_ _JBD
‘0.

o

l

Work?ng_Paper

LI

U]

THE MINIMUM WEIGHT ROOTED ARBORESCENCE
FROBLENM: WBIGHTS ON ARCS C/SE

By

V. Venkata Rao
&
R, Sridharan

WP1030

II.I"P.WII

1992
(1030)

WP Bo. 1030
May 1992

The main objective of the warking paper series
of the IIMA 18 to help faculty members to test
out their research findings at the pre~publi-
catimn stage.

IXDIAN INSTITUTE OF MANAGEMENT
ABMEDABAD-380 015
INDTA

PURCHASED
APPROVAL

GRATIS/EXCHANGE
PRICE

ACC ¥e,

VIKRAM SARABHA1l LIBRAR"

L. L. M, ABMEDABAD

-

- THE MINIMUM WEIGHT ROOTED ARBORESCENCE PROBLEM:
WEIGHTS ON ARCS CASE

V.Venkata Rao and R. Sridharan
Indian Institute of Management
Ahmedabad 380 015

ABSTRACT ‘

In a rooted acyclic graph, G, there exist, in general, several rooted (not necessarily spanning)
arborscences. Depending on whether the graph has weights on nodes, on arcs, or on both,
it is possible to define, with different objective functions, several different problems, each
concerned with finding an optimal rooted arborscence in the graph under consideration. Of
the different types of rooted acyclic graphs, we are in particular interested in two: 1. rooted
acyclic graph G, with weights on nodes, and 2. rooted acyclic graph G, with weights on
arcs. In the first category, an optimal rooted arborsence can be defined as one whose sum
of node weights is less than or equal to that of any other rooted arborscence in Gn; the
problem of finding such an arborscence is called the minimum rooted arborscence
(MRA(G,)) problem in an acyclic rooted graph with weights on nodes. Similarly, in the
second category, an optimal rooted arborscence can be defined as one whose sum of arc
weights is less than or equal to that of any other rooted arborscence in G,; the corresponding
problem is called the minimum rooted arborscence (MRA(Ga)) problem in a rooted acyclic
graph with weights on arcs.

The MRA(G) has already been studied. The objective of this paper is to cxplc;re the relation
between MRA(G,) and MRA(G,)) problems, and to propose approximate and exact methods
for solving MRA(G,) problem. However, the paper presents no computational results, as the
programming of the proposed algorithms is still in progress.

After discussing the relation between the MRA(G,) and MRA(Ga) problems, we formulate
the MRA(G,) problem as a zero-one programming problem, and discuss a a heuristic to
construct a rooted arborscence RA in any given G,. This heuristic can be used to generate
an upper bound on the value of the objective function for MRA(G,). We also discuss the
formulation of a Lagrangian Dual of MRA(G,) problem and present a linear relaxation of
MRA(G,). Finally, we present a branch and bound scheme for the MRA(G,) problem.

THE MINIMUM WEIGHT ROOTED ARBORESCENCE PROBLEM:
WEIGHTS ON ARCS CASE

V.Venkata Rao and R. Sridharan
Indian Institute of Management
Ahmedabad 380 015

03

1. Introduction

In a rooted acyclic graph, G, there exist, in general, several rooted (not necessarily spanning)
arborscences. Depending on whether the graph has weights on nodes, on arcs, or on both,
it is possible to define, with different objective functions, several different problems, each
concerned with finding an optimal rooted arborscence in the graph under consideration. Of
the different types of rooted acyclic graphs, we are in particular interested in two: 1. rooted
acyclic graph G, with weights on nodes, and 2. rooted acyclic graph G, with weights on
arcs. In the first category, an optimal rooted arborsence can be defined as one whose sum
of node weights is less than or equal to that of any other rooted arborscence in G; the -
problem of finding such an arborscence is called the minimum rooted arborscence
(MRA(G,)) problem in an acyclic rooted graph with weights on nodes. Similarly, in the
second category, an optimal rooted arborscence can be defined as one whose sum of arc
weights is less than or equal to that of any other rooted arborscence in Ga the corresponding
problem is called the minimum rooted arborscence (MRA(G a)) problem in a rooted acyclic
graph with weights on arcs.

The MRA(G,)) problem arises in a certain integer programming model of a multistage
production system. Further, it is related to the uncapacitated warehouse location problem.
MRA(G) was already studied in [Rao, and McGinnis, 84]. The focus of this paper is the
second type of problem mentioned above, namely the MRA(G,) problem. So far as we
know, unlike the MRA(G,)) problem, the MRA(G,) problem has not been identified to arise
in any practical context. We have chosen to study this problem mainly because: 1. It bears
a strong resemblance to the MRA(G,) problem, which has, as mentioned above, some
practical application, 2. A more gcneral optimal arborescence problem in which the graph
has weights on both nodes and arcs can be reduced to the MRA(G,) problem.

The objective of this paper is to explore the relation between MRA(G,) and MRA(G,)
problems, and to propose approximate and exact methods for solving MRA(G 2) problcm
However, the paper presents no computational results, as the programming of the proposed
algorithms is still in progress.

In the next section, section 2, we introduce the basic definitions, notation, and terminology
of the paper. Section 3 states the MRA(G,) problem as a zero-one programming problem.
Section 4 discusses the relation between the two problems, MRA(G) and MRA(G). Section
5 presents a heuristic to construct a rooted arborscence RA in any given G,. In section 6,
we discuss the formulation of a Lagrangian Dual of MRA(G,) problem; and then in section
7 we present a linear relaxation of MRA(Ga) Section 8 presents a branch and bound scheme
for the MRA(G) problem. This scheme uses the heuristic of section 5 to generate upper
bounds, and the Lagrangian Dual of section 6 to generate lower bounds. Finally, section 9
consists of concluding remarks.

2 Definitions, Terminology and Notation

Rooted acyclic graph, G. A graph G = {V,E} where V is the set of indices and E the set
of edges (or arcs) is called a rooted acyclic graph if it posseses the following properties:
1.Each arc of the graph is directed, 2.There are no directed cycles embedded in the graph,
3. The graph is connected. One of the vertices which does not have any incoming arcs, and
which has a connected path to every other node in the graph is specified as the root of the

graph. .

G consists of N nodes. To avoid trivial situations, we assume that N > O and, further, that
G has at least one arc. The nodes are indexed with consecutive integers 1, ..., N in the
topologically sorted order; that is, the nodes are indexed such that an arc is always directed
from a lower index node to a higher index node. If an arc is directed from node i to node
j» 1is said to be an immediate predecessor of j, and j an immediate successor of i. As the
root does not have any immediate predecessors, it bears the index 1. The set P(j) consists
of the indices of the immediate predecessors of j and S(j) the indices of the immediate
successors of j. F and L are sets consisting of vertex indices such that jeF — P(j) = @, and
EeL->8G)=9.

Rooted acyclic graph with weights on nodes (G,). If a rooted acyclic graph has a weight
a(j) associated with each of its nodes j, then the graph is called a rooted acyclic graph with

weights on nodes. The weight a(j) of a node j can be any real number, negative, positive,
or zero.

A subgraph RA(G) of G is called a rooted arborscence of G if (1) RAG,).contains the
root as one of its vemces (2) RAG) is connected, and (3) no two arcs of RA(G) are
directed towads the same vertex. The sum of weights of the vertices in RA(G)
WIRA(G))], is called the weight of this arborscence.

Rooted acyclic graph with weights on arcs s (Gy). If a rooted acyclic graph is such that: (1)
associated with each arc (i,j) in the graph thcrc is a weight W(i,j), where W(i,j) is any real

number, positive, negative, or zero, (2) N > 2, and node 1 is connected to node 2 by arc
(1,2), and it is the only arc emanating from node 1, then the graph is called a rooted acyclic
graph with weights on arcs. Arc (1,2) is called the root arc of G,.

A subgraph RA(Ga) of Ga is called a rooted arborescence of G, if 1. RA(Ga) contains the
root arc as one of its arcs, 2. RA(G) is connected, and 3. no two arcs of RA(G) are
directed towards the same vertex. Thc sum of weights of the arcs in RA(G), W[RA(G)],
is called the weight of the arborescence.

As mentioned earlier, a rooted arborescence of a graph G is called a minimum weight rooted
arborescence MRA(G) of that graph if its weight W[MRA(G)] is less than or equal to that
of any other rooted arborescence RA(G) of that graph.

Rooted path. A rooted path for a node i in G is an alternating sequence of nodes and arcs,
starting with root node 1 and ending with node i, which can be written as

[L(14), . G.k), k..., (L1), i].

‘Sometimes, while using the above notation for the rooted arborescence or minimum rooted

- arborescence, for the sake of simplicity, we will not mention explicitly the type of graph
being referred to; that is whether it is G, or G,. In all such cases, it is to be understood that
we are referring to a graph with weights on arcs G,. See Figure-1 for an illustration of
MRA(G,) and MRA(G,).

3. Mathematical Formulations of MRA(Gn) and MRA(Ga)

Both the problems MRA(G_)) and MRA(G,) can be stated as.zero-one linear programs. The
zero-one program for MRA(G,)), already presented in [Rao and McGinnis 84], is:

MRA(G,).
N .
Min Ea(f)Y(]) Y(H< 2 Y@@, j=2,3,..,N, Y(1)=1 (D
Y(De(0,1) U=1 iePG)

In the above formulation, Y(j)’s are zero-one variables which indicate the presence (Y(j) =
1) or absence (Y(j) = 0) of each node j in the optimal arborescence. The above formulation
is concerned only with nodes. This is because the arcs do not have any weights; therefore,
once we know which vertices to include in the arborescence, selection of arcs is simple.

Similarly, the MRA(G,) problem also can be stated as a zero-one program as below:

MRA(G,).

Z=Min Y, WG, DYG,)))
(, DeE

st Yy, YGps1, j=23,.,N 3)

ie P(j) ,

YN Y YD), forGi, e EX1,2) (4)
ke P(i)

Y(1,2)=1 4

Y(i)e {0,1) for G, NeE, G, H=(1,2) (6)

g(3) = -1

Figure-1a. A rooted acyclic Figure-1b. MRA(Gn) of the Gn in Figure-1a.
graph with weights W(MRA(G) = -2
on nodes(Gn)

Figure-1lc. A rooted acyclic Figure-1d. MRA(Ga) of the Ga in Figure-1c.
graph with weights on arcs, Ga W(MRA(G,) = -6

Figure-1. MRA in G and G, : Hlustrations

In the MRA(G) problem, unlike in MRA(G) problem, the zero-one variables are associated
- “with arcs and not with nodes: each Y(i,j) corresponds to an arc (i,j)e E. In the solution, Y

-(ij) = 1 implies that arc (i,j) is present in MRA(Ga) Y(i,j) = O implies that arc (i,j) is
absent. Constraints (3) ensure that, in the selected subgraph, not more than one arc is directed
towards a selected node; constraints (4) ensure that an arc is not selected, unless at least one
of its predecessor arcs is also selected. Constraint (5) ensures that the root arc is definitely
present in the final solution. In future, we refer to the constraints (3) as incidence
constraints and (4) as connectivity constraints.

4. Relation between MRA(G,) and MRA(G,)) problems

Algorithms are already available {[Rao and McGinnis, 84] to construct an MRA in a given
G- Suppose there exist rules to transform a given G, into a corresponding G, . Further,
suppose there exist rules to find for an MRA of this G, acorresponding RA in G,; suppose
also that the RA(G) obtained through these rules 1s ensured to be an MRA(G). Then,
obv1ously, these rules can be used to solve the MRA(G o) problem as follows: ﬁrst for the
given G, construct the corresponding G,;; then, using the algorithm of [Rao and McGinnis
- 84] construct an MRA for this Gn; for the MRA(Gn) so constructed, find the corresponding
RA(Ga). The RA(Ga) so obtained is an MRA(Ga) that we need.

However, unfortunately, for a general Ga’ it turns out that it is difficult (currently impossible)
to find rules that transform the G, into a corresponding G ,.

While a general G, is difficult to handle through the above approach, the special case when
G, is atree is amcnable to solution, because, in such a case, appropriate transformation rules
between G and G exist. For this special case, let us state these conversion rules below.

First, note that when G, is 4 tree, no two arcs in G, are directed towards the same node.
Given a G, construct the corresponding G, as below:

For each node i of G, set a correspondmg nodc i'in G,. For each arc (i) of G, introduce
an additional node k" in Gn between i” and j*. The node k’ is called an mtcrmedlatc node.
Establish an arc from i’ to k” and another from k’ to j’. Make the weight of the intermediate
node k’ in G_ equal to the weight of its corresponding arc (i,j) in G,. Set the weights of
nodes i’ and j” to zero. That is, a(k’) = W (i,j), o) = a(]') 0. In other words, G,

the same as G, except that each arc of G, gets split into two in G, the two segments bemg
connected by an intermediate node, which bears the same weight as the weight of its original
arc.

Given an MRA in G, where G, is a weights on node graph constructed using the above
rules, construct the corresponding RA(G,) as below:

For each k’e MRA(G), where k” is an intermediate node obtained using the conversion
method mentioned abovc select the corresponding arc (i,j) of G, to be present in RA(G,).

In the above transformation, it is easy to show that: VIKRAM SARABHA! LIBRARY
) INDIAN INSTITU E OF MANAGEMENT
1. G, is a tree implies that G is a tree VASIRAPUR, AHMEDABAD~380u36

[

"2 MRA(Gn) is a rooted tree (or arborescence) implies that RA(Ga) is a rooted tree (or
arborescence).

3. The RA(G,) is an MRA(G,).
All the above three properties can be proved by the method of contradiction.

Figure-2 iliustratcs the above ideas by showing a G,, the corresponding G, MRA(Gn) and
the corresponding MRA(G,). .

Even when G, is not a tree, the above conversion rules can still be applied; but, in that case,
there is no guarantee that the weight of MRA(G,,) will be equal to the weight of MRA(G,),
or that the arcs selected in G, will form an arborescence. This is because the incidence
constraints which are a part o? MRA(G,) problem are not a part of MRA(G,,) problem.
Figure-3 illustrates this point through an example. This example shows that MRA(G,) cannot
have both the arcs (2,4) and (3,4) in the solution whereas the corresponding "transformed"”
MRA(G,,) problem will choose both the corresponding arcs in the solution. However, we see
that the “equivalent” MRA(Gn) provides a lower bound for MRA(Ga).

5. A heuristic for the MRA(G,) problem

A heuristic solution for the MRA(G,) problem has two uses: first, it can be used as a

solution algorithm; second, the weight of the heuristic solution serves as an upperbound for

W[MRA(Ga)]. Before presenting a heuristic, let us first introduce a restricted version of -
the MRA problem, which will be referred to as MRAe problem. The restriction is in the

form of necessarily requiring some arcs to be present in the solution and some to be absent.

To reflect the given restrictions, we define three sets 6;, 8, ., and 8. 8;, consists of all

the arcs which need to be present in the solution, eout consists of all those which need to

be absent, and Oy ., all the remaining. Thus MRAg problem can be stated as below:

MRAg (G,).
Min zb WGHYG) @)
()e8;,U 84 '
s.t. (3), (4),and
Y(j)=0, ()8 ®)
Yi)=1, (i)e By 9
YiDe(01), ()ebpee (10)

When 6., = ((1,2)}, and 8, = @, the resulting MRA(G,) problem i_s the same as the
unrestricted MRA(Ga) problem that we have considered in the previous sections. As
MRA(Ga) problem is a special case of MRAO(Ga) problem, an algorithm for the latter
problem can be automatically used for the former.

Figure-2a. G,. MRA(G,) consists of arcs (1,2),(2,3),(3,4).
W(MRA(G,) = 1+1-3 = -2

a(12)=-1

Figure-2b. G, . MRA(G,) consists of nodes 1,2,3,4,5,6
W(MRA(G))= 1+1-3 = -2

Figure-2. Correspondence between MRA(Ga) and MRA(Gn) when Ga is a tree:
an [llustration .

+2

0

i

Figure-3a. G, :W(MRA(G,)) = -2 Figure-3b. G: W(MRA(G,)) = -3

Figure-3. Correspondence between MRA(Ga) and MRA(Gn) when Ga is not a tree:
an Illustration. ‘

‘We present below a four-phase heuristic for selecting a rooted arborescence from a given G,.
This is similar to, but not the same as, the heuristic presented in section V of [Rao and
McGinnis 84] to construct an RA(G,)).

Phase 1. For each (ij)e 8, , if there are any other arcs directed towards j, make the weights

of those arcs oo, to prevent them from entering the solution.

Phase 2. For each node in G, find the minimum weight rooted path. Among all the nodes,
if the minimum of the minimum weight paths found above has a negative weight, then we
place the arcs (and corresponding nodes) in that path in bucket B1. Then the weights of all
selcted arcs are updated to zero. Furthermore the weight of each unselected incident arc on
each selected node is updated to . Once again, in the updated graph the rooted path with
minimum weight is found, and if its weight is negative then all its arcs (and nodes), except
those already present in B1, are entered in B1, while at the same time updating the weights
of the arcs as described above. We continue this process until the minimum weight rooted
path in the graph happens to have a zero or positive weight.

Phase-3. As long as there are negatively weighted arcs in the graph we continue to select
the minimum weight rooted path and update the weights. But, this time, we place the
selected arcs and nodes in a second bucket B2. Also, we keep a running total of the
original weights of the new arcs entered in B2, that is, those not already present in BI. When
this total becomes negative, all the indices in B2 are transferred to B1.

This phase would end only when mo negative weight arcs are left in the graph.

Phase-4: In this phase, we force in the arcs which are in 6, and are not selected in the
above phases. For each such arc we find the minimum weight rooted path and enter the
corresponding arcs and nodes into B1.

At the end of phase-4 all the arcs in B1 form the arcs of the desired RA.

Example. Figure-4a shows a G, with 11 nodes and 14 arcs. 6, = @, and 8, = {(8,9)}.The
above four phase heuristic is applied on this graph to generate an MRA of this graph. The
computations are shown through Figure-4a through 4f. The major steps are described below:

Phase 1. On node 9, two arcs, (4,9) and (8,9) are incident. Make W(4,9) as oo, to obtain the
graph of Figure-4b.

Phase 2. Enter the arcs on the path from 1 to 5 in B1 (see Figure-4c). At this stage the arcs
in B1 are: (1,2),(2,3),(3,5). Update the weights of (1,2),(2,3) and (3,5) to zero. At node 5,
(6,5) is the unselected incident arc. Hence make its weight oo (Figure-4d).

In Figure-4d, node 7 has the minimum weight rooted path with negative weight. Hence enter
(3,7) in B1. Update W(3,7) to zero, and W(5,7) to o= (see Figure-4¢). At this stage, the arcs
in B1 are: (1,2),(2,3),(3,5),(3,7).

In Figure-4e, node 6 has the minimum weight rooted path with negative weight. Hence enter
(3,6) in Bl, and update W(3,6) to zero. The arcs in B1 at this stage are:
(1,2),(2,3),(3,5),(3,7),(3,6). At this stage no rooted path has a negative weight. Hence phase
2 ends.

Phase 3. There are still three negatively weighted arcs. Therefore, we have to add their rooted
paths one after the other to B2, till the running total of the arc weights becomes negative. The
arcs are added to B2 in the follwing sequence:

i. Add the arcs (2,4),(4,8),(8,11); running total of weights in B2 becomes 1.
ii. Add the arc (8,10); running total of weights becomes 0.
iii. Add the arc (8,12); running total of weights becomes -1.

Now, transfer the arcs (2,4),(4,8),(8,11),(8,10),(8,12) to B1.
This is the end of Phase 3 with B1 having the arcs:
(1,2),2,3),(3,5).(3,7),(3,6),(2,4),(4,8),(8,11),(8,12).

Phase 4. (8,9) is in ein and is not in B1. Hence add (8,9) to Bl. Thus , finally the
arborescence selected by the heuristic consists of the following arcs:

(1,2),2,3),(3,5),(3,7),(3,6),(2,4),(4,8),(8,11),(8,12),(8.9).

Figure-4a.

Figure-4b.

Figure-4. Example on constructing an RA(G,) (Contd.)

10

4 -100

+5 (Weight of minimum weight

Rooted path for node 3

Figure-4c.

Figure-4d

Figure-4 (Contd.)

Figure-4e

Figure-4f
Figure-4.

6. Lagrangian Relaxation of the MRA(G,) problem

The motivation for developing a Lagrangian relaxation LMRA(G,), for MRA is two fold:
1. using LMRA, it will be possible to obtain a lower bound on thc optimal objective value
of the MRA problem, 2. a powerful heuristic for the MRA problem can be developed using
LMRA.

The effectiveness of this method depends largely on which constraint set from the original
problem we choose for relaxation; the resulting Lagrangian problem should be far easier to
solve than the original problem.

We discuss below two alternative ways of formulating the Lagrangian problem.

1. The constraint set chosen for relaxation is the set of the incidence constraints (3). For
this, consider the multipliers U = {U(;) j=2, ...,N}, each U(j) associated with

the congtraint corresponding to the j** node. We can formulate our first Lagrangian problem
LMRA!(D,) as:

LMRA!D,).
N
Max Mi W3ENY(N+)Y, UMD Yn)-1} (11)
U220 Y g: NeE Jg ie%’:(j)

s.t.(4) and (5) and (6)

The constraints of the above problem resemble those of MRA(G), (1). However, the
objective function (13) does not exhibit any known form. chcc, we do not have any
readily available, easy way of solving it, and hence do not consider it further in this paper.
Even if the objective function were to have the same form as MRA(G), since MRA(G)
is also NP-hard, an optimal solution to MRA(G,) is not easy to obtam

2. The constraint set chosen for relaxation here is the set of connectivity constraints (4). For
this, consider the multipliers U = (U(i,j)l (i,j)e E, i >1}, each U(,j) being associated with
the connectmty constraint corresponding to arc (i,j). Therefore, the second Lagrangian
problem LMRAZ (D,) can be written as '

LMRAZ(D,).
Max Min{(Y W3)YGy)) Y UGHYGD- Y Yk (12)
U20 Y |GijeE (ipeE,i>t ke P(i)
s:1.(3) and (5) and (6)

"As a given arc (i,j) is directed towards only one node j, the different constraints in (3) are
separable for each j. Further, the constraints (3) are in the form of the constraints in a
knapsack problem. Hence, for a given set of multipliers U, LMRAZ2 can be solved by
splitting it into several independent knapsack problems, one for each j, j = 2,..., N-1. Itis
useful to rewrite the objective function (13), by regrouping the terms, in the following form:

Max Min] Y Y@ (Wi)+UGH- Y UGk (13)
U20 Y | (ipeE " ke SQ)

Example. To illustrate the separability of LMRA?2 into several knapsack problems, let us
consider an exa:gple. Let G, be the graph shown in Figure-5. We give below the Lagrangian
problem LMRA~ for the graph of Figure-5.

This problem can be separated into three independent problems whose objective functions
are Zl(U). ZQ(U), and Z3(U). Then overall objective function of the problem can be written
as _

Z=Max ZU)=Max (2,U)+2p(U)+Z3V) (14)

where;

Z,(U) = Min {Y(1,2)[W(1,2)+U(1,2)-U(2,3)-U(2,4)+
Y(2,3)[W(2,3)+U(2,3)-U(3,4)-U(3,51} (15)
s.t. Y(1,2)=1, and Y(2,3) € {0,1) (16)

Z,(U) = Min (Y(3,4)[W(3,4)+U(3,4)-U(4,5)]+

Y(2,4)[W(2,4+U(2,4)-U(4,5)]} (17)
st. Y(3,4)+Y(2,4) < 1 (18)
Y(3.4), Y(2,4) € (0,1} | (19)
Z3(U) = Min (Y(3,5)[W(3,5)+U(3,5)]+Y(4,5[W(4,5)+U(4,5)]) (20)
st Y(3,5+Y(4,5) < 1 @1

Y(3,5),Y(4,5) € {0,1} (22)

Figure-5. Graph to illustrate LMRAZ.

It can be seen that the problem (15)-(16) can be easily solved and that (17)-(19) and
(20)-(22) can be solved by picking the variable with least negative coefficient in the
objective function; no variable is picked if all coefficients are positive.

Lagrangian Heuristic for MRA(GE}

We propose a heurstic solution for MRA(Ga) based on LMRA2 discussed above. At each
Lagrangian iteration, for a given U, we obtain a lower bound for problem MRA(G,) by
solving (13) subject to (3), (5) and (6). This will return a set of Y(i,j)’s with value one,
which may not satisfy (4). Through the algorithm described later, we can construct a feasible
solution to MRA(Ga) with the above Y(i,j)’s set at 1. Hence, at every Lagrangian iteration
we will generatge a lower bound as well as an upper bound for MRA(G,). This heuristic
procedure is described below:

Step 1: Identify an initial upper bound by using the heuristic described in section 5.
Initialize the Lagrange multipliers U(i,j) = O, for (i,j)e E.

Step 2: For a given U, solve (13) subject to (3), (5) and (6). This provides a lower bound
Zy g for MRA(G,). Update the lower bound if necessary.

Step 3: Step 2 will fix some of the Y(i,j)’s at one. Use this set of Y(ij)’s to generate a
feasible solution for MRA(G,). The procedure for genfixjating such a feasible solution is
described in the next section. Update the upper bound, Z B,if necessary .

Step 4 (Stopping rule): If ZUB - 7 LB * €, stop; we have an optimal solution. The value
of epsilon is taken to be .99, since all our data are in integers. If the iteration count
has exceeded, stop. If the lower bound converges to a particular value, stop. If none of the
above conditions are encountered, go to step 5.

Step 5 (Updating U(i,j)’s). Update the Lagrange multipliers using the subgradient procedure
described below. If the subgradients are all zero, stop. Else go to step 2.

Subgradient procedure. The subgradient procedure used in our algorithm is described now.
ngr a detailed analysis of subgradient optimization see [Held, Wolfehand Crowder,1974]. Let
Y (ij) be the optimal solution to the Lagrangian problem LMRA“. Let k be the iteration
number. We then compute the subgradients NU(i,j) for U(ij) as

NUG,)= YT @D- Y Y7(hi)
(h,)eE

The Lagrange muliipliers are then updated as follows:
uGi ¥ =max (w4 NUG.0)
where
= MZUB -2, gy T INUG I
()

We start with an initial value of A and halve the value every 8 iterations if the lower bound
does not improve.

Generation of an upper bound in the Lagrangian heuristic. As mentioned earlier an upper
bound is computed in every Lagrangian iteration which returns a set of Y(i,j)’s fixed at one.

The procedure for computing the upper bound will be described now.

Let Y(i,j) be a given solution such that

(Y(iy E Y(ij)<lforj=23,... N, Y(ij)e (0,1}for(i)eE, Y(1,2)=1}
ij)eE

From the above solution, we want to generate a feasible solution to the MRA(G,) problem.

Let s be a subgraph of Ga such that it consists of nodes i and j and arc (i,j) for each Y(ij)=1
in the above solution.

Note that the set of arcs in s satisfy the incidence constraints, but not necessarily the
connectivity constraints. It is possible that some nodes and arcs of the subgraph s are not
connected to the root node 1. The.following heuristic considers such nodes and establish
proper connections such that the resulting graph is connected. Finally, after obtaining a
connected graph, the heuristic attempts to improve the weight of the graph by pruning some

(&

wasteful ends.‘

The heuristic consists of three phases. In phase I, we note whether a node of G, has at least
one of its direct and/or indirect successors is present in s. In phase II, we obtain a solution
by including some more arcs of G, in s, if necessary, so that the connectivity constraints are
satisfied by the arcs of s. In phase III, some of the arcs in s are removed to improve the
. weight of the arborescence. These phases are elaborated below.

Phase I. This is essentially a procedure for developing a label m(i) for each node i, by
considering the nodes of G, in decreasing order of node index, that is in the order N,N-1,....2.
The rules for labelling are designed such that a zero label for a node indicates that none of
its successors, direct or indirect, are present in s, and a positive label indicates that atleast one
of its direct or indirect successors is present. When a node i is considered for labelling, first
we check whether it is a terminal node. If it is, then its label is set to zero, that is m(i) <--
0; otherwise, its label is set equal to :

Y (m@+1)+ Y mk
k, (i,k)es k, (i,k)es

Phase II. Let B(1)=0, and B(2)= W(1,2). Here we scan the nodes i of Ga from 2 to N in
increasing order of node index. If m(i)=0 then we need not worry about connecting it to the
root, because none of its successors is present in s. If m(i) > 0, then we check whether any
of its immediate predecessors k and the corresponding arc (k,i) are present in s. If so, there
already exists in s a connected path from 1 to i; we compute B(i) as equal to B(k) + W(k,i).
Else, one of the arcs (k,i), k € P(i) has to be included in s. If i has more than one predecessor
k, then we choose k such that B(i) = B(k) + W(k,i) is a minimum, among all k € P().

Phase III. At the end of the above phase, arcs in s form a rooted arborescence. Each node i
in this arborescence can be looked upon as the root for a sub arborescence in s. Let the sub
arborescence for which i is the root be referred to as sl(i). In phase 3, we compute for each
i€ s, W(sl(i)). Then we scan the nodes of i from 1 to N and when W(s"(i)) is greater than
or equal to zero, then we remove sl(i) from s. This improves the weight of s.

Example. Consider the graph G, of Figure-6. Suppose the solution given by the sub gradient
algorithm in one iteration is :

Y(1,2)=Y(7,9)=Y(13,14)=Y(8,10)=1; other Y(i,j)’s are zero.

The sub graph s corresponding to the above solution is shown in the figure in thick lines;
others are shown in thin lines.

Application of phase I yields the labels shown in square blocks alongside each node in
Figure-6a.

Figure-6a.

¢]) 8
B, 2o ojn}
-3 A 3
0) OlE=
4 0 f W(S* (6))
E (9)[3]
NG
"1 (2) G)—)
1

Figure-6b.

Figure-6¢.

Figure-6. Example on generating upper bound in Lagrangian heuristic.

In phase II, we examine the nodes of G, in the order 2,3,...,15. Node 2 is in.s and is
connected to the root node 1. Nodes 3 and f are currently not in s and need not be considered
for inclusion in s, because their labels are zero. Node 5 is not in s , but m(5) is greater than
zero. Hence node 5 has to be included in s along with the only possible connecting arc (2,5).
Similarly, node 6 also has to be included in s along with arc (5,6), node 7 along with arc
(6,7), node 8 along with (6,8), and node 11 along with (2,11). Node 12 need not be included
in s because s(12) = 0. Node 13 is in s and is not connected to the root. Hence select (11,13)
or (2,13), whichever results in the lesser weight path from the root to node 13; accordingly,
select (11,13). Node 15 need not be considered for inclusion in s because m(15) = 0. The
arborescence obtained at the end of phase II is shown in Figure-6b.

The values of W(sl(i)) for each node i are shown in the form of labels by the side of each
node in Figure-6b. From this figure it is clear that the sub tree with 5 as root and that with
11 as root have to be removed. The resulting arborescence is shown in Figure-6c¢.

7. Linear Relaxation of MRAe (Ga), LPMRAG(Ga)

This problem is the same as MRAO(Ga) problem (7)-(10) except that the the (0,1) constraints
(10) are replaced by their linear relaxation

Y(@iy) < 1, (ij)e Ogp.
It is important to note that in general the solution of LPMRAO(Ga) cannot be expected to
be a zero-one solution, and hence the optimal value of the objective functoion of
LPMRAe(Ga) can serve only as a lower bound on the weight of MRAe(Ga). To illustrate
this point, consider the graph G, shown in Figure 7. An optimal solution for the MRA(G,)

| LPMRAe(Ga) can serve only as a lower bound on the weight of MRAG(Ga). To illustrate
this point, consider the graph G, shown in Figure 7. An optimal solution for the MRA(G,)
problem for this graph is

Y(1,2)=Y(2,3)=Y(3,4)=Y(4,6)=Y(6,7)=1, and other Y(i,j)’s are zero. Thus W [MRA(G,)]
= 0+1+0+1-100=2-100 = -98. ’

~ An optimal solution of LPMRA(Ga) is

Y(1,2)= Y(6,7)=1; Y(2,3)=Y(3,4)=Y(3,5)=Y(4,6)=Y(5,6)=0.5; Y(3,6)=0,

making the value of the objective function equal to -98.5, which is less than W(MRA(G,).

8. A branch and bound method to solve MRA(Ga)

We propose here a branch and bound method for the MRAg(G,) problem. In the proposed
- method, the branch and bound tree is a binary tree. The branching variables are Y(i,j)s. At
each node in the tree some Y(i,j)s are fixed at 1, some at zero, and others are free. The two
descendents from a node are obtained by fixing one of the free Y(ij)s at 1 in one

descendent, and at zero in the other. The very first candidate problem in the tree
. corresponds to the MRA(Ga) problem, whereas at the other nodes the problems are of the
type MRAe(Ga), (7) -(12). At each node an upper bound on W[MRAe(Ga)] is obtained by
using the heuristic of section 5. A lower bound on W[MRAe(Ga)] can be generated either
by solving the Lagrangian problem LMRAQ(Ga) of section 6, or by solving the linear
relaxation LPMRAe(Ga), of section 7. The branch and bound scheme is outlined in Figure-8.

Branching

In choosing a Y(i,j) for branching from the candidate problem we make use of the weight
of the minimum weight path from root to j, the ending node of arc (i,j). Fgr cgch arc (1,J)
€ efree the minimum weight rooted path is found. Sup e the arc (i , j) has the
minimum of minimum weight paths found above. Then, Y(i ,j) is the variable selected for
branching. Y(i ,j) is forced to one in the left branch and to zero in the right. The
candidate problem for the right branch is entered in the candidate queue first and then the
left one. The order of retrieval of candidates from the branch and bound tree is last-in-first-
out,

Figure-8
Branch and Bound Algorithm: Outline

e —— —

BEGIN .
The problem at the very first node is MRAg(G,) where
Bin = ((1,2)), 85y =B, B = EX1,2) .
Enter the first node in candidte queue
Value of incumbent <-- =
REPEAT
Remove the last candidate from the candidate queue and make it the current node.
Attempt to construct a feasible solution to MRAe(Ga) where ein° eout. and efm
correspond to the current node (Algorithm of section 5).
IF there is a feasible solution to MRAe(Ga) THEN
IF W[MRAG(Ga)] < value of incumbent solution THEN
value of incumbent solution <-- W[MRAO(G)
incumbent solution <-- solution obtained for %IIRAB(Ga)

ENDIF
Generate lower bound LB on W[MRA4(G,) by solving problem
LMRAB(Ga) or LPMRAe(Ga)
IF LB > value of incumbent solution THEN
Fathom the current node
ELSE
IF 6. is not empty THEN
Branch from current node.
ELSE
Fathom the current node
ENDIF
ENDIF
ELSE
Fathom the current node
ENDIF
UNTIL the candidate queue is empty.
Optimal solution <-- incumbent solution

END

e
—

9. Concluding remarks

The essential contribution of this paper lies in formulating the MRA(G,) problem and in
proposing two solution methods, the first a heuristic and the second an optimization
algorithm, for it. Even though the performance of the proposed algorithms is still to be
studied, the properties of the problem discussed here, in particular, the correspondence
between the weights on arc and weights on node problems, are believed to be of interest in
themselves. We have posed the MRA(G,) problem as an interesting problem in itself, and we
hope that future research in this area will reveal some practical applications for it.

References

1. Rao, V.Venkata, McGinnis, L., The Minimum Weight Rooted Arborescence Problem: A
Branch and Bound Solution, Working Paper No. 514, Indian Institute of Management,
Ahmedabad, June 1984.

2. Held,M., Wolfe,P.,, and Crowder, H.D., Validation of Subgradient Optimization,
Mathematical Programming, Vol 6, 1974, pp 62-88.

PURCHASED
APPROVAL

GRATIS/EXCHANGBH
_ PRICE

ACC NO,
VIKRAM SARABHAI LIBRANY
L. 1. M, AHMEDABAD

B>y

