additive in nature. It is the sum of cost

distances of individual products, i.e. CDQ(x) =
∑n

i=1CDQi(xi).

Profit cushion is the gap between the maximum achievable profit for an ordering decision

and the given target. Cost distance is the amount of cushion lost due to mismatch between

demand and supply. Following result connects PCT (Q), CDQ(x), and IΠ(Q,x)≥T .

Lemma 2. IΠ(Q,x)≥T = 1 if and only if CDQ(x) ≤ PCT (Q).

The above result can be verified easily. Individual product profit, i.e., (3) can be rewritten

as Πi(Qi, xi) = miQi − (mi + ci) max{0, Qi − xi} − si max{0, xi −Qi} = miQi − CDQi(xi) for

i = 1, 2, . . . , n. Then, Π(Q, x) =
∑n

i=1 Πi(Qi, xi) = T +PC(Q)−CDQ(x). By (2), IΠ(Q,x)≥T = 1

if and only if Π(Q, x) ≥ T . Hence, IΠ(Q,x)≥T = 1 if and only if CDQ(x) ≤ PCT (Q).

By definition, CDQ(x) is non-negative. If PCT (Q) < 0, PT (Q) = 0 as CDQ(x) ≥ 0 >

PCT (Q) ∀x ∈ Ω. On the other hand, if PCT (Q) ≥ 0, PT (Q) ≥ 0 as CDQ(Q) = 0 ≤ PCT (Q)⇒
IΠ(Q,Q)≥T = 1⇒ PT (Q) ≥ p(Q). To calculate the exact value of PT (Q) in the later case, we still

need to check IΠ(Q,x)≥T ∀x ∈ Ω. We can do better. With the help of the following definition,

Theorem 1 precisely identifies the subset of Ω where IΠ(Q,x)≥T = 1, thereby eliminating the

necessity to check IΠ(Q,x)≥T completely.

Definition 2. Terminal demand points for the ith product (i = 1, 2, . . . , n) for given Q and T

such that PCT (Q) ≥ 0 are defined as

x(i)(Q,T ) =

(
Q1, . . . , Qi−1, Qi −

PCT (Q)

mi + ci
, Qi+1, . . . , Qn

)
,

x(i)(Q,T ) =

(
Q1, . . . , Qi−1, Qi +

PCT (Q)

si
, Qi+1, . . . , Qn

)
.

Clearly, x
(i)
i (Q,T ) = Qi−PCT (Q)/(mi+ci), x

(i)
i (Q,T ) = Qi+PCT (Q)/si, and x

(i)
j 6=i(Q,T ) =

x
(i)
j 6=i(Q,T ) = Qj for all i = 1, 2, . . . , n and j = 1, 2, . . . , n. Note that x

(i)
i and x

(i)
i need not be in

Ωi (i.e., they can take non-integer values and can be outside the demand limits).

We call x(i) and x(i) as the terminal demand points because IΠ(Q,x)≥T = 0 if xi /∈ [x
(i)
i , x

(i)
i ].

Without loss of generality, let us assume that x1 /∈ [x
(1)
1 , x

(1)
1 ], i.e., either x1 < Q1−PCT (Q)/(m1+

c1) or x1 > Q1 + PCT (Q)/s1. In the first case, PCT (Q) < (m1 + c1)(Q1 − x1) = CDQ1(x1) ≤
CDQ(x). In the second case, PCT (Q) < s1(x1 − Q1) = CDQ1(x1) ≤ CDQ(x). In both cases,

CDQ(x) > PCT (Q). Then by Lemma 2, IΠ(Q,x)≥T = 0.

Theorem 1. IΠ(Q,x)≥T = 1 if and only if x ∈ coD, where coD is the convex hull of D. If

PCT (Q) ≥ 0, D is the set of terminal demand points, else D = ∅.

See Appendix C for a proof. The above theorem plays a pivotal role in calculating PT (Q). It

also explains why continuous formulation of the MPSNP is difficult to solve.
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3.2 Computation of satiation probability

Using Theorem 1, we can rewrite (1) as

PT (Q) =
∑

x∈coD∩Ω

p(x), where D is defined in Theorem 1. (4)

The above expression eliminates the necessity to check IΠ(Q,x)≥T for finding satiation probability.

However, we need to identify x ∈ coD ∩ Ω for the calculation of PT (Q).

For the single-product case, coD ∩ Ω is simply an interval; hence, the computation of PT (Q)

is straight forward. The problem with the multi-product case is that coD ∩ Ω can assume many

different shapes and most of these shapes are irregular2. Exploiting the additive structure of

CDQ(x), we can express coD ∩ Ω as following.

S =
{
x : x ∈ Nn

0 , di ≤ xi ≤ di for i = 1, 2, . . . , n
}
, (5)

where di = max

{
ai, Qi −

pcli(x1, . . . , xi−1)

mi + ci

}
, di = min

{
bi, Qi +

pcli(x1, . . . , xi−1)

si

}
,

and pcli(x1, . . . , xi−1) = PCT (Q)−
i−1∑
j=1

CDQj (xj) for i = 1, 2, . . . , n.

See Appendix D for a proof that S = coD ∩ Ω. Structure of S is similar to that of a

hyperrectangle and its elements can be identified with some quick calculations. pcli is the

amount of profit cushion left for the ith product after compensating for the demand-supply

mismatch of the first i− 1 products. Note that pcl1 = PCT (Q).

Since S = coD ∩ Ω, (4) can be rewritten as

PT (Q) =

bd1c∑
x1=dd1e

bd2(x1)c∑
x2=dd2(x1)e

bd3(x1,x2)c∑
x3=dd3(x1,x2)e

· · · · · ·
bdn(x1,...,xn−1)c∑

xn=ddn(x1,...,xn−1)e

p(x1, . . . , xn), (6)

where di(x1, . . . , xi−1) and di(x1, . . . , xi−1) for i = 1, 2, . . . , n are defined in (5).

Now, we in a position to exploit the power of Theorem 1 in computing the satiation probability.

Algorithm 1 computes PT (Q) by implementing (6). Comments in Algorithm 1 (and the next)

are enclosed inside 〈〉 and the font colour is gray.

Computation time of Algorithm 1 can be represented as: tSP = α+ α0n+ α1β1 + α2β2 +

· · ·+ αnβn, where α, α0, α1, α2, . . . , αn are input-independent constants and β1, β2, . . . , βn are

input-dependent variables. βi for i = 1, 2, . . . , n are given by

βi =

bd1c∑
x1=dd1e

bd2(x1)c∑
x2=dd2(x1)e

bd3(x1,x2)c∑
x3=dd3(x1,x2)e

· · · · · ·
bdi(x1,...,xi−1)c∑

xi=ddi(x1,...,xi−1)e

1,

2Objects, whose elements are difficult to identify, are referred to as irregular objects. A hyperrectangle is a
regular object, while a convex hull (in multi-dimension) is irregular.
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Algorithm 1 Calculate PT (Q) for general demand

Input: n, T , Q 〈Q = (Q1, Q2, . . . , Qn)〉, parameters 〈ai, bi,mi, ci, si for i = 1, 2, . . . , n〉, and

p() 〈n-dimensional pmf array〉
Output: PT (Q)

1. PT (Q)← 0

2. pcl1 ←
∑n

i=1miQi − T
3. d1 ← max{a1, Q1 − pcl1/(m1 + c1)}, d1 ← min{b1, Q1 + pcl1/s1}
4. for x1 = dd1e to bd1c do

5. pcl2 ← pcl1 − [(m1 + c1) max{0, Q1 − x1}+ s1 max{0, x1 −Q1}]
6. d2 ← max{a2, Q2 − pcl2/(m2 + c2)}, d2 ← min{b2, Q2 + pcl2/s2}
7. for x2 = dd2e to bd2c do

8. .

9. .

10. pcln ← pcln−1− [(mn−1 + cn−1) max{0, Qn−1−xn−1}+ sn−1 max{0, xn−1−Qn−1}]
11. dn ← max{an, Qn − pcln/(mn + cn)}, dn ← min{bn, Qn + pcln/sn}
12. for xn = ddne to bdnc do

13. PT (Q)← PT (Q) + p(x1, . . . , xn)

14. end for

15. .

16. .

17. end for

18. end for

19. return PT (Q)

where dj(x1, . . . , xj−1) and dj(x1, . . . , xj−1) for j = 1, 2, . . . , i are defined in (5).

Clearly, β1 ≤ β2 ≤ · · · ≤ βn. Then βn < tSP and β1 + β2 + · · · + βn ≤ nβn. Furthermore,

nβn dominates tSP for sufficiently large input. Note that βn is the cardinality of S defined in

(5). Thus, tSP = Ω(|S|) and tSP = O(n|S|).
|S| grows exponentially with the number of products. |S| is increasing in demand ranges

(bi − ai + 1 for i = 1, 2, . . . , n) and decreasing in cost parameters (ci and si for i = 1, 2, . . . , n).

|S| is increasing in profit cushion which implies that |S| is decreasing in profit target (as

PCT (Q) =
∑n

i=1miQi − T is decreasing in T ). Dependence of |S| on mi (for i = 1, 2, . . . , n) is

not so clear. In the worst case, |S| can be as high as |Ω| =
∏n

i=1(bi − ai + 1).

Space requirement of Algorithm 1 is high too. The storing of probability array (p) consumes

space of order |Ω| =
∏n

i=1(bi − ai + 1). Space requirement of other inputs and operations of the

algorithm is far less and grows linearly with n. However, in many real life situations, demand

is modelled as random variable with some standard distribution. In such cases, we can reduce

space requirement by removing p from the input and calculating p(x1, . . . , xn) in line 13 of the

algorithm before adding it to PT (Q).
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The case of independent demand

For the independent demand case, (6) can be rewritten as

PT (Q) =

bd1c∑
x1=dd1e

bd2c∑
x2=dd2e

· · ·
bdn−1c∑

xn−1=ddn−1e

bdnc∑
xn=ddne

n∏
i=1

pi(xi)

=

bd1c∑
x1=dd1e

bd2c∑
x2=dd2e

· · ·
bdn−1c∑

xn−1=ddn−1e

n−1∏
i=1

pi(xi)
{
Pn(bdnc)− Pn(ddne − 1)

}
, (7)

where di(x1, . . . , xi−1) and di(x1, . . . , xi−1) for i = 1, 2, . . . , n are defined in (5).

Algorithm 2 computes PT (Q) for the case of independent demand by implementing (7). It is

very similar to Algorithm 1, except for the absence of the innermost for-loop.

Algorithm 2 Calculate PT (Q) for independent demand

Input: n, T , Q 〈Q = (Q1, Q2, . . . , Qn)〉, parameters 〈ai, bi,mi, ci, si for i = 1, 2, . . . , n〉, pi() for

i = 1, 2, . . . , n− 1 〈1-dimensional pmf arrays〉, and Pn() 〈1-dimensional cdf array〉
Output: PT (Q)

1. PT (Q)← 0

2. f0 ← 1

3. pcl1 ←
∑n

i=1miQi − T
4. d1 ← max{a1, Q1 − pcl1/(m1 + c1)}, d1 ← min{b1, Q1 + pcl1/s1}
5. for x1 = dd1e to bd1c do

6. f1 ← f0 × p1(x1)

7. pcl2 ← pcl1 − [(m1 + c1) max{0, Q1 − x1}+ s1 max{0, x1 −Q1}]
8. d2 ← max{a2, Q2 − pcl2/(m2 + c2)}, d2 ← min{b2, Q2 + pcl2/s2}
9. .

10. .

11. for xn−1 = ddn−1e to bdn−1c do

12. fn−1 ← fn−2 × pn−1(xn−1)

13. pcln ← pcln−1− [(mn−1 + cn−1) max{0, Qn−1−xn−1}+ sn−1 max{0, xn−1−Qn−1}]
14. dn ← max{an, Qn − pcln/(mn + cn)}, dn ← min{bn, Qn + pcln/sn}
15. PT (Q)← PT (Q) + fn−1 × {Pn(bdnc)− Pn(ddne − 1)}
16. end for

17. .

18. .

19. end for

20. return PT (Q)

Following the analysis of Algorithm 1, computation time of Algorithm 2, tSP (ID) = α +

α0n+ α1β1 + α2β2 + · · ·+ αn−1βn−1. Clearly, βn−1 < tSP (ID) and nβn−1 dominates tSP (ID) for
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sufficiently large input. Let us define S−1 as

S−1 =
{
x : x ∈ Nn−1

0 , di ≤ xi ≤ di for i = 1, 2, . . . , n− 1
}
, (8)

where di and di for i = 1, 2, . . . , n follow the definition of (5). S−1 is the projection of n-

dimensional S into (n − 1)-dimensional space. Clearly, βn−1 is the cardinality of S−1. Then

tSP (ID) = Ω(|S−1|) and tSP (ID) = O(n|S−1|).
The dependence of |S−1| on different inputs is very similar to that of |S|. The worst case

value of |S−1| is
∏n−1

i=1 (bi − ai + 1). Clearly, time requirement of Algorithm 2 is less than that

of Algorithm 1. Product with small mi + ci, si and large bi − ai should be labelled as the nth

product (so that bdic − ddie is large) to maximize the time saving.

Space requirement of Algorithm 2, too, is less than that of Algorithm 1. Space requirement

for storing pi for i = 1, 2, . . . , n − 1 and Pn is of order
∑n

i=1(bi − ai). The remaining space

requirement also grows linearly with n.

4 Enumeration-based optimization

With the help of algorithms for computing satiation probability, we can maximize it by complete

enumeration of Ω. For the general case, PT (Q) is calculated |Ω| times using Algorithm 1. Since

computation time of Algorithm 1, tSP = O(n|Ω|), computation time for the enumeration-based

optimization, tOS = O(n|Ω|2) = O(n
∏n

i=1 r
2
i ), where ri = bi − ai + 1 for i = 1, 2, . . . , n are the

demand ranges. For the independent demand case, Algorithm 2 is used for the computation

of PT (Q). Then computation time for optimization, tOS(ID) = O(nrn
∏n−1

i=1 r
2
i ) as computation

time of Algorithm 2, tSP (ID) = O(n
∏n−1

i=1 ri). Space requirement for the optimization is very

similar to that of PT (Q) computing algorithms.

Numerical results

We test time performance of our optimization method by solving test problems. Factors that

influence the computation time for optimization most are i) number of products, ii) demand

ranges, and iii) demand type. We solved both independent demand (ID) and dependent demand

(DD) problems. Three demand ranges (low, medium, and high) are considered. We started

with the two-product problems (2P), but could not go beyond the three-product (3P) problems

due to large time requirements. See Appendix E for the details on the test problem generation

process. We implemented the algorithms in GNU Octave 3.6.4 (GCC 4.6.2) and solved the test

problems in Intel Core i5 (3.30 GHz) processors.

Table 1 shows the computation time for optimization in three problem classes. A problem

class is defined by the number of products (nP, n = 2, 3, . . . ) and demand type (ID and DD).

It is evident that the 2P ID problems can be solved optimally in quick time. Each of the 100

solved problems took less than two minutes. However, the scenario changed quickly as we moved
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to the 3P ID problems. The maximum computation time exceeded 3 days while the average

computation time was about 9 hours.

2P DD problems, as expected, took more time to solve optimally than their ID counterparts.

The maximum computation time reached 14 hours while the average was about 80 minutes.

Note that values in Table 1 are inclusive of the computation of probability mass function (p).

This kind of implementation increases computation time, but decreases space usage.

Table 1: Computation time for optimization

CPU Time

Problem Number Min Max Avg

2P ID 100 2.3 81.8 25.9

3P ID 50 1186.5 295095.9 32076.4

2P DD 50 25.2 51495.9 4729.9

For practical purposes, where time requirement is a major concern, 2P ID problems can be

solved optimally. Some 2P DD and few 3P ID problems can be solved optimally too. However,

our optimization method may not be suitable for some 2P DD and most 3P ID problems. This

method is not suitable for nP ID, n ≥ 4 and nP DD, n ≥ 3 problems.

5 Difficulty with the continuous formulation

Discrete formulation of the MPSNP has allowed us to compute the satiation probability and

maximize it. However, computation time for the optimization grows exponentially as the number

of products increases. Numerical results showed that the enumeration-based optimization can

not be used for problems with three or more product. Let us check if the continuous formulation

of the MPSNP is “better” or not.

Some changes are necessary for the continuous formulation. Individual product demands, Xi

for i = 1, 2, . . . , n are real-valued random variables with bounded interval supports, Ωi = [ai, bi].

pi and Pi are replaced by fi and Fi respectively for i = 1, 2, . . . , n. Order quantities, Qi for

i = 1, 2, . . . , n can take non-integer values. The distribution and density functions of demand

vector, X = (Xi) are denoted by F and f respectively. Now, our objective is to

maximize
Q∈Rn

≥0

PT (Q) =

∫
x∈Ω

IΠ(Q,x)≥T dF (x)

=

∫ b1

a1

∫ b2

a2

· · ·
∫ bn

an

IΠ(Q,x)≥T f(x)dx1dx2 · · · dxn, (9)

where R≥0 = {x : x ∈ R, x ≥ 0} and Rn
≥0 is the corresponding n-dimensional space.

Most of our results and definitions for the discrete case are valid for the continuous case

without any change. Lemma 1 and Proposition 2 need minor adjustment as order quantities are

no more integer-valued. Similarly, members of S (defined in (5)) are no more in Nn
0 . For the
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continuous case, (6) takes the following form.

PT (Q) =

∫
x∈coD∩Ω

dF (x) (by Theorem 1)

=

∫ d1

d1

∫ d2(x1)

d2(x1)
· · ·
∫ dn(x1,...,xn−1)

dn(x1,...,xn−1)
f(x)dx1dx2 · · · dxn, (10)

where di and di for i = 1, 2, . . . , n follow the definition of (5).

Complexity of the above expression of PT (Q) is evident. Each integration limit in (10) can

assume two values; di can be ai or Qi − pcli/(mi + ci) and di can be bi or Qi + pcli/si for

i = 1, 2, . . . , n, where pcli(x1, . . . , xi−1) follows the definition of (5). Depending on the location

of Q in Ω and model parameters, each integration in (10) can assume upto four different forms.

Thus, the multiple integration can assume upto 4n different forms.

The above observation can be understood geometrically too. PT (Q) is basically the probability

of X ∈ coD ∩ Ω. Thus, the expression of PT (Q) changes with the shape of coD ∩ Ω. Ω is

a hyperrectangle and coD is a convex hull with 2n vertices, each laying on an axis in the

n-dimensional space if Q is considered as the origin. Any number of vertices, ranging from 0 to

2n, can be outside the hyperrectangle giving rise to different shapes for coD ∩ Ω. Total number

of different shapes is
(

2n
0

)
+
(

2n
1

)
+ · · ·+

(
2n
2n

)
= 22n = 4n.

To maximize satiation probability, Ω is split into 4n number of regions such that each

region corresponds to one form of PT (Q). Note that some of these regions can be empty for

a given problem instance. After the splitting of Ω, optimization for each region is carried out

(or dominance of PT (Q) in one region over another is established) and the best among these

“regional optima” is the global optima.

The problem with this method is the exponential growth of the number of regions with the

number of products. This number is 16 for the two-product case, 64 for the three-product case,

256 for the four-product case, and so on. Beyond two-products, it becomes unmanageable. Even

for the two-product case, the method is tedious. Further complexity in evaluating PT (Q) by

(10) arises if f is complex.

Special cases

Some simplifications are possible by putting restrictions. If stock-out costs (si for i = 1, 2, . . . , n)

are assumed to be zero, the number of forms that PT (Q) can take reduces drastically. Note that

our model does not permit si to be zero (as that would imply division by zero); however, we can

choose sufficiently small values for si such that di = min{bi, Qi + pcli/si} = bi for i = 1, 2, . . . , n.

Geometrically, this means that n vertices are always outside Ω. Then the number of forms that

PT (Q) can assume is 2n. In this case,

PT (Q) =

∫ b1

d1

∫ b2

d2(x1)
· · ·
∫ bn

dn(x1,...,xn−1)
f(x)dx1dx2 · · · dxn. (11)
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Assuming zero stock-out costs and uniform demand, Li et al. (1990) solved the two-product

problem using the continuous formulation. They split Ω into 4 different regions and maximized

PT (Q) in each region; best among these regional optima was selected as the global optimum.

Approach of A. H.-L. Lau & Lau (1988a) was similar to that of Li et al. (1990).

Instead of assuming zero stock-out costs, if we assume unbounded demand upper limit,

i.e., bi = ∞ for i = 1, 2, . . . , n, di = min{bi, Qi + pcli/si} = Qi + pcli/si for i = 1, 2, . . . , n.

Geometrically, this means that n vertices are always inside Ω. Then

PT (Q) =

∫ Q1+pcl1/s1

d1

∫ Q2+pcl2(x1)/s2

d2(x1)
· · ·
∫ Qn+pcln(x1,...,xn−1)/sn

dn(x1,...,xn−1)
f(x)dx1dx2 · · · dxn. (12)

The number of forms that PT (Q) can take remains 2n. However, (12) is more complex than

(11) due to the presence of x1, x2, . . . , xi−1 in the upper integration limits of the ith integral for

i = 2, 3, . . . , n. In addition to the unbounded demand upper limit assumption, if we assume zero

stock-out costs, (12) takes a form similar to (11). Then

PT (Q) =

∫ ∞
d1

∫ ∞
d2(x1)

· · ·
∫ ∞
dn(x1,...,xn−1)

f(x)dx1dx2 · · · dxn. (13)

Li et al. (1991) solved the two-product problem with zero stock-out costs and independent

exponential product demands (b1 = b2 =∞). Ω was split into 4 different regions and the best

among the regional optima was selected as the global optimum.

The simplest case arises if we assume that ai = −∞ for i = 1, 2, . . . , n in addition to the

zero stock-out costs and unbounded demand upper limit assumptions. Then di = max{ai, Qi −
pcli/(mi + ci)} = Qi − pcli/(mi + ci) for i = 1, 2, . . . , n and

PT (Q) =

∫ ∞
Q1− pcl1

m1+c1

∫ ∞
Q2− pcl2(x1)

m2+c2

· · ·
∫ ∞
Qn−

pcln(x1,...,xn−1)

mn+cn

f(x)dx1dx2 · · · dxn. (14)

Now, PT (Q) takes only one form (irrespective of n). Even in this case, the continuous

formulation need not be simple. Interested readers can try the two-product problem with normal

demand (no truncation) and zero stock-out costs.

The above discussion explains why the continuous modelling of the MPSNP is difficult to

solve. This difficulty may be one of the reasons why no progress has happened in this direction

after the works of A. H.-L. Lau & Lau (1988a); Li et al. (1990, 1991).

6 Conclusion

Even though satiation objective in the newsboy problem started receiving attention quite early,

research progress has been slow, particularly in the multi-product setting. Our understanding is

limited to some restricted two-product problems (zero stock-out costs and independent product
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demands). We study the general MPSNP.

Unlike existing literature, we adapt a discrete formulation of the problem and identify its

key properties. We show that satiation probability for an ordering decision, Q is the probability

that demand lies in a convex hull around Q. “Size” of the convex hull depends on Q, profit

target, and model parameters. This result enables us to develop an algorithm for computing

the satiation probability in the general MPSNP. Prior to our work, there were no closed-form

expression or computational method for calculating the satiation probability.

We maximized satiation probability by complete enumeration and tested time performance

of this method. Computation time for solving the test problems suggests that our method can be

adopted for two and three-product independent demand problems and two-product dependent

demand problems. For larger problems (more products), our method is not suitable. Even

though our optimization method is inefficient, the discrete formulation may still be the preferred

way. We have explained why the conventional continuous formulation of the MPSNP is difficult

to solve, even for the smaller problems.

Our optimization method is generic in nature, i.e., it works for any demand distribution

and any parameter values. It is possible to develop faster algorithms by imposing restrictions

on these factors. We already have developed algorithm specific to the independent demand

case. Still, a lot more can be done in this direction. Another way to tackle the issue of large

computation time requirement is to solve the MPSNP using heuristics. Our optimization method

can be used to test heuristic accuracy. Metaheuristics can also be tried.

An alternate approach to solve the MPSNP is to find the distribution function of the total

profit (as a function of the ordering decision). Let GQ() be the distribution. Then Q with

the lowest GQ(T ) is the optimum solution as PT (Q) = 1−GQ(T ). However, GQ is difficult to

evaluate; to the best of our knowledge, there is no study that finds GQ for the general MPSNP.

Using the central limit theorem, Özler et al. (2009) approximated GQ by normal distribution

for the independent demand case. They found the average approximation error to be less than

1% for 25 or more products. Using this approximation, the MPSNP with independent product

demands can be attempted.
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Appendix A

By (3), if Qi < ai, Πi(ai, xi) − Πi(Qi, xi) = (mi + si)(ai − Qi) > 0 ∀xi ∈ Ωi. So Qi = ai

assures greater profit than any Qi < ai in every demand scenario. Similarly, if Qi > bi,

Πi(bi, xi)−Πi(Qi, xi) = ci(Qi− bi) > 0 ∀xi ∈ Ωi. Thus Qi = bi is always better than any Qi > bi
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in making profit. These are true for every i = 1, 2, . . . , n.

Let Q /∈ Ω, i.e., Qi /∈ Ωi for at least one i = 1, 2, . . . , n. Let us construct Q′ ∈ Ω from Q

by replacing the “outliers” with their nearest demand limits. Then Π(Q′, x) > Π(Q, x) ∀x ∈ Ω.

Therefore IΠ(Q,x)≥T = 1⇒ IΠ(Q′,x)≥T = 1 ∀x ∈ Ω. However, IΠ(Q,x)≥T = 0 does not necessarily

imply IΠ(Q′,x)≥T = 0. Hence, PT (Q) ≤ PT (Q′). Thus, for every Q /∈ Ω, ∃ Q′ ∈ Ω such that

PT (Q) ≤ PT (Q′). Therefore Q∗ ∈ Ω.

Appendix B

Lemma 1: For any Qi, the worst profit is realized either when Xi = ai or when Xi = bi.

Thus, Πi(Qi)min = min{Πi(Qi, xi) : xi ∈ Ωi} = min{Πi(Qi, ai),Πi(Qi, bi)}. By (3), Πi(Qi, ai) =

miai − ci(Qi − ai) and Πi(Qi, bi) = miQi − si(bi − Qi). Πi(Qi, ai) is decreasing in Qi, while

Πi(Qi, bi) is increasing in Qi. They are equal at Q0i = {(mi + ci)ai + sibi}/(mi + ci + si).

Note that Q0i need not be integer-valued. Thus, Πi(Qi)min = Πi(Qi, bi) if Qi ≤ bQ0ic, and

Πi(Qi)min = Πi(Qi, ai) if Qi ≥ dQ0ie.
We can further say that if Qi ≤ bQ0ic, Πi(Qi)min = Πi(Qi, bi) is increasing in Qi and if

Qi ≥ dQ0ie, Πi(Qi)min = Πi(Qi, ai) is decreasing in Qi. So maximum assured profit for the

ith product, max{Πi(Qi)min : Qi ∈ Ωi} = max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)}. This is achieved

by bQ0ic if Πi(bQ0ic, bi) ≥ Πi(dQ0ie, ai) and by dQ0ie if Πi(bQ0ic, bi) ≤ Πi(dQ0ie, ai). These

arguments are true for every i = 1, 2, . . . , n.

Any T ≤
∑n

i=1 max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)} can be split into n product specific targets

such that Ti ≤ max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)} for i = 1, 2, . . . , n. Each Ti can be achieved

with certainty by bQ0ic or dQ0ie or both. Thus, such T can be achieved with certainty.

Proposition 2: Let
∑n

i=1 max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)} = T0. By Lemma 1, any T ≤ T0 can

be achieved with certainty. Let T > T0 and Q∗ is the optimum ordering decision. To establish

T0 as the maximum assured target, we need to show that PT (Q∗) < 1 ∀T > T0.

Assuming a contradiction, let PT (Q∗) = 1 for some T > T0. Then Π(Q∗, x) ≥ T > T0 ∀x ∈ Ω.

Following the arguments in the proof of Lemma 1, T0 =
∑n

i=1 max{Πi(Qi)min : Qi ∈ Ωi} ≥∑n
i=1 Πi(Q

∗
i )min = min{Π(Q∗, x) : x ∈ Ω}. Hence, T0 ≥ Π(Q∗, x) for at least one x ∈ Ω, which

is in contradiction with our assumption. Thus, T = T0.

Appendix C

If PCT (Q) < 0, by Lemma 2, IΠ(Q,x)≥T = 0 ∀x ∈ Rn as CDQ(x) is a non-negative quantity.

Since D = ∅, coD = ∅ too. Then our claim is vacuously true.

If PCT (Q) ≥ 0, by Definition 2, D =
⋃n

i=1{x(i), x(i)}. Then D and coD are non-empty.

If PCT (Q) = 0, all terminal demand points coincide with Q, i.e., D = {Q} and coD = {Q}.
In this case, our claim is that IΠ(Q,x)≥T = 1 if and only if x = Q, which is true. If x = Q,

CDx(Q) = 0 = PCT (Q) and by Lemma 2, IΠ(Q,x)≥T = 1. If x 6= Q, CDx(Q) > 0 = PCT (Q)
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and by Lemma 2, IΠ(Q,x)≥T = 0. Next, we take the case of positive PCT (Q).

Let x be an arbitrary member of coD. Then x =
∑n

i=1 αix
(i)+

∑n
i=1 αix

(i) for some αi, αi ≥ 0

for i = 1, 2, . . . , n such that
∑n

i=1(αi + αi) = 1. Using Definition 2,

xi = Qi − αi

PCT (Q)

mi + ci
+ αi

PCT (Q)

si
= Qi + δiPCT (Q) (C.1)

for i = 1, 2, . . . , n, where δi = αi/si − αi/(mi + ci). Now, CDQ(x) can be expressed as

CDQ(x) =
n∑

i=1

[(mi + ci) max{0,−δiPCT (Q)}+ si max{0, δiPCT (Q)}]

= PCT (Q)
n∑

i=1

[si max{0, δi} − (mi + ci) min{0, δi}] . (C.2)

If δi ≥ 0, si max{0, δi} − (mi + ci) min{0, δi} = si

(
αi

si
− αi

mi + ci

)
≤ αi.

If δi ≤ 0, si max{0, δi} − (mi + ci) min{0, δi} = −(mi + ci)

(
αi

si
− αi

mi + ci

)
≤ αi.

⇒
n∑

i=1

[si max{0, δi} − (mi + ci) min{0, δi}] ≤
n∑

i=1

(αi + αi) = 1.

Hence, CDQ(x) ≤ PCT (Q). Then by Lemma 2, IΠ(Q,x)≥T = 1. Since this holds for an arbitrary

x ∈ coD, x ∈ coD ⇒ IΠ(Q,x)≥T = 1.

Now, we need to prove the converse, i.e., IΠ(Q,x)≥T = 1⇒ x ∈ coD. Instead, we show that

IΠ(Q,x)≥T = 0 ∀x /∈ coD. This result along with the already established IΠ(Q,x)≥T = 1 ∀x ∈ coD

gives us the desire result. This is accomplished in the following steps.

First, we find a way to characterize the boundary points (relative boundary) of coD. Note

that coD is compact as D, being a finite set, is compact (Hiriart-Urruty & Lemaréchal, 2004, pg.

31). Hence, the closure of coD, cl coD = coD. Then the boundary of coD is wholly contained

in it. Let us split the members of coD, i.e., all possible convex combinations of elements in D

into following two disjoint sets.

A =

{
n∑

i=1

(αix
(i) + αix

(i)) : both αi and αi are non-zero for at least one i = 1, 2, . . . , n

}
.

B =

{
n∑

i=1

(αix
(i) + αix

(i)) : at least one of αi and αi is zero for every i = 1, 2, . . . , n

}
.

The usual restrictions on αi, αi hold, i.e., αi, αi ≥ 0 for i = 1, 2, . . . , n and
∑n

i=1(αi + αi) = 1.

We show that A ⊆ ri coD (the relative interior of coD).

Let x be an arbitrary member of A. Then x =
∑n

i=1(αix
(i) + αix

(i)), where αi, αi ≥ 0 for

i = 1, 2, . . . , n,
∑n

i=1(αi +αi) = 1, and both of αi, αi are non-zero for at least one i = 1, 2, . . . , n.
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Without loss of generality, let us assume that α1, α1 > 0. Depending on the value of α1 + α1,

two cases arise: α1 + α1 < 1 and α1 + α1 = 1. If α1 + α1 < 1,

x = (α1 + α1)

[
α1x

(1)

α1 + α1
+

α1x
(1)

α1 + α1

]
+ (1− α1 − α1)

n∑
i=2

[
αix

(i)

1− α1 − α1
+

αix
(i)

1− α1 − α1

]
= (α1 + α1)y + (1− α1 − α1)z (say).

Clearly, y and z, being convex combinations of elements in D, are in coD. Furthermore, y

lies in the interior of the line segment connecting x(1) and x(1) as α1/(α1 + α1) ∈ (0, 1) and

α1/(α1 + α1) ∈ (0, 1). If α1 + α1 = 1, y remains in the interior of the line segment connecting

x(1) and x(1), while z vanishes, i.e., x = y (as 1− α1 − α1 = 0 then).

D consists of 2n number of distinct points in Rn. If we consider Q as the origin, x(i) and x(i)

lie on the ith axis; x(i) lies on the negative-side and x(i) lies on the positive-side. Then Q is in

the interior of coD3. Furthermore, Q = {(m1 + c1)/(m1 + c1 + s1)}x(1) + {s1/(m1 + c1 + s1)}x(1)

lies in the interior of the line segment connecting x(1) and x(1).

Since y and Q lie in the interior of the line segment connecting x(1) and x(1), either y =

βQ + (1 − β)x(1) or y = βQ + (1 − β)x(1) for some β ∈ (0, 1]. So y lies in the half-open line

segment connecting Q ∈ ri coD (closed in this end) and x(1) ∈ cl coD or x(1) ∈ cl coD. Hence,

y ∈ ri coD (Hiriart-Urruty & Lemaréchal, 2004, pg. 35). Extending the same logic, if α1 +α1 < 1,

since x = γy + (1− γ)z, where γ = α1 + α1 ∈ (0, 1), lies in the open line segment connecting

y ∈ ri coD and z ∈ cl coD, x ∈ ri coD. If α1 + α1 = 1, x = y ∈ ri coD.

Since an arbitrary x ∈ A is in ri coD, A ⊆ ri coD. Then cl coD− ri coD ⊆ cl coD−A = B,

i.e., B contains all the boundary points of coD. Hence, a boundary point of coD can be

represented as convex combination of points in D such that at least one of the coefficients

corresponding to x(i) and x(i) is zero for every i = 1, 2, . . . , n.

Now, we show that CDQ(x) = PCT (Q) if x is a boundary point of coD. It is sufficient

to show that CDQ(xB) = PCT (Q) for an arbitrary xB ∈ B. Let xB =
∑n

i=1(αix
(i) + αix

(i)),

where αi, αi ≥ 0 for i = 1, 2, . . . , n,
∑n

i=1(αi +αi) = 1, and at least one of αi, αi is zero for every

i = 1, 2, . . . , n. Using (C.2), CDQ(xB) can be expressed as

CDQ(xB) = PCT (Q)
n∑

i=1

[si max{0, δi} − (mi + ci) min{0, δi}] ,

where δi = αi/si − αi/(mi + ci) for i = 1, 2, . . . , n.

If αi = 0, δi =
αi

si
≥ 0 ⇒ si max{0, δi} − (mi + ci) min{0, δi} = αi = αi + αi.

If αi = 0, δi =
−αi

mi + ci
≤ 0 ⇒ si max{0, δi} − (mi + ci) min{0, δi} = αi = αi + αi.

3A formal proof is possible by showing that no hyperplane passing through Q supports coD. Then Q can not
be a boundary point of coD (Hiriart-Urruty & Lemaréchal, 2004, pg. 54). Since Q ∈ coD, Q ∈ ri coD.
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⇒ CDQ(xB) = PC(Q)
n∑

i=1

(αi + αi) = PCT (Q).

Now, we show that CDQ(x) > PCT (Q) for an arbitrary x /∈ coD. Since Q ∈ ri coD, there

exist a boundary point of coD (say, xB) that lies in the interior of the line segment connecting

x and Q. So xB = λx + (1 − λ)Q for some λ ∈ (0, 1). Let xB =
∑n

i=1(αix
(i) + αix

(i)), where

αi, αi ≥ 0 for i = 1, 2, . . . , n and
∑n

i=1(αi + αi) = 1. By (C.1), for i = 1, 2, . . . , n,

xBi = Qi + δiPCT (Q), where δi =
αi

si
− αi

mi + ci
.

⇒ xi =
1

λ
xBi −

(
1

λ
− 1

)
Qi = Qi + δi

PCT (Q)

λ
.

Now, CDQ(x) can be expressed as

CDQ(x) =
n∑

i=1

[
(mi + ci) max

{
0,−δi

PCT (Q)

λ

}
+ si max

{
0, δi

PCT (Q)

λ

}]

=
PCT (Q)

λ

n∑
i=1

[si max{0, δi} − (mi + ci) min{0, δi}] .

Since xB is a boundary point of coD, at least one of αi, αi is zero for each i = 1, 2, . . . , n.

Then max{0, δi} − (mi + ci) min{0, δi} = (αi + αi) for i = 1, 2, . . . , n.

⇒ CDQ(x) =
PCT (Q)

λ

n∑
i=1

(αi + αi) =
PCT (Q)

λ
> PCT (Q).

By Lemma 2, IΠ(Q,x)≥T = 0 as CDQ(x) > PCT (Q). Since x is an arbitrary point not in

coD, IΠ(Q,x)≥T = 0 ∀x /∈ coD. This completes the proof.

Appendix D

If PCT (Q) < 0, both coD and S are empty. S is empty because di > di (i.e., [di, di] = ∅) as

pcli < 0 for i = 1, 2, . . . , n. Then our claim is vacuously true. Next, we consider the case of

PCT (Q) ≥ 0. We can rewrite S (Equation 5) as

S =
{
x : x ∈ Nn

0 , ai ≤ xi ≤ bi, d0i ≤ xi ≤ d0i for i = 1, 2, . . . , n
}
,

where d0i = Qi −
pcli(x1, . . . , xi−1)

mi + ci
and d0i = Qi +

pcli(x1, . . . , xi−1)

si
for i = 1, 2, . . . , n.

= {x : x ∈ Nn
0 , ai ≤ xi ≤ bi ∀i = 1, 2, . . . , n} ∩ {x : x ∈ Rn, d0i ≤ xi ≤ d0i ∀i = 1, 2, . . . , n}

= Ω ∩ S0, where S0 = {x : x ∈ Rn, d0i ≤ xi ≤ d0i for i = 1, 2, . . . , n}.

Now, it is sufficient to show that S0 = coD to establish S = coD ∩ Ω.
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Let us consider an arbitrary x ∈ coD. If x /∈ S0, xi /∈ [d0i, d0i] for one or more i = 1, 2, . . . , n.

If xi < d0i = Qi − pcli/(mi + ci), pcli < (mi + ci)(Qi − xi) = CDQi(xi). Similarly, if xi > d0i =

Qi + pcli/si, pcli < si(xi−Qi) = CDQi(xi). In both cases, pcli = PCT (Q)−
∑i−1

j=1CDQj (xj) <

CDQi(xi)⇒ PCT (Q) <
∑i

j=1CDQj (xj) ≤ CDQ(x). Then by Lemma 2, IΠ(Q,x)≥T = 0, which

is impossible as x ∈ coD. Hence, x ∈ S0. Since the choice of x is arbitrary, coD ⊆ S0.

Now, let us consider an arbitrary x ∈ S0. Then d0n ≤ xn ≤ d0n, i.e., Qn − pcln/(mn +

cn) ≤ xn ≤ Qn + pcln/sn. Then Qn − xn ≤ pcln/(mn + cn) and xn − Qn ≤ pcln/sn. Hence,

CDQn(xn) ≤ pcln = PCT (Q) −
∑n−1

j=1 CDQj (xj) ⇒ CDQ(x) ≤ PCT (Q). By Lemma 2,

IΠ(Q,x)≥T = 1. Then by Theorem 1, x ∈ coD. Since the choice of x is arbitrary, S0 ⊆ coD. We

have already established that coD ⊆ S0. Hence, S0 = coD.

In the last part of the proof, we do not explicitly use the fact that d0i ≤ xi ≤ d0i for

i = 1, 2, . . . , n − 1. If one or more of these is/are violated, i.e., xj /∈ [d0j , d0j ] for some

j = 1, 2, . . . , n− 1, PCT (Q) <
∑j

i=1CDQi(xi). Then pclj+1 < 0 ⇒ d0j+1 > d0j+1 ⇒ S0 = ∅, a

contradiction to the non-emptiness assumption of S0.

Appendix E

An MPSNP for given n is defined by cost parameters, demand parameters, and profit target.

Here, we describe which values of these factors we chose to create a pool of versatile problems

and how did we select test problems from this pool.

Problem construction

Cost parameters : Critical fractile, cf = (m+ s)/(m+ c+ s) = 1− c/(m+ c+ s) has an important

role in the profit maximizing (or cost minimizing) newsboy problem. Optimum order quantity

in such problems is given by F (Q∗) = cf (Silver et al., 1998, chap. 10), where F is the demand

distribution function. Note that cf ∈ (0, 1). We choose cost parameters such that cf takes low

(0.3), medium (0.5), and high (0.7) values. Two sets of parameters are chosen for each cf value

(one with m < s and the other with m > s). Table 2 shows these cost profiles.

Table 2: Cost profiles

Profile number

Parameters 1 2 3 4 5 6

m 2 1 3 2 4 3

c 7 7 5 5 3 3

s 1 2 2 3 3 4

cf 0.3 0.3 0.5 0.5 0.7 0.7

Demand parameters: We consider three demand ranges: i) low (a = 0, b = 100), ii) medium

(a = 300, b = 500), and iii) high (a = 1000, b = 1500). Demand distributions are different for

independent and dependent demand cases.
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Independent demand: We assume uniform distribution (UD) in [a, b] for low demand range.

For medium demand range, we assume triangular distribution (TD) in [a, b] with (1− θ)a+ θb as

the mode (0 ≤ θ ≤ 1). Finally, for high demand range, we assume truncated normal distribution

(TND) in [a, b] with (1 − θ)a + θb as the mode (0 ≤ θ ≤ 1) and (b − a)/10 as the standard

deviation, σ. We vary location of the mode (θ) for TD and TND so that we get left-skewed

(θ = 0.3), symmetric (θ = 0.5), and right-skewed (θ = 0.7) distributions. Note that UD is always

symmetric. This way, we get seven demand profiles (see Table 3(a)). Since our model is discrete,

we take p(x) = F (x+ 0.5)− F (x− 0.5) ∀x ∈ {a, a+ 1, . . . , b}.
Dependent demand: We assume truncated multivariate normal distribution (TMVND). Here,

we can vary location of the mode for all demand ranges. This gives us nine demand profiles (see

Table 3(b)). We construct the covariance matrix as: Σ = sd ·R · sd, where sdn×n is the diagonal

matrix of standard deviations and Rn×n is the correlation matrix. We take σ = (b− a)/10 and

generate R randomly. Ideally, we should and take p(x) = Ftmvn(x+0.5)−Ftmvn(x−0.5) ∀x ∈ Ω,

where Ftmvn is the distribution function of TMVND. Since Ftmvn does not have a closed form

expression, calculation of p(x) ∀x ∈ Ω is time consuming, particularly for large n. Thus, we

take p(x) = fmvn(x)/tf ∀x ∈ Ω, where fmvn is the density function of the underlying MVND

and tf =
∑

x∈Ω fmvn(x) is the truncation factor. fmvn has closed form expression. With this

approximation, we may deviate significantly from TMVND. However, our objective (the study

of the dependent demand case) is unaffected by this approximation error.

Table 3: Demand profiles

(a) Independent demand

Profile number

Parameters 1 2 3 4 5 6 7

a 0 300 300 300 1000 1000 1000

b 100 500 500 500 1500 1500 1500

Dist. UD TD TD TD TND TND TND

Mode – 360 400 440 1150 1250 1350

(b) Dependent demand

Profile number

Parameters 1 2 3 4 5 6 7 8 9

a 0 0 0 300 300 300 1000 1000 1000

b 100 100 100 500 500 500 1500 1500 1500

Mode 30 50 70 360 400 440 1150 1250 1350

Profit target : If cost and demand parameters of a problem are known, we can calculate

T and T . If T /∈ (T , T ), optimum solution to such problem is trivial. A non-trivial profit

target can be expressed as: T = (1 − t)T + tT , t ∈ (0, 1). Since T can be negative, we take

T = (1 − t) max{0, T} + tT , t ∈ (0, 1) to ensure positivity of T . We consider three levels for
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profit target: i) low (t = 0.3), ii) medium (t = 0.5), and iii) high (t = 0.7). We use profile

number 1, 2, 3 to represent these low, medium, and high target levels.

Problem selection

Product profiles: Since cost and demand profiles are independent of each other, we have npp =

6 × 7 = 42 product profiles for the independent demand case and npp = 6 × 9 = 54 product

profiles for the dependent demand case. Table 4 shows the product profiles and corresponding

cost and demand profiles.

Table 4: Product profiles

Cost
profiles

Demand profiles

1 2 3 4 5 6 7 8 9

1 1 7 13 19 25 31 37 43 49

2 2 8 14 20 26 32 38 44 50

3 3 9 15 21 27 33 39 45 51

4 4 10 16 22 28 34 40 46 52

5 5 11 17 23 29 35 41 47 53

6 6 12 18 24 30 36 42 48 54

Using the target and product profiles, an n-product problem can be uniquely specified by a

vector of (n+ 1) elements. The first element is an integer between 1 and 3; it represents the

profit target level. Remaining n elements are integers between 1 and npp. These n integers

represent the product profiles.

Random selection: With 3 target profiles and npp product profiles, we can construct ntot =

3×
(
npp

n

)
number of n-product problems such that every product in a problem is distinct. We

do not allow two products to be identical to ensure versatility. We assign unique serial numbers

(1, 2, . . . , ntot) to these problems. This assignment is done randomly. If we wish to solve ntp

number of test problems, we select problems corresponding to 1, 2, . . . , ntp.

References
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