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A LOT SIZE MODEL WITH DISCRETE TRANSFORATION COSTS

ABSTRACT: The classical Harris-Wilson inventory model does
not explicitly account for the costs incurred in
transporting goods from the supplier to the buyer. Either
such costs are assumed to be fixed and considered part of
the ordering costs or they are assumed to be variable and
are included in the item costs. In many situations,
however, it is observed that a fixed cost is incurred for a
transport mode, {(of a given capacity), such as a truck or
wagon. The wvery nature of this type of transport mode

requires hiring of an ihteger number of trucks or wagons,

Theretftore the transportation cost function becomes a
discrete function. In this paper we develop an inventory
model with discrete transpurtation ccsts,‘ and present an
algorithm for the optimal lot size. Finally an example is

given to illustrate the methodology.

INTRODUCTION

Economic lot size models have been studied extensively and
one of the eariiest model is due to Harris{l] which has
provided well-known Wilson's EOR formula. In the simplest

possible case the optimal lot size @, is given by:

* :
e =,|2pm/1cl el (1)

where A is the ordering cost, D the demand rate, 1 is the

inventory carrying rate, and C'is the item cost. This model



is wvalid under certain assumptions guch as the lead time is
constant, the demand rate is constant and uniform, item cost
is constant, and no stockouts are allowed, etc. Manry
extensions to [11 are cited in the literature. These
'extensions, for example, allow for stochastic demand and
leadtime, backlogging, variable item cost, etc. In fact, an
indepth arialysis of Harris-Wilson model with varying
assumptions has been a subject of study of great many

researchers.

Harris—-Wilson model does not explicitly account for the cost
incurred in transporting goods from the supplier to the
buyer.- Either such costs are assumed as variable costs and
therefore added to the item costs or else they are assumed

to be fixed (irrespective of "order quahtity) and are

considered as part of the ordering costs. In many practical
situations, however, such costs do not +fall in either
ctategory, In this paper we investigate an extension of [13

where transportation cost structure is such that a fixed
ccst(C2} is incurred for a transport maode of a Qglrven
capacity (say, K units) such as & truck or wagon. This cost
CI. is incurred whether the capacity is fully utilised or
not. I+ the order guantity exceeds one truck, one would
have to hire two, three,.... trucks depending on the actual
quantity. Therefore the transport cost would be a discrete
function of the order quantity 6. Let (@) represent the
total annual relevant cost (sum of ordering ceosts, inventory

carrying costs, and transportation costs), we have:
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F(@) AD/G  + QiC, /2 + m/m)c&ef'mm'h . (2)

In this paper we investigate such an inventaory model with
discrete transportation costs, and develop an algorithm for
the optimal lot size. We assume that &ll other assumptions

of the classical Harris-Wilson model hold valid.

MODEL ANALYSIS
It is obvious that if the order quantity is @, and the
number of trucks wused for delivering thie order quantity is

m, then

(m — 1K€ @ £m¥ . »ue £3)

If m trucks are used to deliver the quantity 0 (we will call
it an m—truck policy), the total cost function can be expre-

ssed as:!

-Fm(ﬁi = AD/& + L, /2 + (D/&) (C&)m, m - DK LMK, . (4}

It may be easily seen that fm i & seqguence of strictly
increasing functions as shown in Figwe 1. f(@Y is a
discontinuous Ffunction shown by the saolid curve. The

fuanction +“ﬁ9) attaims the unconstrained minimum at

o = ,2m + C.mD/iC e (S
m )3 i
The value of +m(a> at Qﬂ1w1ll be
\fzm + t:',uml:;.x;c:I e (&)



Therefore,

ﬂhua>;;q§uﬁx+~czm)nicl, ¥ o. e A7)
Now, suppose we consider ordering with one~truck{i.e., m=1},

'F‘(G) =  AD/U + QiCy /2 + (D/G!)Cz, 0 LBLK v ea (B

f(Q) has the unconstrained minimum at

Q, = \/2(9 + Cp)D/iC, e (D)

If Q1£;H, the optimal lot size d* is obviously @y . If G&?K,
{fQ) will have the constrained minimum exactly at K, and
the corresponding total annual relevant cost will be

ﬂ(K) = AD/K + KiC|/2 + (D/K)Cy, e« (10)

which is  an upper bound, say UR, on the optimal annual
relevant costs.
From (7), and above discussion, procuring with m-trucks will

not be economical if

\[2tﬂ + CLQ)DiC' 7 UB. -ea(11)
Simplifying,
2 -
m 7 [{UR) /‘DICI} - A]/Cz_ eea (12D
= r, say
We, therefore, can discard all m-truck policies where m
exceeds r. We apply the above analysis and suggest the

following algorithm for determining the optimal lot size.
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ALGORITHM

¥

1. Compute the unconstrained minimum as

o = (2w + YD/
| \5 Cy /itc,

If Q‘ is alsc the constrained minimum (i.e., if¥ 0'5 K,

the optimal lot size is Q'. Otherwise, set d*= K, and

compute an upper bound UFR as ﬁ(K).

2. Compute the ratio r ast

r = [{(UBf‘IEDicl} - AJ/Cy
3. Ignore ordering with m—trucks it m > r.
4. 14 all truck—-policies have been considered, stop.

Otherwise, move to the next higher number of truck level
policy, and compute the unconstrained oétimal lot size B
(by 5). 1+ @ is also the constrained optimal, compute (@),
1¢ £ FE, set ¥ = a (1f £@ = @), @ and o are

both.optimal 1ot sizes), and stop.

If 8 is not a constrained optimal, replace @ by the highest
feasible value of @, and compute (). 1+ +(9)4L~f(d*), set
xal *

G = @, and UE = £(@ ). Recompute ratio r with the updated

bound UB. Go to step 3.



AN EXAMFLE

Suppose:

A = 20 D = 400 units per year

B

i = 1@%4 per year CI ¥20

Cl = $50 K = S0 units

1. Compute 8.

1&67.33

i

Q’ = 220 + S2)400/(8.10) (Z&)
Since Q|7'SB, it is not feasible.
Therefore, G¥-= 50.

(@) = 2P(40B)/S@ + SB(0.10)(28)/2 + (403/50) 50
= 160 + S0 + 400 = 610

Therefore UB = 610,

2. Compute r.

2
{(610) /2(400) (2. 10) (20)-281) /350

-
"

= 4,28123

3. Ignore ordering with § or more trucks.

4. Consider next truck-policy

Q‘.L':dZ(EB + 100400/ (2. 1@) (20 = 219.10

Since Qi 7 2(5@), it 1s infeasible. Replace it by D;.= 10@.

{(Q&) = 20(400) /1008 + 10@(0.10) (28)/2 + (400/10@) (5@) ()

= 8@ + 10@ + 400 = 580

Since f(Q&) < -HQ*), replace Q* by Q&.

Y
Therefore, update @ = 108, and UB = 580.



3. Recompute r.

2
ro=  {((580)/2(400) (0. 10) (208)-203/58

= Z.805
b. Ignore ordering with 4 or more trucks.
7. Consider next truck-—-policy

Q5 =|42<2m + 1504882/ (0.10) (28) = 268.77
which is also infeasible. Replace 93 by 15@.
Q)Y = 20(400)/153 + 1520<(0.108) (Z2@)/2 + (420/15@) (50) (3)
= B5B3.33 + 158 + 40@
= 603,33
_ ¥
Since f(Q3Y7 580, we do not change Q .
We have exhausted all policies.

The optimal lot Qize is 100 units (2Z2-trucks).
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