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Abstract

Preference of satiation of a target performance over maximization of expected performance

in uncertain situations is well-documented in the economics literature. However, the newsboy

problem with satiation (of a profit target) objective has not received its due attention.

In the multi-product setting, solution methods available in the literature are inefficient.

We developed an efficient heuristic to solve the problem. The heuristic decomposes the

multi-product problem into easily solvable single-product problems. We tested the heuristic

with a large number of test instances. The heuristic can be adopted to solve the “target

assignment problem”. We demonstrated it with some numerical examples.

1 Introduction

The newsboy problem with satiation objective (i.e., maximization of the probability of achieving

a given profit target) has quite a long history. Research into this important practical problem

started with the work of Irwin & Allen (1978). They studied the single-product problem.

The problem is non-convex unlike the classical newsboy problem. They identified necessary

condition for optimality, which links the optimal decision with the demand distribution. The

condition does not lead to a closed-form solution for the general case. Subsequent research on the

single-product satiating newsboy problem (Ismail & Louderback, 1979; H.-S. Lau, 1980; Norland,

1980; Sankarasubramanian & Kumaraswamy, 1983) considered specific demand distributions

and derived closed-form expressions for the optimal stocking quantity.

Research into the multi-product satiating newsboy problem (MPSNP) started with the work

of A. H.-L. Lau & Lau (1988). They studied the two-product problem with zero stock-out costs

and uniform demand. They derived closed-form solution for the case of identical products. Li et

al. (1990) considered non-identical products in the same setting. They developed an efficient

algorithm to compute the optimal stocking quantities. Li et al. (1991) did the same for the case

of independent exponential product demands.

After Li et al. (1991), no paper has been published on the MPSNP. Recently, Khanra (2014),

in his unpublished work, attempted the general MPSNP (i.e., no restriction on the number of
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products, stock-out costs, and demand distribution) using a discrete formulation. Note that all

previous papers on the satiating newsboy problem adapted continuous formulation. He identified

key properties of the problem and showed that the continuous formulation of the problem is

difficult to solve. His optimization algorithm, though solves the general MPSNP, is inefficient.

In fact, beyond two-product instances, the method is not useful.

Khanra & Soman (2014) eased the issue of large computation time of the algorithm of Khanra

(2014) to some extent. They developed search-based heuristics. In most cases, their heuristics

identified the optimum. However, those heuristics are not efficient either. Beyond five-product

instances, they are not useful. In this paper, we develop an efficient heuristic, which solves the

MPSNP with any ‘realistic number of products’ in ‘reasonable time’.

Remainder of this paper is organized as follows. In Section 2, we discuss the heuristic named

as target splitting heuristic (TSH). There are two variants of TSH. We describe them along with

their performances. TSH has an interesting implication for the “target assignment problem”,

which we discuss in Section 3. Finally, we conclude in Section 4.

2 Target splitting heuristic

We follow the discrete formulation of Khanra (2014). To avoid repetition, we do not discuss

the details here. Readers are requested to go through it or its summary presented in Khanra &

Soman (2014). For the ease of readers, the symbol list is provided in Appendix A.

Let us consider the single-product problem. Let m, c, s denote unit profit, unit purchase

cost less salvage value of an unsold item, and goodwill loss due to unit unmet demand. Let a, b

denote the demand limits. Ω = {a, a+ 1, . . . , b} denotes the demand space. Let X denote the

stochastic demand. Let p() and P () denote probability mass function (pmf) and cumulative

distribution function (cdf) of X. If the target T is achievable by order quantity Q, i.e., mQ ≥ T ,

the set of terminal demand point is given by: D = {x, x} where x = Q− (mQ− T )/(m+ c) and

x = Q+(mQ−T )/s. The convex hull of D, coD = [x, x]. coD∩Ω = {max{a, dxe},max{a, dxe}+
1, . . . ,min{b, bxc}}. Then the satiation probability (i.e., probability of achieving the given profit

target), PT (Q) = Pr{X ∈ coD ∩ Ω} = P (min{b, bxc}) − P (max{a, dxe} − 1). If the target is

unachievable by Q, PT (Q) = 0. Clearly, PT (Q) can be calculated in O(1) time. Then PT (Q)

can be maximized by complete enumeration of Ω in O(b− a) time. Algorithm 3 in Appendix B

solves the single-product satiating newsboy problem optimally.

Let n denote the number of products. If we split profit target of the MPSNP into n product-

specific targets, T1, T2, . . . , Tn such that T =
∑n

i=1 Ti and Ti ≤ T i for every i = 1, 2, . . . , n,

where T i = mibi is the maximum achievable target for product-i, we can get a solution

for the MPSNP by solving n single-product problems optimally. This process would take

O(
∑n

i=1(bi − ai)) = O(nravg) time where ravg denotes the average demand range. If the target

splitting procedure is efficient, this decomposition-based heuristic would take polynomial time

(in n) unlike the search-based heuristics of Khanra & Soman (2014). Quality of the solution
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would depend on the target splitting rule. We have developed two rules.

2.1 Rule-I

Intuitively, targets should be assigned to products based on their ‘profit making capabilities’,

which we measure by the maximum expected profits. In the single-product setting, expected

profit maximizing order quantity Q′ and the maximum expected profit Π∗ are given by

Q′ = min {Q ∈ {a, a+ 1, . . . , b} : P (Q) ≥ ξ} (1)

Π∗ ≈ (m+ c)

Q′∑
x=a

xp(x)− s
b∑

x=Q′+1

xp(x) (2)

where ξ = (m+ s)/(m+ c+ s) denotes the critical fractile. See Appendix C for the details. We

split the profit target as

Ti = min

{
T i,

Π∗i∑n
j=1 Π∗j

× T

}
for i = 1, 2, . . . , n. (3)

The above assignment ensures that individual profit targets are achievable. For sufficiently

large T , one or more products get T i as their individual targets. Such cases result in under-

allocation, i.e.,
∑n

i=1 Ti < T . Then the residual amount is distributed among the products with

Ti < T i. The secondary allocation is executed like the primary allocation, but with revised

proportions (see Procedure 1). This process is continued till the entire target is allocated. It

terminates in finite time if the target is achievable, i.e., T ≤ T =
∑n

i=1 T i.

For sufficiently small T , a different situation arises. Then one or more products may get

Ti < T i as their individual targets where T i denotes the maximum assured target for product-i.

T i = max{Πi(bQ0ic, bi),Πi(dQ0ie, ai)} where Q0i = {(mi + ci)ai + sibi}/(mi + ci + si) and

Πi(Qi, xi) = mi min{Qi, xi} − ci max{0, Qi − xi} − si max{0, xi −Qi}. For each i, PTi(Q
∗
i ) = 1

for every Ti ≤ T i where Q∗i denotes the optimal solution of the ith single-product problem. Thus,

assigning a target lesser than the maximum assured target is never beneficial. Hence, we modify

the target splitting rule from (3) to (4).

Ti = max

{
T i, min

{
T i,

Π∗i∑n
j=1 Π∗j

× T

}}
for i = 1, 2, . . . , n. (4)

For small T , the above rule may lead to over-allocation, i.e.,
∑n

i=1 Ti > T . Then the excess

amount is removed from the products with Ti > T i just like the residue allocation scheme for

large T . It terminates in finite time if the target is non-trivial, i.e., T ≥ T =
∑n

i=1 T i.

Based on the above discussions, Procedure 1 is implemented to performs the target splitting.

It has three parts. First, the maximum expected profits are calculated (line number 1 to 4),

which takes O(nravg) time. Next, the primary allocation is performed (line number 5 to 10),
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which takes O(n) time. Finally, residual target (if any) is allocated or excess target (if any) is

removed; both take O(n2) time. Thus, Procedure 1 takes O(n2 + nravg) time. Together with

the optimization in the resultant single-product problems (by Algorithm 3), TSH with Rule-I

takes O(n2 + nravg) time, which is polynomial (in n and ravg).

Procedure 1 Target Splitting Rule-I

Input: n, T , parameters 〈ai, bi,mi, ci, si for i = 1, 2, . . . , n〉, pi(·) for i = 1, 2, . . . , n 〈marginal

pmf vectors〉 and Pi(·) for i = 1, 2, . . . , n 〈marginal cdf vectors〉.
Output: T1, T2, . . . , Tn 〈individual targets〉.
1. for i = 1 to n do

2. ξ ← (mi + si)/(mi + ci + si);

3. Q′ ← min{Q ∈ {ai, ai + 1, . . . , bi} : Pi(Q) ≥ ξ} 〈by binary search〉;
4. Π∗i ← (mi + ci)

∑Q′

x=ai
xpi(x)− si

∑bi
y=Q′+1 ypi(y);

5. for i = 1 to n do

6. Q0 ← {(mi + ci)ai + sibi}/(mi + ci + si);

7. Πa ← miai − ci(dQ0e − ai), Πb ← mibQ0c − si(bi − bQ0c);
8. T i ← max{Πa,Πb}, T i ← mibi;

9. for i = 1 to n do

10. Ti ← max
{
T i,min

{
T i,
(

Π∗i /
∑n

j=1 Π∗j

)
× T

}}
〈primary allocation〉;

11. re← T −
∑n

i=1 Ti 〈residual/excess amount〉;
12. while re > 0 do

13. for i = 1 to n do

14. if Ti = T i then

15. Πi ← 0;

16. for i = 1 to n do

17. Ti ← min
{
T i, Ti +

(
Π∗i /

∑n
j=1 Π∗j

)
× re

}
〈residue allocation〉;

18. re← T −
∑n

i=1 Ti;

19. while re < 0 do

20. for i = 1 to n do

21. if Ti = T i then

22. Πi ← 0;

23. for i = 1 to n do

24. Ti ← max
{
T i, Ti +

(
Π∗i /

∑n
j=1 Π∗j

)
× re

}
〈excess removal〉;

25. re← T −
∑n

i=1 Ti;

26. return T1, T2, . . . , Tn.

2.2 Rule-II

Instead of splitting T in one go, we can break it into two parts: T and (T −T ). T can be allotted

to individual products as T 1, T 2, . . . , Tn without loosing on the value of satiation probability

as PT (Q∗i ) = 1. Next, (T − T ) can be allotted incrementally with prefixed step size of ∆T . In

every iteration, ∆T is allotted to the product with highest P(Ti+∆T )(Q
∗
i )/PTi(Q

∗
i ) value.
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Ideally, ∆T should be extremely small (dT ). It should be allotted to the product with the

highest ∂PT (Qo)/∂Ti value, where Qo denotes the optimal solution of the MPSNP, as that would

ensure least reduction in the objective function value. However, the form of PT (Qo) is unknown.

Note that PT (Qo) ≥ PT (Q∗) ≥
∏n

i=1 PTi(Q
∗
i ) where Q∗ = (Q∗1, Q

∗
2, . . . , Q

∗
n). M :=

∏n
i=1 PTi(Q

∗
i )

can be considered as an indicator for PT (Qo). Then

∂M
∂Ti

=
M

PTi(Q
∗
i )

dPTi(Q
∗
i )

dTi
≈ M

∆T

(
P(Ti+∆T )(Q

∗
i )

PTi(Q
∗
i )

− 1

)
.

Clearly, highest P(Ti+∆T )(Q
∗
i )/PTi(Q

∗
i ) is an indicator for highest ∂PT (Qo)/∂Ti.

Based on the above discussions, Procedure 2 is implemented to performs the target splitting.

Instead of fixing ∆T , we fixed the number of steps N in which (T−T ) is allotted. Procedure 2 has

three parts. First, the initial allocation is performed (line number 1 to 4), which takes O(n) time.

Next, the incremental allocation scheme is initiated (line number 5 to 9), which takes O(nravg)

time. Finally, the incremental allocation is performed, which takes O(N(n+ rmax)) time where

rmax denotes the maximum demand range. For practical problems, rmax > n and N can be

chosen to be greater than n. Note that a larger N is likely to improve accuracy. Then Procedure

2 takes O(Nrmax) time. Together with the optimization in the resultant single-product problems

(by Algorithm 3), TSH with Rule-II takes O(Nrmax) time.

Procedure 2 Target Splitting Rule-II

Input: n, T , parameters 〈ai, bi,mi, ci, si for i = 1, 2, . . . , n〉, Pi(·) for i = 1, 2, . . . , n 〈marginal

cdf vectors〉, and N 〈number of steps〉.
Output: T1, T2, . . . , Tn 〈individual targets〉.
1. for i = 1 to n do

2. Q0 ← {(mi + ci)ai + sibi}/(mi + ci + si);

3. Πa ← miai − ci(dQ0e − ai), Πb ← mibQ0c − si(bi − bQ0c);
4. T i ← max{Πa,Πb}, T i ← mibi, Ti ← T i;

5. rsd← (T −
∑n

i=1 T i), ∆T ← rsd/N ;

6. for i = 1 to n do

7. tar ← min{T i, Ti + ∆T};
8. nvi ← Ptar(Q

∗
i ) 〈using Algorithm 3〉;

9. cvi ← 1, ri ← nvi/cvi;

10. while rsd > 0 do

11. j ← k s.t. rk = max{r1, r2, . . . , rn} 〈by linear search〉;
12. Tj ← min{T j , Tj + ∆T}, rsd← (T −

∑n
i=1 T i);

13. tar ← min{T j , Tj + ∆T}, cvj ← nvj ;

14. nvj ← Ptar(Q
∗
j ) 〈using Algorithm 3〉;

15. if Tj < T j then

16. rj ← nvj/cvj ;

17. else

18. rj ← 0;

19. return T1, T2, . . . , Tn.
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2.3 Numerical results

We implemented the scheme of Khanra & Soman (2014) for evaluating heuristic performance.

Heuristic accuracy is measure by deviation of the heuristic solution from the optimum solution

(δ) for scaled-down test instances. We solved full-scale independent demand (ID) test instances

to understand time requirement of TSH. Full scale dependent demand (DD) instances are not

solved as the heuristic does not differentiate between independent and dependent demand cases.

We implemented the procedures in GNU Octave 3.6.4 (GCC 4.6.2). Test instances were solved

in Intel Core i5 (3.30 GHz) processors with 4 GB memory.

Table 1 exhibits accuracy of TSH for various instance classes. An instance class is defined by

the number of products (nP, n = 2, 3, . . . ) and demand type (ID and DD). TSH is ‘reasonably

accurate’. Maximum deviation was less than 0.1 for Rule-I and slightly more than 0.1 for Rule-II.

Average deviation was less than 0.02 for Rule-I and slightly more than 0.02 for Rule-II. Rule-I

performed better than Rule-II for the independent demand case. Rule-II was marginally better

than Rule-I for the dependent demand case.

Table 1: Accuracy of TSH

Rule-I Rule-II

Class Num δmin δmax δavg δmin δmax δavg

3PID 50 0.00006 0.038 0.0088 0.00003 0.094 0.0127

4PID 50 0.00001 0.078 0.0092 0.00000 0.103 0.0145

5PID 25 0.00014 0.046 0.0105 0.00004 0.085 0.0176

6PID 25 0.00000 0.077 0.0165 0.00000 0.102 0.0239

2PDD 15 0.00000 0.009 0.0016 0.00001 0.015 0.0025

3PDD 20 0.00028 0.060 0.0132 0.00000 0.054 0.0096

4PDD 20 0.00001 0.058 0.0148 0.00000 0.049 0.0114

5PDD 10 0.00022 0.044 0.0143 0.00000 0.019 0.0080

6PDD 10 0.00000 0.082 0.0129 0.00000 0.044 0.0073

Table 2: Computation time for TSH

Rule-I Rule-II

Class Num Min Max Avg Min Max Avg

3PID 50 0.0015 0.0016 0.0015 22.75 24.41 23.74

4PID 50 0.0019 0.0021 0.0020 22.73 24.20 23.63

5PID 25 0.0023 0.0025 0.0024 22.87 24.17 23.67

6PID 25 0.0028 0.0030 0.0029 23.10 24.37 23.90

7PID 50 0.0033 0.0036 0.0034 23.54 24.51 24.07

8PID 50 0.0038 0.0041 0.0040 23.62 24.62 24.24

9PID 50 0.0042 0.0047 0.0044 23.65 24.68 24.20

Table 2 shows computation time for TSH. In the case of Rule-II, N = 105 was taken.
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Polynomial time complexity of the heuristic is evident from Table 2. Computation time for

Rule-I is in milliseconds. Computation time for Rule-II is in seconds. Note that computation time

for Rule-II can be controlled by adjusting the number of steps (N). An important observation

regarding the computation time is its ‘extremely slow’ growth with the number of products. Any

practical MPSNP can be solved by TSH in ‘reasonable time’.

3 Implication for the “target assignment problem”

The target assignment problem is referred to as the problem of assigning divisional targets in

multi-division organizations when each division handles one or more newsboy-like products.

Here, we deal with the target assignment problem with satiation objective, i.e., the organization

and its divisions are concerned with achieving their respective profit targets. Shi et al. (2010)

studied this problem. They considered price-dependent demand. Their study assumes zero

stock-out costs and single-product per division. In many real-life situations, these restrictions

may not hold. In such situations, TSH for the MPSNP can be used to determine divisional

targets. Demand needs to be exogenous for the application of THS.

The organization faces an MPSNP. We can employ the target splitting rules to determine

product specific targets and then simply combine them to get the divisional targets. Table 3

demonstrates performance of this procedure for the three-product case.

Table 3: Application of TSH for the target assignment problem

Config -I Config -II Config -III

Sl T PT (Q∗) T1, T23 PT (Q) T2, T31 PT (Q) T3, T12 PT (Q)

1 5940 0.881 −5.7, 5945.7 0.876 980.9, 4959.1 0.868 4964.9, 975.1 0.864

2 4530 0.200 −59.7, 4589.7 0.190 1099.5, 3430.5 0.193 3490.1, 1039.9 0.192

3 2418 0.829 226.8, 2191.2 0.823 910.1, 1507.9 0.827 1281.1, 1136.9 0.829

4 1150 0.452 −59.3, 1209.3 0.424 46.5, 1103.5 0.452 1162.8,−12.8 0.449

5 3405 0.356 −58.6, 3463.6 0.327 1031.8, 2373.2 0.348 2431.8, 973.2 0.352

6 4990 0.420 −57.3, 5047.3 0.395 1419.5, 3570.5 0.418 3627.8, 1362.2 0.419

7 4750 0.808 23.1, 4726.9 0.751 2266.0, 2484.0 0.793 2460.9, 2289.1 0.793

8 4250 0.551 23.9, 4226.1 0.548 657.0, 3593.0 0.544 3569.1, 680.9 0.547

9 5680 0.803 951.4, 4728.6 0.799 1016.3, 4663.7 0.786 3712.3, 1967.7 0.791

10 2850 0.416 254.5, 2595.5 0.413 1504.7, 1345.3 0.414 1090.8, 1759.2 0.415

The organization has two divisions handling three products . One division handles single-

product and the other division handles two products. This results in three configurations (i.e.,

P1+P23, P2+P31, P3+P12 where Pk indicates the kth product). Table 3 shows divisional

targets for each configuration. Performance of the heuristic is measured by the deviation of

the divisional decision (optimum for each division) from the theoretical maximum (centralized

decision). We used Rule-I for target splitting. The procedure performs quite well. Maximum
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deviation was little more than 0.05, while average deviation was 0.01.

4 Conclusion

In this paper, we developed an efficient heuristic for the MPSNP. Prior to this, no such methods

were available for the general case. Our heuristic decomposes the multi-product problem into

easily solvable single-product problems. With this new heuristic, the MPSNP can be solved

for any number of products. The heuristic is reasonably accurate. We also demonstrated the

applicability of this heuristic for the target assignment problem.

We developed two decomposition rules. Better rules (in terms of accuracy) can be developed.

We did not consider resource constraints. Like the splitting of profit target, the resource amount

can be split too. The target assignment problem can also be studied in depth.
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Appendix A

Following notations are used in this paper.

n Number of products (positive integer). Subscript i is used to represent parameters

and variables specific to a product. Unless stated otherwise, i = 1, 2, . . . , n.

mi Unit profit for the ith product (positive).

ci Unit purchase cost less salvage value for the ith product (positive).

si Unit stock-out goodwill loss for the ith product (positive).

Xi Stochastic demand for the ith product (integer-valued).

ai Lower limit of Xi (non-negative integer).

bi Upper limit of Xi (positive integer).

pi() Marginal probability mass function of Xi.

Pi() Marginal cumulative distribution function of Xi.

Qi Order quantity of the ith product (non-negative integer).

Q Order quantity vector. Q = (Qi) = (Q1, Q2, . . . , Qn).

T Profit target. T and T denote its maximum assured and achievable values. We take

T ∈ (T , T ) so that the problem has non-trivial optimal solution.

PT (Q) Satiation probability (i.e., the probability of achieving a given profit target)

for ordering decision Q.

Appendix B

Algorithm 3 solves the single-product satiating newsboy problem optimally.
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Algorithm 3 Algorithm for the single-product satiating newsboy problem

Input: T , parameters 〈m, c, s, a, b〉, and P (·) 〈marginal cdf vector〉.
Output: Q∗ 〈the optimal solution〉.
1. a0 ← max{a, dT/me}
2. Q∗ ← a0, bm← 0;

3. for Q = a0 to b do

4. x← max{a,Q− (mQ− T )/(m+ c)}, x← min{b,Q+ (mQ− T )/s};
5. chk ← P (bxc)− P (dxe − 1);

6. if chk > bm then

7. Q∗ ← Q, bm← chk;

8. return Q∗.

Appendix C

In the classical newsboy problem, stochastic profit Π and its expected value are given by

Π(Q,X) = mmin{Q,X} − cmax{0, Q−X} − smax{0, X −Q}.

E[Π(Q)] = m

 Q∑
x=a

xp(x) +

Q∑
x=Q+1

Qp(x)

− c Q∑
x=a

(Q− x)p(x)− s
b∑

x=Q+1

(x−Q)p(x)

= (m+ c)

Q∑
x=a

xp(x) +Q [(m+ s){1− P (Q)} − cP (Q)]− s
b∑

x=Q+1

xp(x)

= (m+ c)

Q∑
x=a

xp(x)− s
b∑

x=Q+1

xp(x) +Q(m+ c+ s){ξ − P (Q)}

where ξ = (m+ s)/(m+ c+ s) denotes the critical fractile.

E[Π(Q+ 1)]− E[Π(Q)] = (m+ c)(Q+ 1)p(Q+ 1) + s(Q+ 1)p(Q+ 1)

+ (m+ c+ s) [{ξ − P (Q+ 1)} −Qp(Q+ 1)] = (m+ c+ s){ξ − P (Q)}.

Hence, E[Π(Q + 1)] ≥ E[Π(Q)] or E[Π(Q)] is increasing if ξ ≥ P (Q) and E[Π(Q + 1)] ≤
E[Π(Q)] or E[Π(Q)] is decreasing if ξ ≤ P (Q). Let us define Q′L and Q′R as

Q′L = max {Q ∈ {a, a+ 1, . . . , b} : P (Q) ≤ ξ} ,

Q′R = min {Q ∈ {a, a+ 1, . . . , b} : P (Q) ≥ ξ} .

Then ξ ≥ P (Q) if Q ≤ Q′L and ξ ≤ P (Q) if Q ≥ Q′R. Note that Q′L ≤ Q′R. Thus,

E[Π(Q)] is increasing till Q′L and decreasing after Q′R. Hence, Q ∈ {Q′L, Q′L + 1, . . . , Q′R}
with the maximum value for E[Π(Q)] is the expected profit maximizing order quantity Q′. If

p(x) > 0 ∀x ∈ {a, a + 1, . . . , b}, Q′R − Q′L ≤ 1. We take Q′ = Q′R. This is unlikely to induce
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significant error. The maximum expected profit is calculated as

Π∗ = E[Π(Q′)] ≈ (m+ c)

Q′∑
x=a

xp(x)− s
b∑

x=Q′+1

xp(x).
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