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Abstract

Acquiring knowledge from examples is frequently used in expert systems. A common
model is building of a decision tree which discriminates each class from every other class.
Though such a model performs well as far as classification accuracy is concerned, the
resultant knowledge is opaque to the user. In this paper, we propose a new model of
acquiring knowledge from examples. In this model, a reference class description is first
learnt from which each class description is learnt. Each of these class descriptions is used
to classify test examples. The proposed model has been tested on two applications. The
results of these experiments suggest that it is possible to learn a knowledge base which

not only performs well but that is also intelligible.
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1 Introduction

A knowledge based system is a computer system which uses the knowledge of an expert
stored in a suitable form to solve problems requiring significant expertise. The need for such
systems is felt because experts are few in number and their knowledge is not available to many.
The chief bottleneck in the development of knowledge based systems is the acquisition of
knowledge from the experts [Duda 83]. One of the popular methods of knowledge acquisition
is from preclassified examples. The examples are past cases where the attributes (either
symptoms or tests) and the corresponding values are recorded. All such examples with the
right classification (i.e., the correct class or diagnosis) are used for knowledge acquisition. In
this paradigm of knowledge acquisition, the description of each class (which is the required
knowledge) is learnt by finding patterns in the given examples. This mode of knowledge
acquisition is also referred to as learning from examples or instance based learning. {Bund
85]. The pioneering domain independent learning systems are ID3 [Quin 79, Quin 86] and
INDUCE [Mich 80, Mich 83]. Another well tested system is CART [Brie 84, Craw 89).
ID3 and CART generate a decision tree which helps classify a test example. A decision
tree is a tree where a node represents an attribute and an arc represents a value assumed by
the attribute at the node from which the arc originates. At each node the set-of examples at -
that node is split into subsets based on the value of the attribute at that node. At the root
the set of examples is all the given examples. This process of progressively splitting a set of
examples into subsets based on an attribute value is continued till all the lowermost nodes
have examples belonging to only one class. It is clear that the emphasis of all these systems
is to generate a description which separates each class from every other class. Most of the
extensions to ID3 [Nort 89, Mant 91] deal with alternative ways of selecting atiributes at
2 node. A better attribute selection would lead to the generation of a smaller decision tree.
The aim here is to generate the smallest decision tree which separates examples of each class
from examples of every other class. INDUCE finds the most general description of a class
that is consistent with examples of all the other classes, i.e., a description generated for a class
should not cover an example of any other class. The emphasis of finding a description which
covers all the examples of a given class and examples of no other class is the same as finding .
a discriminating description. |

The most important attribute in these learning systems are those which are most discrimi-
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nating. Attributes whose values are common to examples of all the classes would be considered
irrelevant. These attributes would not aid in discriminating among a given set of classes. How-
ever, in practice there could be test examples about which nothing can be said or which may
not belong to any of the classes whose description is learnt. In such cases, a test example
may wrongly get classified. For instance, given & set of examples (equal proportion of which
falls into one of the three cases listed below) for the class call (for promotion) and the class
do-not-call (for promotion) : ((no-of-years-since-last-promotion, 3), (perf-in-the-last-year,
good) ,(recommendation, good) call}, ((no-of-years-since-last-promotion, 3), (perf-in-the-last-
year, bad), (recommendation, poor) do-not-call) and ((no-of-years-since-last-promotion, 3),
(perf-in-the-last-year, bad), (recommendation, good) do-not-call) ID3 would come up with
a decision tree equivalent to : if perf-in-the-last-year = good then class = call else class =
do-not-call. Suppose now a test example with the following (attribute,value) pairs is given :
((no-of-years-since-last-promotion, 1),(perf-in-the-last-year, good), recommendation, good)).
This would be classified as call by the decision tree generated, though it should have been
classified into neither of the classes since it is clear from the learning examples that the deci-
sion tree is applicable only to persons with 3 years experience after the last promotion. If the
attribute no-of-years-since-last-promotion had been used while generating the aesc;iption of
call and do-not-call from the learning examples, the test example would not have satisfied
either of the descriptions. _

This shortcoming led us to design a learning system that first leamns the description of a
reference class, where the reference class is the union of the learning examples of all the classes.
The learning of this description is such that an attribute with a value common to most of the,
examples of the reference class is considered more important than an attribute with diversed-
values among the examples. The former kind of attributes help characterise this group of
classes and the latter kind of attributes help discriminate each class from the other classes inf
this group. In the call and do-not-call case, the attribute with a common value for most of the.
examples is: no-of-years-since-last-promotion (= 3). The attribute which helps discriminate
examples of one class from the others is perf-in-the-last-year. Individual class description
(i.e., that of call and do-not-call) is learnt using the reference class. The description of th-
class call that would be generated by this learning system would be : A person with no-o!

years-since-last-promotion = 3 and perf-since-the-last-promotion = good and recommendatio



= good. Simitarly, the description of a do-not-call would be : A person with no-of-years-
since-last-promotion = 3 and perf-since-the-last-promotion = bad. For this class the attribute
recommendation is redundant. This is because, given that no-of-years-since-last-promotion =
3 and perf-since-the-last-promotion = bad the attribute recommendation could take any of the
domain values, viz., good or bad. In other words, given the value of the other two attribute
values, it does not matter what value the atiribute recommendation assumes for this class.
Unlike in ID3, an attribute could be redundant for one class but relevant for another class.
When the earlier mentioned test example, viz., {(no-of-years-since-last-promotion, 1}),(perf-in-
the-last-year, good), recommendation, good)) is presented to this learning system, it would
not be classified into either of the classes.

In section 2 an algorithm to learn the description of the reference class is described. Section
3 deals with learning of the description of an elementary class (a class for which learning
examples are given) using its examples and the reference class description. In this section
a definition of redundant attributes and a methodology to determine the importance of an
attribute for a class is described. Section 4 describes an inference process which uses the
descriptions generated. In section 5 the results of applying the learning system to two com-
' monly used machine learning databases is discussed. Section 6 concludes the work with some

directions for future research.

2 Learning Reference Class Description

The description of a given set of classes is facilitated by learning about the class of classes,
referred to herein as the reference class. Learning of the reference class description is particu-
larly useful in identifying attributes which take similar values across classes. This is necessary,
since it is more natural to first state the features a class shares with other related classes before
stating the discriminating features. The learning of the reference class description facilitates
generation of such descriptions since it first identifies common features among the given set
of classes before identifying the discriminating features.

The learning of the reference class description is enabled by the mazimum representation
criterion defined as one which maximises the number of examples (of the specified class)

taking a particular value for an attribute (corresponding to the specified class). We define the



Generation Tree below as the tree representation of a class each of whose nodes represents the
attribute with respect to which the branching is done and whose directed arcs from root to
leaves carry the attribute value along with the proportionate number of examples taking this
value. The node attributes are selected using the maximum representation criterion at each
node. The structure of the reference tree is a binary tree. Note that in this tree, relatively
more important attributes are selected higher up in the tree.

In this section, we give a procedure to learn the reference GT by pooling the examples of
all the classes. We note that comparison across classes would be facilitated by constructing
elementary class descriptions relative to this reference GT. We show that our approach is
provably convergent. The reference GT is constructed for attributes taking binary, real/integer

and nominal values. An approach for the case with missing attribute values is also described.

2.1 Generation Tree for Binary Valued Attributes

The concept of Generation Tree was proposed by S.Arunkumar and first reported in [Doct 85].
In this proposal, a methodology to generate elementary class description is described for binary
valued attributes. However, this proposal has a major flaw which is explained below. We
have used a modified version of this methodology (initially used for learning ele&ientpry class
description and first reported in {Arun80]) for generating the reference class description for
attributes taking binary, continuous values (integer/real) and nominal values [Yegd0]. The
process of learning the elementary class description is described in the next section. The
algorithm for the construction of the GT for binary valued attributes as given in [Doct 85] is;
described below.
Remark 1 The GT can be interpreted as a collection of rules representing the same classl
with each path of the GT representing one rule, the antecedent of which is the conjunction of _"
each arc of the path and the consequent is the class name. In a Bayesian framework, we can
say that the frequency at the leaf of each path corresponds to the probability of the evidence I

given the class.

2.1.1 Algorithm for Construction of GT

The GT is built using the criterion of maximal representation at each node.

1. Consider the given set of examples at the root node.
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2. Select the most representative attribute for ‘the examples at the current node. This is

done as follows:

() If both the binary values occur for the given attribute among the set of examples at
the current node, then find the cardinality of both the sets, where all the examples
in the first set have one value (say 0) for this attribute and all the examples in the
other set have the complementary value for this attribute. Else, find the cardinality

of the given set.

(b) Find the maximum of the cardinality of the resulting sets (or set).

Repeat steps (a) and (b) for all the atiributes and select that attribute as most repre-
gentative which has maximum cardinality as determined from step (b). In case of ties,

the criterion is: select that attribute which comes earliest in the atiribute sequence.

3. For both the values, branch off from the current node. At the left child node, consider
all those examples having value 0 for further branching and at the right child consider

all those examples having value 1 for further branching.

4. Termination Condition : If all the attributes have been selected along all the paths of .
the tree, or if the frequency along all the leaves is less than a specified threshold; called
ezpansion threshold, or if the best attribute at all the nodes are such that the frequency
of the left and right child are equal, then stop. Else, go to step 2 and proceed in a depth
first fashion.

Note In this context, the {rue description of the class is the binary stochastic description

based on the maximum representation criterion.
Example 1 Suppose we have the following set of ezamples with four atiributes.

s = {(1011),(0110),(1011),(1110),(1011),
(0110),(1110),(1011),(1110),(1011)}

We show how the GT is built for this ezample set. We have,
{(Jax =1 = 8),(lex =0} = 2),(le2 =1| = 5),
(laz =0 = 5),(lag = 1] = 10),(las =0 = 0),

5



Figure 1: GT for binary valued attributes

(lee =1f = 8),(las=0] = 8)}
Here |.| stands for cardinality.

Therefore, ot the root node we select as. Then we select a; at the next node and proceeding |

similarly, we get the GT described in Figure 1.

. . VIKRAM SARABHA! LIGRARY
2.1.2 Drawback of this Algorithm INDIAN INSTITU £ OF MANAGEMENT

VASIRAPUR, AHMEDABAD-380:38
The termination condition used by this algorithm could lead to ignoring patierns in the data

when they exists. Also, this termination condition gives rise to a non-intuitive definition of

attribute redundancy. These points are best explained with the help of a simple example.

Example 2 Consider the following set of ezamples

g ={(111),111,0¢11),011),011),
(0 0 0),(0 0 0),(0 00),(000),(000)}

The algorithm above does not generate any tree. This is because cardinalily of a,=1 and
a1=0 are equal and similarly, for a; and aa. Therefore, at the root the algorithm does not,

select any attribute and terminates. This tree of a single node corresponds to the null class.
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It is evident from the above set of examples that there are two disjoint patterns (or sub-
descriptions) in this set. The only condition that stalls learning of these sub-descriptions is
the termination condition, which states that the generation process should be stopped when
the frequencies of the left and right child of the best attribute are equal. Also, in this example
the by-product is that all the attributes are redundant for the class, whereas there is a distinct
correlation of the attributes. The termination condition should be such as to define a class as

null only if it assumes all the domain values with equal frequency.

2.1.3 Modified Algorithm for Construction of GT

We have proposed a modified algorithm for the construction of the GT for binary valued
attributes [Arun 90] in which the termination condition is made more intuitive.

The new termination condition is as follows : If all the attributes have been selected along
all the paths of the tree or if the frequency along all the leaves is less than called expansion
threshold, then stop. Else, go to step 2 and proceed in a depth first fashion.

Note In the modified methodology, redundancy of attributes and the resultant reduction
in number of sub-descriptions are determined for elementary classes after the GT is built

completely (the process is described in Section 3.2).

Example 3 The modified GT corresponding to ezample 2 1s constructed as follows: At the
root, we have, |
{(laa =1] = 5),(Jlex = 0] = 8),(laa =1} = 5),(lea=0] = 5),
(las =1} = 5),(jas=0] = 5)}
Thus, a1, ¢, and ay qualify for the most representative atiribute. Using the rule for iie
(as given above), we select a;. At the left child, we select a, using the same ergument and

proceeding in the same manner, we have the GT described in Figure 2.

Theorem 1 The GT for binary valued aftributes generated by the modified algorithm con-
verges to the true description in the distribution sense.

Proof By Glivenko-Cantelli Theorem [DeGr 87], | Fu(z) — F(z) |— 0, with probability.
1 uniformly in =, where F, is the empirical disiribution and F is the true distribution. Thi.

implies that for a given € > 0, In(¢) such that |F.(z) - F(z)| < ¢, with probability 1, Vn > n(e)



Figure 2: GT depicting correlation of attributes

If we assume that the joint frequencies are such that in the true description, there are no ties
in the selection of atiributes at all the nodes of the GT, we can choose € such that for all
n > n(e), chosen suitably, the structure and the atiribute at each node of the tree remains the

same. Also, when this is true, the joint frequencies at each node stabilise. 0o

2.2 Algorithm for Construction of GT for Real and Integer Valued

Attributes ‘
The GT created is a binary tree. At each node, the attribute, value range and the joint
frequency of both the left and right child are stored.

The GT is built using the same criterion of maximal representation at each node as in the

binary valued attributes case.
1. Consider the given set of examples at the root node.

2. Select the most representative attribute among the examples at the current node. This
is done as follows:
(a) Start with the first attribute a;.

(b) For each value assumed by at least one example, find the number at the current

node. Order this (value, cardinality) in ascending sequence of the value.

(c) Start with the second value in the above list.



(d) Place the boundary at this chosen value and evaluate the centre of left and right

partitions.
(e) Find the distance between these partitions (called inter-partition distance).

(f) If the current boundary is at the last value, then go to step (g), else place the
partition boundary at the next value and go to step (d).

(g) Find the boundary for which the inter-partition distance is maximum.

(h) For the current attribute a, at node r, if the maximum inter-partition distance is
greater than a specified threshold (equal to axleast count, where a is specified and
least count is determined from the learning examples), two resultant sets may be
considered, viz., %, and S?,. The first set is the one where each example has a
value for a, that is less than the boundary value. The other set is the one where
each example has a value which is greater than the boundary value. The lower
limit of the ra..nge of §2, is the least value of ay in S!, and the upper limit is one
least count less than the boundary value. The lower limit of the range of §2, is
the boundary value and the upper limit is the largest value of a, in §%,. Select the
larger of the two sets S}, and $2 . Otherwise, the given set i3 retained as a single
partition with the least value in the set being the lower limit and the highest value
being the upper limit.

Repeat steps (b) to (h) for all the attributes, ay, u = 2,..,0.

(a) Find the largest set as determined from step (h) considering only those sets different
from the ones produced along this path. The corresponding attribute is a,,. Thisis
the most representative attribute. In case of tie, choose the attribute which occurs

earlier in the input list of attributes.

. Split the set as determined from step 2h. If it is split into two, then the first set comprises
all those examples which have a value less than the best partition’s boundary value a,,
and the second set comprises all those examples whose value for em is greater than or
equal to this value. If it is to be retained as a single set, then the range is the range of
values for all the examples at this node.



{t5.8),071}

{(23,217,0-6}

{un,o-ry {t24), 01}

02}

Figure 3: GT for integer valued attributes

4. If there is no new (attribute,value range) that can be considered along all the paths of
the GT, or if the frequency at all the leaves are less than the expansion threshold, then

stop. Else, go to step 2 and proceed in a depth first manner.

Example 4 Suppose we are given a set of ezamples specified as tuples of three_‘attribute.! ay, -

a; and ag. If all the attributes are of type integer, then let

s=9{(1518),(1623),(1724),(18 26),(16 26),
(17 27),(1 11 24),(1 8 23),(2 12 16),(2 12 17)}

and a = 5.
At the root node the first atiribule assumes two values, viz., 1 and 2. Placing the partilion
at the second value we have,
inter-partition distance = (ceniref - cenlrel) = (£-1) = 1.
Since this is less than (axleast count), the given sel is not partitioned. The other two al-
tributes partition the sel. Therefore, a; is selected at the root. At the next node, the cardinality
of the best partition for both a; and az are the same. Using the rule for ties, we select ao. The

GT obtained by this procedure is as shown in Figure §.

Theorem 2 The GT for real/integer valued altributes generated by the above algorithm con-

verges to the true description.
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Proof Assuming that the joint distribution of (sitribute, value) tuple is such that there are no
ties in the selection of attributes at the nodes of the GT when the joint distribution is known,
we can choose € such that, for all n > n(e), chosen suitably, the best atiribute is chosen and
the corresponding partition remains the same. This ensures that the tree structure stabilises

¥n>n{e). 0O

2.3 Algorithm for Construction of GT for Nominal Valued At-

tributes

The GT created is a binary tree. At each node we store one value for the left child and one or
more values for the right child (if it exists), and also the attribute, and frequency of the left
and right child.

The GT is built using the same maximum representation learning criterion. Let the exam-
ples be given as (attribute, value) pairs where the §t* value of the i** attribute is denoted by

Vij+
1. Let the given set of examples represent the root.

9. Select the most representative attribute among the examples at the current node as

follows:

(a) For each attribute a;, find a value v;, among the examples which has the maximum
cardinality.

(b) Select attribute a; which has the maximum cardinality among all the attributes as
determined in step (a). In case of a tie, choose the attribute which comes earlier in
the attribute list.

3. Split the set of examples at this node into two sets. The first set has all the examples
which have value v,, for a;, and the other set has all the examples with any value other

than v,, among the examples.

4. Tf there is no new (attribute, value range) pair that can be considered along all the paths
of the GT, or if the frequency at all the leaves are less than the expansion threshold,

then stop. Else, go to step 2 and proceed in a depth first manner.

11



Figure 4: GT for nominal valued attributes

Example 5 Suppose we have the following sel S of ezamples specified by three_nominal at-
iributes a,, a; and a; whose ranges are {A,B,C,D}, {X,Y,Z} and {1,J,K,L}, respectively:

s={(AXD,AXD,AYK,RAYK,QAX K),
(AxL,BzL,BZ2N,B2Z2I,(CIX 2

At the root node we select aliribute a,, since the cardinality of aj=A is the highest among
the three aiiributes. We branch off at the root node into two children : the examples at the
left child having value A for a, and ezamples at right child having eny other value (B or C)

for a,. Proceeding similarly, we generate the GT shown in Figure {.

By an argument similar to theorem 1, we get the following:

Theorem 3 The GT for nominal valued atiribules generated by the above algorithm converges

to the true description.

Complexity Analysis The maximum number of nodes that can be generated for a sample |

size of n and m attributes is when the leaf frequency of each path is equal to 1 /n and the

12



number of nodes is equal to (2% — 1) 4+ (m —~ z) * n, where x is the smallest integer such that
2 > nfor n < 2™ and is equal to m for n > 2™. The first term in the expression, i.e., (2* —1),
is the number of nodes at the top x levels. All nodes at depth x have frequency equal to
1/n, for x < m. Since the example set at each of these nodes can no longer be partitioned
and (m-x) attributes remain along each of these n paths, the remaining number of nodes is
equal to (m-x)*n. When x=m (i.e., when n > 2™), the number of nodes generated is equal to
(2™ - 1). The bound for any n and m is obtained as follows:

(2°-1)+(m—z)*n

<2+xn+(m—z)*n {since 2 *n > 27}

<nx(m+2)-nx*z

<n*x(m+2)—n=*logmn

<nx(m+2-1) {ifn>1}

<nx(m+1)

Therefore, the number of comparison of attributes at all the nodes is bounded by

nx(m+1)*m :

Note This is a loose bound since in practice there would be some duplicates and the expansion

threshold used would be non-zero.

2.4 Learning GT from Examples with Missing Attribute Values

Consider the case where examples may have one or more missing values for the given attributes.

The GT is built by applying the following steps iteratively.

1. Start at the root of the GT to be built. Let this be the current node. The set of examples

at the current node is S, the given set of examples of sample size N.

2. Construct GT T; of a single level with examples having no missing attribute values
{sample size = Ny), T of a single level with examples not having value for only attribute
a; (sample size = N;), T; of a single level with examples not having value only for a,
(sample size = N,),... and T, of a single level with examples not having value only for
a,, (sample size = N,.) among the given set of examples S at the current node. If the
proportion of examples of these trees (37 ,(N;/N})) is greater than a specified threshold,
then attribute selection is made with S={1;,T},T3,...,T; } using the procedure in step 3.

13



Otherwise, GTs T2, T2, T23y T2ayeey T{n—tynyeees T123. (k=1)k BT€ constructed (where T);
is a single level GT constructed using examples with only attributes a; and a; missing),
#ill the threshold is satisfied, for some k. Then attribute selection is made in step 3 with
S={Ty,T1, T2, Ty T12, 135y T(n-1)ry oy T12,... (k- 1)k }-

3. Let n be the total number of attributes and |s| the number of missing attributes in GT

T.. The weighted frequency is evaluated for each attribute a; as follows:

n—|s|
n

N,
:5:6(71)*-}F-*

where ‘s’ ranges over all the trees and §(T,) = 1 if attribute g; is at the current node
in T, and §(T,) = 0 otherwise. The attribute a; for which this value is maximum is

selected at the current node. In case of ties, the first attribute in the sequence is chosen.

4. Find the left and right partitions using a, and the examples at the current node. Note
that only those examples for which attribute value is present for ax are used in the
construction. The method of finding partitions for different types of attributes is the

same as explained in Sections 2.1.3, 2.2 and 2.3.

5. If no new attributes can be considered along all the paths, then exit. Else, répéat steps
9 . 4 for the two child nodes with S=S; for the left child and S=S§, for the right child.
S, is the set of examples satisfying the left arc value for aix and S, is the set of examples
satisfying the right arc value for ax. So, at every node, only examples which satisfy path

traversal are used in the construction.

Note The GT has been built only with known attribute values. However, the best possible
GT with respect to maximum representation learning criterion has been learnt. Since the GT
is built only with known attribute values, the algorithm for generation of elementary class

GTs is the same as when all attribute values are present.

Example 8 Consider the following set of ezamples and threshold = 0.70.
S={(?7201),(7711),(100),(7110),(?7010),
(1?72720),(07?2721),(0710),(0701),(1711),

Wo?7,(01727),(00720),(1070),(0170),
(20072),(?107),(0117),100272),(1017)}

14



SSs
a, (SSs3) 8, 15523 ag 1$5=3)
{0, 0.15) (1,0.05) (0, 0.10) (0,0.15%)
,0.
ay($5=3) a,(55.2)
{1,010) (0,0.05) (1,0.10)
,0.

Figure 5: GTs Ty, T3, Ts, T, and Ty, of one level

The #'s in the ezample set § represents missing values. The four GTs Ty, Ty, T3 and T,
corresponding to the four given atiribules are constructed as given in Figure 5. The proportion
of ezamples that these GTa cover is equal to (12/20 = 0.6) which is less than the given
threskold. Hence, GT Ty, is consiructed and is the last GT in Figure 5. The proportion now
is equal to (14/20 = 0.7) which is egqual to the given threshold. So, only Tiz is constructed.

The best attribute at the root node is determined using the above five GTs as ezplained below:

Weighted frequency of a1 = :tg/i;a%ﬂ[.‘! = 0.225
Weighted frequency of az = 0
Weighted frequency of as = 0

, 3e3/44343/4+2+2/4
Weighted frequency of ag = / 20’ 14 = 0.275

So, aq is selected at the root in T. The GT T after one iteration is as given in Figure 6.
At the left child, the one level GTs under consideration are as given in Figure 7. The besi
atiribute is a; at this node. Proceeding thus, we get the GT T as described in Figure 8.

Theorem 4 The GT generated using the above algorithm converges to the true GT, provide:
that in the completely known case with no missing values for atiributes, there are no ties &

the selection of attributes.
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%

{1,025) (0,0;1.0)

Figurc 6: GT T of one level built with all the appropriate examples

' oy [55+2)
a,(S$=3)
(1,005) {0, 0:10) (1,0.05) (0,0.05)
Figure 7: GTs T; and Ty, of one level
9%
(1, 025) (0, 0.40)

(1, 0.09) (0,0.5)

{0,009 {1,0:0)

0, 009 (0, 005)

(0,005)\ (1, 0°05)

Figure 8: The Complete GT T
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Proof The unigueness of the GT' implies that in all the trees Ty, T3,..., T, ezcepl one cor-
responding to the case for which the particular altribule is missing, 3N such that, the root
atiribute must necessarily occur at the root for n > N, by Glivenko-Cantelli theorem. Proceed-
ing thus, it can be shown that the GT constructed will tend to the limiting GT as n — 0.
0]

Note The GT corresponding to the reference class will hereafter be referred to as reference
tree.

In this section, we have described an algorithm for constructing the GT for a reference
class from examples of all the classes for binary, real/integer and nominal valued attributes.
The algorithm has been proved to converge for all types of attributes. A provably convergent

algorithm to deal with missing attributes was also described.

3 Learning Elementary Class Description

The description of an elementary class is learnt from its examples and the reference class
description. This description represented as a binary tree has the same attribute sequence as
the reference tree. The value ranges and the frequencies are determined from the statistics of
its examples. This representation enables easy determination of redundancy and importance
of attributes with respect to the given class.

In Section 3.1, the algorithm for construction of elementary class description is described.
A methodology of determining redundancy of attributes is explained for binary, real /integer
and nominal valued attributes. The construction of the tree description is intuitively based
on selecting more important attributes higher in the GT. The concept of importance of an

attribute for a class is formalised in Section 3.3.

3.1 Algorithm for Constructing GT of Elementary Class

1. Set the pointer to the root of the reference tree. The GT of current class C; has a

corresponding node with the same attribute at its root.

2. Consider all the examples of C, at this node.

17



3. Label the current node of the tree corresponding to the class C; with attribute e, (note

the initialisation corresponding to root in step 1).

4. If the attribute a, at the current node of the reference tree is of binary type, then find
the frequency of those examples in C; at the current node having attiribute value 1 and
those having value 0. These frequencies are stored along the corresponding arcs to the
child nodes.

If the attribute a, at current node of the reference tree is of nominal type, then do the
following : find the frequency of examples having the same value as the value in the left
arc of the reference tree for a,. Label the left arc at the current node with this value.
All other values of a, which occur in the example set at the current node are the values

of the right are.

If the attribute is of real/integer type, then do the following : if the attribute value of
an example falls under the range of the left arc of the reference tree, it adds to the left

arc frequency; else it adds to the frequency of the right arc at the current node.

The attribute labels at the child nodes correspond to the label of the corresponding child

nodes of the reference tree.

Note The ranges on the left and right arcs of the current node are subsets of the ranges

of the left and right arcs corresponding to the reference tree.

5. Repeat steps 3 and 4 corresponding to the examples of C which satisfy the attribute
restrictions obtained in the path traversal, until the GT is fully constructed in consonance

with the reference tree.

Example 7 Consider the following ezample for two classes with three atiributes, the first
binary, the second nominal and the third real. Suppose the ezpansion threshold is 0.3.
Sy ={{1¢0.5),(1a0.6),(1a0.7),(1509),(151.0),(1 b 1.5),(151.7),(0 a 2.0),
(0 ¢ 2.2),(0 b 2.5)}
Sy = {(1 4 0.5),(1 & 0.6),(1 & 0.7),(1 a 0.9),(0 a 0.8),(0 a 1.0),(0 a 1.6),(0 a 2.1),
(0 a 2.2),{0 b 2.4)}
The reference tree generated using the mazimum representation learning criterion is shouwn

in Figure 9,
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a;

{to's,13),0-45} {t1-¢,2:2),0-25)}

(0,0-1)

(1,0-35)

{05,008,

0-3} {(o0:9,1-3),0-05}

Figure 9: The Reference GT

The GTs corresponding to the two classes are buill using the attribute sequence in this
reference tree as ezplained below : af the rool node the atiribute ay is selected and the frequency
of ezamples assuming value ‘e’ and value ‘b’ is determined. In the set Sy, there are five
ezamples assuming value ‘o’ and five ezamples assuming value ‘6’ for ag. At the left child of
the root, the attribute in the reference tree is as. All those ezamples at this node in class 1
whose value for ag falls within the range (0.5,1.3) represent its left child. Those ezamples whose
value falls within the range (1.4,2.2) represent the right child of the current node. Proceeding
thus, we have the GT for class 1 illustrated in Figure 10 and the GT corresponding to class 2
in Figure 11,

Note The number of examples to be examined for construction of the GT of an elementary
class is equal to n*m, where ‘n’ is the number of examples in the class and ‘m’ is the number
of attributes.

By an argument along the lines of theorem 1, we get

Theorem 5 The GT for the elementary class converges to the true description of the class

with respect to the reference tree.
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a,

(a,0-5)

{tz0,2-2),
02}

{to-s,0:7),03}

Figure 10: GT for class 1

a;

{05,101, 06}

{trs,2:2), (0,0-1)

ay

(0-5,0:7),
{ 0.3}

Figure 11: GT for class 2
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Figure 12: GT for binary valued attributes

3.2 Redundancy of an Attribute at a Node of a GT

Determining whether or not an attribute is redundant and the elimination of redundancy leads
to simplification of class description. This is achieved relatively easily in our framework. While
the GT is constructed top-down, redundancy is determined bottom-up eliminating nodes at
which the weights are approximately equal. The reason that the complete GT has to be
constructed prior to the elimination of redundancy is because of the existence of dependencies,

one of which is illustrated in example 2.

Definition 1 In the binary valued and real/integer valued altribute case, an aitridute is said
to be redundant at o node if either both ils descendants are leaf nodes or the atiribules at all

its descendant nodes are redundant and the frequency of its left and right arcs are equal.

Example 8 Suppose the given sel of ezamples is as follows:

S={(111),(110),(101),(10 0),(011),(011),(01 0),(0 0 1),(000),(000)}
The corresponding GT is as shown in Figure 19. The GTs after removing the redundant

nodes one step at o time are depicted in Figure 18.

Example 9 Suppose the following sel of ezamples is given:
S={(113)(115),(108),(10 10),(0 1 15),(0 1 16),(0 1 17),(0 1 18),

21



(0.0-1)

Figure 13: GTs depicting redundancy at a node

(0 020),(0021}}
The corresponding GT is given in Figure 14. The GTs after removing the redundant nodes

one step at a time are shown in Figure 15.

Definition 2 In the nominal valued atiribute case, an atiribute is said to be redundant at a
node, if either both its descendants are leaf nodes or the atiributes at all its descendant nodes
are redundant and the frequency of the right arc is equal to the product of the cardinality of
the values on the right arc and the frequency of the left are.

Example 10 Suppose the following set of ezamples is given:
S = {(1 red),(1 red),(1 blue),(1 blue),(1 black),(1 black),(0 blue),
(0 blue),(0 blue),(0 black)}
The corresponding GT is as depicted in Figure 16. The GTs after removing the redundant

nodes one step at a time are as shown in Figure 17.

Note The equality is in the ideal case. In practice, however, for binary, real and integer valued
attributes if the percentage difference in frequency is less than a specified threshold, then that
node can be deleted. For nominal valued attributes if the percentage difference of cardinality
x frequency of the left arc and frequency of the right arc is less than a specified threshold,
then that node can be deleted.

22



{(|5_1a).

0-4}

Figure 14: GT for binary and integer valued attributes

2, a,

tr,0-4) (0,0:6) (1,0-4)

{os e,
{t20,2v), 0.4}

(0,0-1) 0-2) 02}

Figure 15: GTs depicting attribute redundancy at a node
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{{ blue, black),
04}

a3

(red 0-2) {black,k0-))

{(blue, 0-3)

(blue,0-2) (black,0-2)

Figure 16: GT for binary and nominal valued attributes

a,

(red ,0-2) {{bluc,blacu},

4} Lo,

(blue, 0-3) (black,
0-1)

Figure 17: GTs depicting attribute redundancy at a node
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(1,01} (1,0-05) (1,0:15)

Figure 18: GTs depicting attribute redundancy for a class

Definition 3 An aftribute is redundant for a class if it is redundant at ull the nodes where it

is chosen, i.e., it does not occur at any node of the GT after the redundancy check is applied.

Example 11 Suppose the following set of ezamples is given:

S={(111),(111),(111),(111),(110),(110),(110),(101),(101),
(100),(100),(011),(001),(001),(001),(000),(000),(000),
(110)(010)}

The corresponding GTs are as shown in Figure 18.

Definition 4 A class is said to be a null class, if each element of the cartesian product of the
domain of attribules occurs with equal frequency. In the GT framework, such a class should

be represented by a single node.

Note The definition of redundancy helps reduce the GT in such a case to a single node. This

is illustrated by the following example.

Example 12 Suppose the given set of ezamples is as follows:

S={(111),(110),(101),(100),(011),(010),(001),(000)}
The corresponding GTs are as shown in Figure 19.
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a,

(1,0°25) {0,0-25)

{+,0123) {0,0-125) {0,0125)

(0,0-123) (0,0-125) (1,0-12%5) {y,0125)

Figure 19: Reduction of null class GT to a single node

3.3 Importance of Attributes

The importance of an attribute is the relevance of the attribute for a particular class. It is
denoted as I(a, | Cz), read as importance of an attribute a, given class C;. This is relevant
for inference of a new example to be classified at a later instance.

Since the importance of an attribute is judged by the representativeness of the attribute in
the class, we consider the importance of an attribute given the class as directly proportional
to the frequency at the node at which it occurs and inversely proportional to the distance of
the node from the root [Pras 87].

I(a, | C:) @ fr (1)

I(a, | C.) o 1/d, ()

where
f. is the frequency at the node where a, occurs (this frequency is equal to the sum of the arc

frequency at this node) and d, is the distance of the node from the root.
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As a first approximation we have chosen the following form for I (a, | C.) which satisfies
eqns. (1) & (2).

I | C) =Y Ax(n—d)+ o (3)
p=1
and
S I(a, | C) =1
r=1
i.e., ii}i*(n—dp)*fpzl (4)
r=lp=1
where

nis the distance from leaf to the root node (i.e. equal to the number of attributes considered),
A is the normalising factor, and the summation is over all the nodes where a, occurs.
Normalising factor (for a specific tree) The normalising factor ‘A’ of a GT where each
attribute a, occurs at a distance (r - 1) from the root node along every path is equal to
2

(n*{n+1)) _
Proof Consider the GT in Figure 20 where a; is the most representative atiribute at level 1
(distance 0 from root), @, for all nodes at level 2 (distance 1 from root node), etc.

Since every attribute occurs at the same depth along all the paths, we have dp = d..

Therefore,
n tr
Y Ax(n—d)xY fo=1
r=1 p=1

But every Y i, f, for each level is equal to 1. Therefore,



Figure 20: A GT of depth n
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{1v,0-2)

Figure 21: GT for binary valued attributes
Therefore,

ey - )+ f ®)

p=1
It is very easy to see why this value of A will be true for any GT.

I, | C;) =

Normalising factor (for a general tree) The normalising factor ‘A’ for any GT is equal

te

2
e 1) ©)
Proof We give a constructive proof for this claim. Consider the term within the summation in
eqn.(4). For a given attribute a,, this is the contribution from all the nodes where a, occurs.
The sum of the importance for all the attributes is equivalent to summing up the contribution
from each node of the tree. Consequently, the value of A as in (6) will be the normalising

factor for any GT. O

Example 13 Consider the GT in Figure 21. The importance of the three attributes a,, a2

and a3 are evaluated as shown below :

2
I(a1|Cl)=m*{(3—-0)*l}=05
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I{a; | C1) = «{(3-1)%0.2+(3—1)%038} =033

2
B+(3+1)

I{ag | Ch) = «{(3-2)%0.2+(3-2)+05+(3- 2)*03} =017

2
(B+(3+1)
This section dealt with the construction of elementary class GT from its examples and the

reference tree. An algorithm to find redundant attributes was proposed. Determination of the

importance of an attribute for a class for a GT representation was also explained.

4 The Inference Process

The inference process finds the best match between the test example and the GTs of each

class. This is done as follows:

1. Evaluate f(e | C;), the validity of class C; using the GT corresponding to this class as

shown below:

felC) = {f(e,ﬂic.-)*:g’ir(eznf(eﬂlca)*:ilr(e.)+

= e G grtel)

where

fle ] C;) is the validity of class C; given example e, pj is the jth path which the example
matches either completely or incompletely (incompletely if the example has missing
values), e,; is the set of (attribute, value) pairs along path pj, f(ey; | Ci) the validity
of class C; given e,; is the leaf frequency along path pj, nj is the number of attributes

along path pj for which attribute value is available in example e.

The validity defined above is based on the category validity of Medin, et.al.[Medn 87]

which is defined as the probablity that an entity (or example) has some feature given
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(0,
0-7)

(CIJ (C2) (Ca)

Figure 22: GTs for classes Cy, Cy, and Cj

that it belongs to a category (or class). We have used an extension of this which takes
into account the absence of certain attributes. This has been done by weighting the
category validity by the summation of the inportance of only those attributes that are

present.

2. Select that C; for which f(e | C;) is the maximum.

Note It is quite straight forward to establish that the value of any f(e | C;) lies between 0
and 1.

Example 14 Suppose we have three classes for which the GTs are as given in figure 28.

Fa

Suppose the test ezample is S = {(a; = 1)(a2 =?)(e3 = 0)} then, we have,

(S| C)=06x2/3=04

J(S1C))=01%2/3+0.2«2/3=0.2

£(S|Cs) =0.2%2/3 =0.133

Therefore, S i3 classified as C;.
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5 Practical Applications of the proposed system

The proposed system has been implemented and tested on two applications reported in the lit-
erature. In these applications, part of the example set was used for learning and the remaining
for testing. It is not clear from the literature {Schl 87, Aha 88, Brie 84} as to how the exam-
ple set was segmented into learning and testing sets. In certain of the following experiments
the programs were run at least twice with different learning/test examples. A comparison of
the proposed system is made with other learning systems in respect of classification accuracy
(defined as the ratio of rightly classified to the total). Various runs of the proposed system
for the same application are compared with respect to the classification accuracy, the number
of sub-descriptions and the number of terms in a sub-description.

The inputs to the proposed system are the learning examples, expansion threshold, sample
size of each class, attribute names, and the test examples. For each class, the frequency of
rightly classified, frequency of not classified, frequency of wrongly classified and the number of
sub-descriptions are output. The classification accuracy is evaluated from these frequencies.

The results of the two applications are described in the following paragraphs.

5.1 Classification of different kinds of glasses

This application is concerned with classification of different types of glass required in some
criminal investigations. At the scene of the crime, the glass left can be used as evidence if it is
correctly identified. Each example is specified by 9 real valued attributes. There are 6 classes
whose descriptions are to be learnt.

The first experiment was run with expansion threshold = 0.00. The classification accuracy
is approximately 96%. The frequency details are as given in Table 1. The second experiment
was run with expansion threshold equal to 0.10. The classification accuracy is approximately
78%. The frequency details are as given in Table 2. |

Comparative figures for this application are available only for classes 1, 2 and 3 {Aha 88].
Classes 1 and 3 are windows that are float processed and class 2 is window that is not. The
proposed system with expansion threshold = 0.10 was compared with three other systems,
viz., Beagle (a rule based system), Nearest Neighbour and Discriminant Analysis. The error

frequencies obtained in determining whether the glass was a type of float glass or not, for the
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Class | freq. of | number | freq. of | freq. of | freq. of
learning of rightly not wrongly
examples | sub-des | classd. | classd. | classd.

1 70 31 65 2 3
2 76 42 73 1 2
3 17 14 16 0 1
4 13 8 13 0 0
5 9 9 9 0 0
6 29 15 29 0 0

Table 1: Freqs. when expansion threshold = 0.00

four learning systems is tabulated in Table 3. In this experiment, the proposed system has

the least error.

5.2 Classification of cars based on risk factor

This application concerns classifying cars into different categories based on its risk factor.
Every car is assigned a risk factor, an integral value varying from -3 to +3. The value -3
indicates that the car is very safe and +3 indicates that the car is very unsafe. There was
no car with value -3. So, there were six classes involved. The number -2 was represented as

1, -1 as 2 and so on. Each example was represented by 25 attributes. The system was run
with expansion threshold = 0.10. The classification accuracy achieved is 70.1%. The details
of the experiment is as recorded in Table 4. In this experiment 14 out of the 25 attributes
were either redundant or had very low importance value. The program was run with the same
threshold after deleting these 14 atiributes. There is a marginal increase in the classification

accuracy as can be seen in Table 5.
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Class | freq. of | number | freq. of | freq. of | freq. of
learning of rightly | not | wrongly
examples | sub-des | classd. | classd. { classd.

1 70 14 43 2 25
2 76 16 57 6 13
3 17 9 13 1 3
4 13 4 11 2 0
5 9 5 9 0 0
6 29 4 25 0 4

Table 2: Freqs. when expansion threshold = 0.10

Type of | sample | Beagle | NN | DA | The proposed
Glass size gystem
Float 87 10 12 | 21 20

Non-Float 76 19 16 | 22 6

Table 3: Error frequencies
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Class | freq. of | number | freq. of | freq. of | freq. of
learning of rightly not | wrongly
examples | sub-des | classd. | classd. | classd.

1 3 1 3 0 0
2 20 6 22 0 0
3 48 17 44 6 17
4 46 14 40 2 12
5 29 16 31 0 1
6 13 6 5 14 8

Table 4: Freqs. when expansion threshold = 0.10

Class | freq. of | number | freq. of | freq. of { freq. of
learning of rightly not | wrongly
examples | sub-des | classd. | classd. | classd.

1 3 1 3 0 0
2 20 6 22 0 0
3 48 14 46 6 15
4 46 14 40 2 12
] 29 15 31 0 1
6 13 6 5 14 8
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Table 5: Freqs. when 14 attributes are deleted and expansion threshold = 0.10




6 Conclusion

A system that learns elementary class descriptions using a reference class was described in
this paper. The need for a reference class was emphasised for a simple case involving call
for promotion. The reference class description and the elementary class descriptions learnt
have been shown to converge in the limit. The concepts of redundancy and importance of an
attribute for a class was formally defined. Finally an inference process which uses the class
descriptions learnt and the importance of an atiribute was proposed. The performance of the
system is comparable to some of the common learning systems reported in the literature.
The proposed learning system is non-incremental. A natural extension is development of
an incremental version. The results of the two applications are encouraging, but some more

empirical testing is necessary to establish its generality.
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