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Abstract 

 

Mapping mortality impacts of the projected climate in urban areas of developing countries 

will play a crucial role in instituting planned adaptation measures to protect public health. We 

provide a comprehensive assessment of mortality in 52 urban areas (population >1 million) 

that are located in diverse climactic regimes in India. To understand implications of the 

climate warming on heat wave mortality in the urban India, we used downscaled and bias 

corrected temperature projections from the Coupled Model Inter-comparison Project Phase 5 

(CMIP5) models. Using the observed data for the period of 2005-2012, we developed 

temperature-mortality relationships using Poisson regression models for the selected urban 

areas in India. These relationships were applied to future temperature projections from the 23 

CMIP5 models for the summer and winter seasons for the Representative Concentration 

Pathway 4.5 and 8.5 scenarios. Here we show that urban areas in India are projected to 

witness two-fold or more increases (p <0.05) in heat related mortality (i.e. summer season) 

under the projected future climate. Mortality is projected to increase 71and 140% in the late 

21st century under the RCP 4.5 and 8.5 scenarios, respectively. Moreover, we find that 

increases in the heat related mortality will overshadow declines in the cold related mortality 

(winter season). Moreover, urban areas of Delhi, Ahmedabad, Bangalore, Mumbai and 

Kolkata are projected to experience the highest absolute increases in the heat related 

mortality in 2080s under the RCP 8.5 scenario. Our findings underscore the need for Indian 

policy makers to anticipate, plan and respond to the challenge of climate change.
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1. Introduction  

Extreme temperatures can overwhelm normal functioning of the human body leading to 

pathological states such as exacerbation of cardiovascular and respiratory disease and 

ultimately death (Kovats and Hajat 2008). Adverse health effects of temperature extremes are 

underscored by heatwaves in Europe (Fouillet et al. 2006; Barriopedro et al. 2011), United 

States (NOAA 2012) and Russia (Barriopedro et al. 2011). Studies have now attributed such 

episodes and persistently warm seasons to observed climatic warming (Hansen et al. 2012). 

Furthermore, studies find that the temperature in the near term (i.e. 2040s) will increase 

despite best mitigation efforts (Coumou and Robinson 2013).  Temperature transitions as a 

result of climate change are likely to leave future populations susceptible to adverse health 

impacts. These health impacts, however, may dramatically differ across the developed and 

developing countries (McMichael 2013). Therefore, many researchers have attempted to 

understand temperature related mortality under the projected future climate.  

The clear, consistent finding across studies is that the heat related mortality is set to increase 

in the future irrespective of location, climate change scenario used, assumptions about 

temperature mortality relationship, and the period of projections. Reductions in the cold 

related mortality are expected in future, which may be largely due to a significant reduction 

in night-time temperatures in urban areas (Mishra et al. 2015). However, it is unlikely that 

they will completely offset the increase in the heat related deaths (Cheng et al. 2009; Li et al. 

2013).  

It is observed that almost all studies have assessed impacts for cities or regions in the 

developed countries such as the United States (Hayhoe et al. 2004; Knowlton et al. 2007), 

Canada (Cheng et al. 2009; Doyon et al. 2008), Europe (Baccini et al. 2009), and Australia 

(Huang et al. 2012). Future mortality will largely be determined by the current and future 

levels of preparedness. Early warning systems and responsive health services in the 
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developed countries may significantly reduce the health impacts; though they are likely to 

face challenges due to aging population and other socio-economic factors.  

 

India and other developing countries are at higher risk due to high population and low 

preparedness. Mortality associated with recent heat waves in Indian cities such as 

Ahmedabad (Singh 2013) and Delhi (Koronowski 2013) highlight the current vulnerability 

that is likely to increase in the future (Coumou and Robinson 2013). However, studies that 

assess future temperature related health impacts are largely absent in India (Huang et al. 

2011). This is important given that temperatures may increase by 3.3°C to 4.8°C degrees by 

2080s relative to pre-industrial times under changing climate (Chaturvedi et al. 2012). 

Moreover, Kumar et al. (2011) reported that India may experience unprecedented increases in 

air temperature in the 21
st
 century. Therefore, our understanding of changes in heat waves 

and its implications on human mortality in the projected future climate in urban India is 

largely limited.  To address this gap, we provide a comprehensive assessment of mortality 

based on 52 urban areas (population >1 million) located in the diverse climactic regimes 

across India using downscaled and bias corrected temperature projections from the Coupled 

Model Inter-comparison Project Phase 5 (CMIP5) models.  

 

2. Data and Methods 

As the observed mortality data are not available for all the major urban areas in India, we 

selected a representative urban area from each climactic regime (BEE 2007)  to develop the 

exposure-response relationships between temperature and mortality (see supplemental 

material for details). The representative urban areas varied in topography (e.g. plains, coast, 

and hills) and population characteristics allowing us to map the spatial heterogeneity of 

climate change and related impacts. Data on daily measurements of air pollution (particulate 
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matter less than 10 microns (PM10), nitrogen oxides and sulphur oxides) were collected from 

the Central Pollution Control Board (CPCB). Data on daily weather variables (daily 

maximum and minimum temperature, relative humidity, and dew point temperature) were 

collected from the India Meteorological Institute (IMD). We collected data on daily totals of 

registered deaths from the municipal corporations of Ahmedabad, Bangalore, Hyderabad, 

Lucknow, Mumbai, and Shimla for the period of 2005-2012. The time series estimated for 

each city differed based on data availability. In most cases, age and cause of death were not 

available; hence, daily all-cause mortality was studied.  

 

2.1 Temperature mortality relationships  

Heat related mortality was estimated for the summer season (March to July) and cold-related 

mortality was estimated for the winter season (November to February). To model the 

temperature effects, natural cubic splines with three degrees of freedom were used. It has 

been argued that using three degrees of freedom captures the short term effect of ambient 

temperature while leaving out long term and seasonal trends as well as effects of heat or cold 

waves (Barnett et al. 2012; Rocklov et al. 2012).  Within a generalized additive model 

framework, the regression equation that captures the effect of temperature on mortality can be 

represented as  

 

Log[E(Yij)]    =   ∑   
    (xij) + DOW + ε           …(1)… 

 

where Yij  is the daily number of deaths for the i
th

 city on the j
th

 day and is assumed to follow 

an over-dispersed Poisson distribution. The covariates xij represent daily temperature, relative 

humidity and time for the i
th

 city on the j
th

 day. The effects are expressed by an unknown 

smooth function   constructed using natural cubic splines. An indicator variable for each day 

of the week is given by DOW. The error term is modeled using ε. 
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A natural spline with four degrees of freedom for humidity was used. Seasonal and long term 

trends in data were controlled using a smooth function of time with seven degrees of freedom 

per year. This is equivalent to a two month moving average which is a good balance between 

removing long term trends while leaving enough variation to capture short term temperature- 

mortality relationships (Hajat et al. 2006). This representation has been used is most of the 

recent studies (Anderson and Bell 2011; Li et al. 2013).  Analogous to air pollution, 

temperature may exhibit delayed effects on mortality and morbidity (Bhaskaran et al. 2013). 

To capture the delayed effects of temperature an exploratory data analysis was carried out 

from zero to twenty five day lags. Based upon the statistical analysis and visual inspection of 

the plots, 0 lags were selected for the hot (summer season) and 2 lags were selected for the 

cold (winter season).Three alternate model specifications for equation (1) were used in the 

sensitivity analysis (see supplementary materials).  

 

2.2 Future projections  

We obtained daily bias corrected and downscaled projections for daily maximum and 

minimum temperatures from 23 CMIP5 models. For each of these models, daily projections 

of minimum and maximum temperature were available up to the year 2100. These projections 

of temperatures were downscaled and bias corrected for the urban areas using the method 

described in Thrasher et al., (2012). The modified Bias Correction and Spatial Disaggregation 

(BCSD) approach (Thrasher et al. 2012) is different from the original BCSD method (Wood 

et al., 2002; 2004; Maurer et al. 2010) as this uses daily projections of maximum and 

minimum temperatures rather than monthly average temperatures. The modified BCSD 

method avoids daily data disaggregation from bias corrected monthly data as used in the 

original BCSD approach. The bias corrected and spatially disaggregated (BCSD) approach 

has been used for the hydro-climatic impact assessments (Cayan et al. 2008; Hayhoe et al. 
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2004; Mishra et al. 2014). Moreover, the BCSD approach has been successfully compared to 

various downscaling techniques for both mean and extremes climate (Wood et al. 2004; 

Maurer and Hidalgo 2008; Bürger et al. 2012). Bias-corrected and spatially disaggregated 

daily dataset were developed for all the selected urban areas considering an overlapping grid 

cell of 0.5 degree spatial resolution. Using the same approach for the bias correction and 

downscaling, we developed daily temperature dataset using the CMIP5 model output for the 

historic period (1950-2005). Our daily projection data are based on statistical downscaling 

approach; however, data from the dynamical downscaling can be used in future to assess the 

influence of climate warming on heat wave related mortality.  

 

We considered air temperature projections for the two (4.5 and 8.5) representative 

concentration pathways (RCP)(Vuuren et al. 2011; Thomson et al., 2011; Riahi et al. 2011). 

The RCP 4.5 assumes a scenario where radiative forcing stabilizes at 4.5 W/m
2
 by the year 

2100 (Thomson et al. 2011). This corresponds to an increase in average global temperature of 

about three degrees centigrade. The RCP 8.5, on the other hand, is an extreme (or worst case) 

scenario where very little mitigation actions are taken by countries to thwart future climate 

change. This corresponds to a scenario which has the highest greenhouse gas emissions and 

may lead to an increase in average temperatures up to six degrees centigrade (Moss et al. 

2010; Riahi et al. 2011).  

 

Based on the temperature mortality relationships, deaths for the period from 2000 to 2009 

were estimated. The period 2000-2009 was used as the baseline period against which future 

impacts were compared. Low death registration in Indian cities makes it difficult to find a 

reliable long-term data on daily deaths (Dhar 2013).  The baseline of 2000-2009 roughly 

corresponds to a period for which mortality data were available. Furthermore, it captures the 
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current climate change impacts and our results portray incremental future changes. Future 

impacts were compared for the three time periods – the 2020s, the 2050s and the 2080s that 

roughly correspond to a short, medium and long time horizon.  

 

We used the exposure response relationships to estimate future temperature values. First, 

based on the shape of the temperature mortality curve (supplementary material Figures S.2 

and S.3), a reference temperature that corresponds to minimum mortality was determined. 

This was called the minimum mortality temperature (MMT). In instances, where the MMT 

was not clearly discernible from the shape of the graph, the 50
th

 percentile of the temperature 

distribution was used as the MMT as the risk of mortality at this point was zero (see 

Supplementary material Table S.5). This approach of comparing the change in relative risks 

to a minimum mortality temperature has been fairly standard practice in public health 

(Gosling et al. 2008; Li et al. 2013).  Then for each day of the baseline period, the days where 

the temperature exceeds the MMT were determined. For every day where the temperature 

exceeded MMT, the relative risk of death was multiplied by average total daily deaths to 

estimate daily deaths attributable to temperature. The deaths attributable to temperature were 

summed for all the days from 2000 to 2009 to estimate the baseline mortality. This process 

was repeated for each day for the future periods – 2020 to 2029, 2050 to 2059 and 2080 to 

2089. The total deaths attributable to temperature were estimated for each of the twenty-three 

climate models, for both RCP scenarios for hot and cold seasons. The difference between 

future and baseline periods was the excess mortality attributable to temperature. The equation 

can be represented as –  

 

Mortality = RR x Average daily death rate x Population    … (2)… 

where 
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RR: Relative risk based on temperature mortality relationship 

Average daily death rate per 1000 population calculated for each city using the SRS estimates 

Population – Future population projections are consistent with the shared socioeconomic 

pathway 4 (SSP) scenarios 

 

The future population projections used was consistent with the Shared Socioeconomic 

Pathways (SSP) scenarios (O’Neill et al., 2014). The SSPs describe plausible trends in the 

evolution of society, independent of climate change over the course of the century. We used 

average population projections of the SSP 4 scenario that envisages a mixed world with rapid 

technological development in most large countries and lesser development in other portions 

of the world (O’Neill et al., 2014). Under this scenario, the average population growth for 

India is about 31% by the year 2050.  

 

It is a well-known that population acclimatize over time to the environmental conditions 

(Gosling et al. 2008). Therefore to account for the future acclimation, we assumed that  

populations would acclimatize to 1°C of temperature in every three decades based on the 

approach used by  Dessai (2003). This was incorporated in the analysis by raising the 

minimum mortality temperature by 1°C for the medium term (the 2050s) and 2°C in the long 

term (the 2080s). In the short term i.e. the 2020s no acclimatization was assumed.  

 

3. Results 

Figure 1 shows current and future seasonal temperature transitions under the projected 

climate for summer (March to July, Fig 1a-c) and winter (November to February, Fig 1d-f) 

seasons. During the summer, urban areas are projected to experience average increases in 

maximum temperature of 1.6°C (95% CI 0.6°C – 2.6°C) and 3°C (95% CI 2°C - 4°C) under 
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RCP 4.5 (Fig 1b) and RCP 8.5 (Fig 1c), respectively in the 2080s. Under the RCP 8.5, seven 

urban areas, mostly located in the northern India, will likely experience average increases in 

maximum temperature of 4°C or more. The average increases in minimum temperature for 

winter season are 1.8°C (95% CI 0.5°C – 3.1°C) and 3.6°C (95% CI 2.4°C – 4.9°C) under 

RCP 4.5 (Fig 1e) and RCP 8.5 (Fig 1f), respectively. Twenty urban areas are projected to 

experience average temperature increases of 4°C or more in winter under the RCP 8.5. These 

results highlight that urban areas are projected to experience more warming in the winter 

season than that in the summer. Moreover, urban areas located in the northern India 

especially in the Gangetic Plain region are projected to face significant warming in the 

summer and winter seasons. 

 

We observed heterogeneity in the population levels, death rates, and seasonal baseline 

mortality (Figure 2) across the selected urban areas. It can be noticed that the majority of the 

selected urban areas fall in the composite climate, while only one urban area was in the 

temperate climate. Only two urban areas (Shimla and Srinagar) are in the cold climate. Under 

the RCP 8.5, likely average increases in maximum summer temperatures are 3.3°C 

(composite zone), 2.7°C (hot and dry zone), 2.3°C (warm and humid zone), 2.7°C (temperate 

zone) and 4.5°C (cold zone) in the 2080s. These results show that the urban areas in the cold 

climate are projected to experience the most prominent warming. We find that corresponding 

statistically significant (p-value < 0.05) increases in heat related mortality (as compared to the 

baseline) are 84% (composite zone), 150% (hot and dry zone), 127% (warm and humid 

zone), 107% (temperate zone) and 500% (cold zone), respectively.  

 

For the winter season, the projected average increases in minimum temperature across urban 

areas are 3.9°C (composite zone), 4°C (hot and dry zone), 2.9°C (warm and humid zone), 
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2.7°C (temperate zone) and 3.6°C (cold zone) by 2080s under the RCP 8.5 scenario. It can be 

noticed that the urban areas located in the hot and dry climate are projected to experience the 

highest increase in minimum temperature. The corresponding percentage decreases in cold 

related mortality (as compared to the baseline) are 36% (composite zone), 86% (hot and dry 

zone), 76% (warm and humid zone), 97% (temperate zone) and 75% (cold zone) respectively.   

 

Figure 3 shows the baseline and future transitions of temperature related mortality for the 

summer and winter seasons across the selected urban areas. Without exception, a clear 

departure from baseline mortality (Fig 3a) is observed for the summer season (Fig 3b-c), 

though magnitudes vary across the urban areas. Across all the urban areas, in the 2080s, 

~107700 excess heat related deaths are projected under the RCP 4.5 scenario (Fig 3b), which 

are likely to double (~204900 excess deaths) under the RCP 8.5 scenario (Fig 3c). Winter 

mortality, for the baseline, is predominantly observed for the urban areas that are located in 

the Indo-Gangetic Plain (Fig 3d) as compared those located in peninsular India. The likely 

declines in winter mortality are ~38400 deaths and ~66100 deaths under the RCP 4.5 (Fig 3e) 

and RCP 8.5 (Fig 3f), respectively.   

 

We show the likely impact of future population growth on projected mortality in Figure 4. 

Our population projections are based on shared socioeconomic pathway (SSP 4), which is 

based on a high challenge for adaptation and low challenge for mitigation (O’Neill et al., 

2014). The projected number of deaths due to heat are significantly higher (p <0.05) – about 

184900 and 318600 excess deaths under the RCP 4.5 and 8.5 respectively. We find that 14 

urban areas are likely to have in excess of 5000 deaths compared to the baseline under the 

RCP 8.5, when we include population projections into consideration. Out of the total selected 

urban areas, only 9 showed an excess of 5000 deaths compared to baseline when we did not 
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account for population growth.  The magnitude of increase highlights the public health 

significance of temperature related mortality in India. Here it should be noted that these 

projections of based on a single SSP (SSP4) and these results may vary for the other SSPs. 

However, our results indicated that the population growth along with the profound warming 

will pose a serious challenge in heat wave related mortality in India. Moreover, these findings 

also highlight a need to better understand the climate change, population growth, and 

mortality linkage in the developing countries that are witnessing a rapid increase in 

population.  

 

Figure 5 shows the distribution of summer mortality pooled across the selected urban areas 

before and after accounting for population growth. We find significant differences in the 

mean (p<0.05) and distribution (p<0.05) of future mortality under RCP 8.5. We observe a 

clear rightward shift in the distribution along with an increase in the tail end of the 

distributions under future climate (Fig 5a). Chennai, Kolkata, and Bangalore are the three 

urban areas where mortality exceeds the 95
th

 percentile of the baseline distribution. Under the 

RCP 4.5, additional urban areas that are likely to exceed the 95
th

 percentile include Mumbai, 

Ahmedabad, Jaipur, and Delhi. Surat is an additional urban area that is likely to exceed the 

95
th

 percentile under the RCP 8.5.  

 

From a policy perspective, the five urban areas that will experience the highest increases 

(supplemental Table S.9) in the future heat related mortality after accounting for population 

increase are Delhi (∆ 15200 deaths) , Ahmedabad (∆ 17600 deaths), Bangalore (∆ 14900 

deaths), Kolkata (∆ 19400 deaths) and Mumbai (∆ 15300 deaths). Of these, Ahmedabad is 

the only urban area that has recently instituted a heat-health warning system (AMC 2013) 

thereby underscoring the need to institute planned adaptation measures for other urban areas.  



 

 
 
 

Page No. 13 W.P.  No.  2015-05-02 

 

4. Discussion and Conclusions 

Our findings showed that the average percentage increase in heat-related mortality in 2080s 

for RCP 8.5 across different models is 140±37% as compared to the baseline. The 

corresponding percentage decline in cold –related mortality is 69±10%. Across the different 

zones studied, we find that maximum percentage increases in the heat related mortality are 

expected in the cold zone and hot and dry zone. This may be because people in the colder 

areas may not acclimatize to warmer temperatures. Similarly, increased temperatures in the 

zones that are hot and dry may enhance population susceptibility given that physiological 

limits of human temperature tolerance may be breached (Kovats & Hajat, 2008). Declines in 

cold related mortality with increasing temperature have received lesser attention though 

average winter temperatures are correlated with excess winter deaths in Europe (Healy, 

2003). We find heterogeneity in increases in minimum temperature and corresponding 

declines in cold related mortality. The differences across climate zones may be explained in 

part by differing levels of acclimatization. This, however, remains an important area of study.  

 

The real mortality impact of the projected climate in urban areas in India is likely to be 

significantly higher than that analyzed in this study. The 52 urban areas we studied represent 

about 13% (~157 million people) of the Indian population. The remaining population that 

resides in smaller towns, cities, and rural areas, which are also vulnerable to mortality 

impacts of climate change. The towns and smaller cities of today will burgeon into urban 

areas with million plus populations in the future as a consequence of urbanization. Therefore, 

the health impacts may be higher than what we have estimated. The strength of this study is 

that although our findings may be underestimates, they are significant enough to warrant the 

attention of policy makers.   
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The direction of our results i.e. increases in temperature related mortality is comparable to the 

previous studies (Li et al. 2013; Hayhoe et al. 2004; Knowlton et al. 2007). For instance, a 

recent study of New York, found that net increases in mortality in the 2080s was expected to 

be 15.5% and 31% under the B1 and A2 SRES scenarios respectively (Li et al. 2013). Their 

study applied exposure-response relationships to results from 16 regionally downscaled 

models although it did not account for future acclimatization. Hayhoe et al. (2004) estimated 

a two to three-fold increase in the heat related mortality by 2090s in the state of California 

under the A1and B1 SRES scenarios (Hayhoe et al. 2004). However, urban areas in 

developed countries have better infrastructure, higher incomes, better governance, and more 

responsive health systems and thus better poised to respond to health challenges. Developing 

countries are significantly more vulnerable as impacts may not only be higher in absolute 

terms but also because they lack resources to mount a coherent adaptation response (Smith et 

al. 2014).   

 

Our study does not take into account how mortality will change in the future depending on 

factors (e.g. heat island effects, migration, behavior patterns) other than those we have 

controlled for (i.e. temperature, humidity, and pollution). This is because it is difficult to 

project mortality rates in a robust manner. Changes in the age structure of populations may 

expose a larger group of elderly people and enhance vulnerability to temperature related 

mortality risk (Huang et al. 2011). Furthermore, urbanization patterns may contribute to 

urban heat island effects that may enhance temperature related mortality risk (Stone et al. 

2010). On the other hand, benefits of increased incomes due to economic growth, education, 

poverty reduction and better health systems may offer significant protection against 
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temperature related mortality.  Thus, future mortality changes will be an outcome of the 

complex interaction of the aforementioned factors.  

 

Another important point is that our study does not take into account the impacts of future 

planned adaptation measures. Economic growth, early warning systems, access to air 

conditioning and heating systems, behavioral change in communication and other adaptation 

measures could potentially reduce temperature related mortality (Toloo et al. 2013; Ebi and 

Burton 2008; Frumkin et al. 2008). However, building the future scenarios to project the 

benefits of adaptation is complex because adaptation measures are likely to be very specific 

to individuals or communities. In addition, studies that quantify the benefits of current 

adaptation measures in the health sector are largely absent. Therefore, we adopted a modified 

exposure – response curve approach used previously (Dessai 2003) to account for physiologic 

acclimatization. Other approaches to capturing acclimatization such as ‘analog city’ 

(Knowlton et al. 2007)  have received much criticism (Gosling et al. 2008) and, therefore, 

have been avoided.  

 

Mortality reductions due to acclimatization are highly variable and are sensitive to the 

climate zone, time period, and climate change scenario. For the RCP 8.5 in the long term 

(2080s) acclimatization effects range from 4% to 12% in the summer season and 1% to 10% 

in the winter season. Previous studies have found higher acclimatization effects - likely 

mortality reductions of 25% in New York City (Knowlton et al. 2007) and 15-20% reduction 

in California (Hayhoe et al. 2004). These differences in the magnitude of change are driven 

by the choice of methodology and the direction of change may be more important to 

understand.  
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Application of exposure mortality relationships from one city to other cities in the same 

climate zone, as we do here, implicitly assumes that demographic structure, population 

exposure, and particulate matter concentrations are similar. Furthermore, it assumes that 

future development pathways will be more or less similar. However, given that different 

urban areas show different development patterns, vulnerability profiles across cities within 

the same climate zone may vary considerably. Thus, while highly uncertain, the estimation of 

health impacts should be viewed as indicative of the direction of future transitions relative to 

the current scenario.  

 

Typically, future projections are marred by large uncertainties from a variety of sources such 

as uncertainties in emission scenarios, downscaling procedures, temperature mortality 

relationships, population transitions and future adaptation (Gosling et al. 2008). However, 

very often in large scale integrated modeling exercises it is not always possible to quantify 

these uncertainties (Amann et al. 2011). Nonetheless, we attempted to minimize these 

uncertainties to the extent possible. A large number of alternate models have been evaluated 

and a sensitivity analysis (supplementary material Tables S.3 & S.4) has been undertaken to 

develop a core model for temperature mortality relationships. In addition, we studied twenty 

three downscaled climate models respectively to account for uncertainty within and across 

models. The two emission scenarios – RCP 4.5 and RCP 8.5 capture a large range of future 

temperature transitions from current temperature trajectory to an extreme degree of global 

warming, thereby addressing a vast range of uncertainty with respect to future climate.  

 

A key limitation of this study is that we use only seven years of observed mortality data to 

develop temperature-mortality relationships. Previous studies have used 15 to 20 years of 

observed data to develop temperature-mortality relationships for carrying out future 
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projections (Li et al. 2013; Knowlton et al. 2007). However, these studies have been confined 

to developed countries where vital registration systems are vastly better than those in 

developing countries such as India. Therefore, this study underscores the need for collecting 

quality data so that evidenced based adaptation policy measures can be developed. In 

conclusion, this is the first attempt to show that urban India is projected to experience high 

mortality from the future warming. Our findings underscore the need for Indian policy 

makers to anticipate, plan and respond to the challenge of climate change. The heat action 

plan of Ahmedabad (AMC 2013) as well as the state level action plans on climate change 

(MoEF 2014) are indicative of initial forays being made on this front. However, a greater 

emphasis on public health, policy coordination across sectors along with health system 

strengthening is needed in urban India to address current and future climate change related 

health challenges. 
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Figure 1. (a)  Baseline (2000 – 2009) maximum temperature (°C) during the summer months 

(March to July); (b) change in temperatures (°C) under RCP 4.5 in 2080s, and (c) under RCP 

8.5 in 2080s, (d) Baseline minimum temperature (°C) during the winter months (November to 

February), (e) change in winter temperatures (°C) under RCP 4.5 in 2080s, and (f) RCP 8.5 in 

2080s. Every circle represents an urban area with million plus population. Colours distinguish 

urban area by baseline temperature values. Maps were created by authors using the GMT 

software. 
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Figure 2. (a) Population (in millions) based on 2011 Census, (b) Annual crude death rate (per 

1000 population) in 2011, (c) baseline mortality in summer season (March – July), (d) 

baseline mortality in winter season (November – February). Every circle represents an urban 

area with million plus population. Colours distinguish urban area by climate regimes – pink 

for composite zone, blue for cold zone, brown for warm and humid zone, green for temperate 

zone and red for hot & dry zone.  

Maps were created by authors using the GMT software. 

 

 

 

 

 

 

 

 

 

 



 

25 
 

 
 
 

Figure 3. (a)  Baseline (2000 - 2009) mortality (in thousands) during the summer months 

(March to July); (b) change in mortality under RCP 4.5 in 2080s, and (c) under RCP 8.5 in 

2080s, (d) Baseline mortality (in thousands) during the winter months (November to 

February), (e) change in mortality under RCP 4.5 in 2080s, and (f) under RCP 8.5 in 2080s. 

Every circle represents an urban area with million plus population.  
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Figure 4. (a)  Baseline (2000 – 2009) mortality (in thousands) during the summer months 

(March to July) after accounting for future population growth (consistent with SSP 4); (b) 

change in summer mortality under RCP 4.5 in 2080s, and (c) under RCP 8.5 in 2080s, (d) 

Baseline mortality (in thousands) during the winter months (November to February) after 

accounting for future population growth, (e) change in winter mortality under RCP 4.5 in 

2080s, and (f) under RCP 8.5 in 2080s. Every circle represents an urban area with million 

plus population.  
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Figure 5. (a, b) Distribution and box plot of heat related mortality for baseline (black line), 

RCP 4.5 (green line) and RCP 8.5 (red line), (c, d) same as (a, b) after accounting for future 

population growth. Changes and their statistical significance (at 5% level) were estimated 

using the Ranksum test (for mean) and Kolmogorov-Smirnov test (for distribution).  
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Selection of Cities 

 

Figure S.1 Map of India showing locations of Cities in this study (Dholakia, Bhadra & Garg, 2014) 
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Table S.1 Representative Cities by climate zone  

Climate zone Representative city Topography 

Hot and dry Ahmedabad Plains 

Cold Shimla Hilly regions 

Temperate Bangalore Plateau 

Composite Hyderabad Plains 

Warm and humid Mumbai Coastal areas 

 

India is divided into five climate zones namely – hot and dry, warm and humid, composite, 

temperate and cold. The rationale for choosing these cities was that they are each 

representative of a different climate zone in India. In addition to climate zone, these cities 

represent varied topography – plains, plateau, coastal areas and hilly regions. Though climate 

change is a global phenomenon, its impacts are local in nature and are likely to vary across 

cities and climate zones. Therefore cities were selected such that they broadly represent 

varying vulnerability to climate change related impacts.  

 

Air pollution data 

Data on daily measurements of air pollution were collected from the Central Pollution 

Control Board (CPCB). The CPCB has set up the National Ambient Air Quality Monitoring 

Program (NAMP). Under the NAMP, four criteria pollutants i.e. Sulphur Dioxide (SO2), 

Oxides of Nitrogen (NOx), Total suspended particles (TSP) and Particulate matter less than 

10 microns (PM10) are measured for 342 stations located in 127 cities across India. On an 

average 100 - 120 measurements per year (i.e. about 2 per week) are taken for each station 

and the values reported are a 24-hour average. 

 

Mortality data 

Mortality data in India comes from two sources. The first source is the Sample Registration 

Survey (SRS) carried out by the Office of the Registrar General of India. The SRS reports 
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annual crude birth and death rates as well as infant mortality rates for urban and rural areas 

for all Indian states and Union Territories. Initiated in 1964-65, it became fully operational in 

1969 and today covers 7957 sample units which is about 7.35 million population (RGI, 

2012).  

The second source is the Municipal corporations that register daily births and deaths taking 

place within their administrative boundaries.  This includes births and deaths taking place at 

home and within hospitals. Ideally, information related to mortality should capture age, 

gender and cause of death according to the International Classification of Disease (ICD – 10) 

as prescribed by the World Health Organization (WHO, 2010).  

If birth and death registration systems manage to capture all births and deaths then the 

numbers from both sources (SRS & Municipal Corporations) should be similar. However, in 

developing countries such as India it rarely happens that all births and deaths are registered. 

Sometimes even if deaths do get registered, information on age or cause of death may not get 

recorded. For this study we collected the daily total of registered deaths in the municipal 

corporations of Ahmedabad, Bangalore, Hyderabad, Lucknow, Mumbai and Shimla. In most 

cases, age distributions and cause of death were not available. Hence, daily all-cause 

mortality was studied.  

Table S.2 Comparison of SRS estimates and values recorded from Municipal Corporation 

City 
Annual deaths as 

per SRS  

Registered Deaths 

in MC 

Absolute 

Difference 

% Shortfall vs. 

SRS 

Ahmedabad 36206 39748 -3542 0 

Bangalore 45895 45692 203 0.4 

Hyderabad 40295 21602 18693 46.4 

Mumbai 93911 80922 12989 13.8 

Shimla 612 1781 -1169 0 
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Table S.2 shows that there is a difference between the SRS estimates and the deaths 

registered in the Municipal corporations. This difference was highest for Hyderabad where 

the data recorded from the corporation were 46.4% less as compared to the SRS estimates. 

Ahmedabad, Bangalore and Shimla did not show any differences between recorded deaths 

and SRS estimates.  

Reconciliation between the municipal recorded deaths and the SRS is often difficult as a one-

is-to-one mapping between the two data sources is not possible. However, the comparison 

allows for identification of any gross under - reporting of deaths that might take place. The 

daily deaths collected from the municipal corporation represent the best available data and 

have been used in the study.     

 

Weather data 

Data on daily weather variables were collected from the Indian Meteorological Institute 

(IMD). The IMD has a record of daily weather variables since the year 1948. The weather 

variables studied included daily maximum and minimum temperature, relative humidity and 

dew point temperature. 

 

Modelling Paradigm  

To model the temperature effects, natural cubic splines with three degrees of freedom were 

used. It has been argued that using three degrees of freedom captures the short term effect of 

ambient temperature while leaving out long term and seasonal trends as well as effects of 

heat or cold waves (Barnett et al., 2012; Rocklov et al., 2012).  Within a generalized additive 

model framework, the regression equation that captures the effect of temperature on mortality 

can be represented as  

 

Log[E(Yij)]    =   ∑   
    (xij) + DOW + ε            …(1)… 
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where Yij  is the daily number of deaths for the i
th

 city on the j
th

 day and is assumed to follow 

an over-dispersed Poisson distribution. The covariates xij represent daily temperature, relative 

humidity and time for the i
th

 city on the j
th

 day. The effects are expressed by an unknown 

smooth function   constructed using natural cubic splines. An indicator variable for each day 

of week is given by DOW. The error term is modelled using ε. 

 

A natural spline with four degrees of freedom for humidity was used. Seasonal and long term 

trends in data were controlled for using a smooth function of time with seven degrees of 

freedom per year. This is equivalent to a two month moving average and is thought be a good 

balance between removing long term trends while leaving enough variation to capture short 

term temperature- mortality relationships (Hajat et al., 2006).This representation has been 

used is most of the recent studies (Anderson & Bell, 2011; Li et al., 2013).  

 

Analogous to air pollution, temperature may exhibit delayed effects on mortality and 

morbidity (Bhaskaran et al., 2013). To capture the delayed effects of temperature an 

exploratory data analysis was carried out from zero to twenty five lags. Based upon statistical 

analysis and visual inspection of the plots, 0 lags were selected for the hot (summer season) 

and 2 lags were selected for the cold (winter season). 

 

There is no standard way to measure the heat (or cold) effect and other researchers have used 

alternate measures. For instance, Anderson & Bell (2009) measure the heat effect as the 

difference between relative risk at 99
th

 percentile and 90
th

 percentile of temperature 

distribution. Since we were interested in the changes in mortality closer to the extremes of the 

temperature distribution, the heat effect was defined as the percentage change in mortality 
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between the 99
th

 percentile and 95
th

 percentile of the temperature distribution as suggested by 

Li et al. (2013).  

 

       Heat effect = Relative risk at 99
th

 percentile – Relative risk at 95
th

 percentile     …(2)… 

   Relative risk at 95
th

 percentile 

 

Similarly, the cold effect was defined as the percentage change in mortality between the 1
st
 

and 5
th

 percentile of the temperature distribution. These definitions of heat and cold effect 

have been previously used in the literature (Li et al., 2013). 

 

      Cold effect = Relative risk at 1
st
 percentile – Relative risk at 5

th
 percentile  … (3)… 

    Relative risk at 5
th

 percentile 

 

A sensitivity analysis of the core model presented in equation (1) was undertaken. Three 

alternate model specifications were used in the sensitivity analysis. The first alternate model 

included pollution as a confounding variable; the second used dew point temperature instead 

of humidity and the final model included pollution with the assumption that standards set by 

the World Health Organization were met.  
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Table S.3 Heat effect (%) for different models across cities  

City Core Model Dew Point 

Air 

Pollution WHO Lag 2 

Ahmedabad 6.56 6.98 4.45 6.60 7.9 

95% CI (4.84, 8.31) (5.18, 8.81) (0.97, 8.04) (4.88, 8.35) (5.87, 9.97) 

Bangalore 3.69 3.09 3.59 3.78 3.77 

95% CI (1.38, 6.04) (0.82, 5.41) (-0.66, 8.02) (1.48, 6.13) (0.65, 6.97) 

Hyderabad 5.06 5.27 4.87 5.09 4.39 

95% CI (1.71, 8.51) (1.89, 8.77) (0.87, 9.04) (1.72, 8.57) (1.47, 7.4) 

Mumbai 3.53 2.68 3.77 3.47 3.59 

95% CI (1.69, 5.4) (0.87, 4.53) (1.91, 5.65) (1.65, 5.33) (0.72, 6.59) 

Shimla 8.11 na 18.25 8.56 9.5 

95% CI (0.99, 15.73) 

 

(2.75, 36.1) (1.41, 16.21) (1.87, 17.71) 

These values show the change in relative risk of mortality when temperature increases from 95
th
 to 

99
th
 percentile of the temperature distribution in the summer season for a given city  

NA – no humidity or dew point data available for Shimla 

 

 

 

Table S.4 Cold effect (%) for different models across cities 

City 

Core 

Model Dew Point Air Pollution WHO 

Ahmedabad 7.09 8.91 8.23 7.11 

95% CI (4.3, 9.96) (5.93, 11.97) (4.02, 12.61) (4.32, 9.98) 

Bangalore* 1.15 0.84 -1.3 1.23 

95% CI (-1.47, 3.84) (-1.77, 3.53) (-7.85, 5.71) (-1.41, 3.93) 

Hyderabad* 1.79 2 2.71 2.01 

95% CI (1.21, 4.88) (-1.11, 5.2) (-1.03, 6.59) (-1.01, 5.11)  

Mumbai 5.33 5.94 5.69 5.37 

95% CI (2.6, 8.12) (2.95, 9.01) (2.45, 9.04)  (2.64, 8.17) 

Shimla 0.93 na -7.55 0.61 

95% CI (-5.25, 7.51) 

 

(-20.06, 6.91) (-5.54, 7.21) 

These values show the change in relative risk of mortality when temperature decreases from 5
th
 to 1

st
 

percentile of the temperature distribution in the winter season for a given city. *Cold effect at lag 

zero; ** at lag 1. For all other cities at lag 2 of temperature  

NA – no humidity or dew point data available for Shimla  
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Table S.5 Minimum mortality temperature for hot and cold seasons 

City Hot season 

(maximum temperature) 

Cold season 

(minimum temperature) 

Ahmedabad 32.2°C 17.8°C  

Bangalore 27.8°C 16.8°C 

Hyderabad 36.5°C 18°C 

Mumbai 30.9°C 20.6°C 

Shimla 20°C 3°C 
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Figure S.2 Exposure response curves for summer season in representative cities. The x-axis 

shows the maximum temperature (°C). The y-axis shows the percentage increase in mortality 

relative to the minimum mortality temperature for each city. It is observed that the exposure 

response curves vary according to city.   
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Figure S.3 Exposure response curves for winter season in representative cities. The x-axis 

shows the minimum temperature (°C). The y-axis shows the percentage increase in mortality 

relative to the minimum mortality temperature for each city. It is observed that the exposure 

response curves vary according to city.   
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Table S.6 Cities with million plus population in 2011 as per climate zone  

Hot & Dry Warm & Humid Composite Temperate Cold 

Ahmedabad Mumbai Hyderabad Bangalore Shimla* 

Aurangabad Mallapuram Agra   Srinagar 

Jaipur Kolkata Ludhiana 

  Jodhpur Asansol Amritsar     

Kota Pune Chandigarh     

Nashik Thissur Ghaziabad     

Rajkot Kozhikode Kanpur     

Surat Kochi Delhi     

Vadodara Thiruvananthapuram Lucknow     

  Kannur Varanasi     

  Kollam Meerut     

  Chennai Allahabad     

  Coimbatore Patna     

  Madurai Jamshedpur     

  Tiruchirapalli Dhanbad     

  Vishakhapatnam Ranchi     

  

 

Raipur     

    Durg - Bhilainagar     

    Indore     

    Bhopal     

    Jabalpur     

    Gwalior     

    Nagpur     

    Faridabad     

Notes: Cities in bold are the representative cities whose temperature mortality relationships 

were applied 

*Shimla is the only non-million plus city
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Table S.7 Future estimates of mortality for India for summer season across models 

Model  

RCP 4.5 

 

RCP 8.5 

Baseline 

  

Acclimatization* 

   

Acclimatization* 

2000s 2050s 2080s 2050s 2080s 

 

2050s 2080s 2050s 2080s 

ACCESS1-0 152500 213400 269500 208800 259100 

 

246300 332100 242400 322900 

BNU-ESM 152700 209100 242800 204300 231500 

 

267300 372400 263800 364000 

CCSM4 153400 195800 228900 191000 215800 

 

265800 350100 262200 340800 

CESM1-BGC 165100 215300 239100 210300 226800 

 

262000 328400 258100 318300 

CESM1-CAM5 130500 220200 281200 215600 270700 

 

269400 358100 265400 348900 

CMCC-CM 147100 226000 276800 221300 264800 

 

273700 419600 270100 411900 

CNRM-CM5 149500 198400 224200 193700 211800 

 

221800 291300 217500 280300 

FGOALS-g2 140900 200100 197900 195200 184900 

 

229700 251400 225600 240500 

FIO-ESM 131500 222900 205900 217900 191500 

 

242500 350000 237700 339600 

GFDL-CM3 151200 266800 330200 262800 321900 

 

300000 419800 296600 411800 

GFDL-ESM2G 148100 229500 230900 224600 218500 

 

240700 342700 236100 332200 

GFDL-ESM2M 147900 240400 256000 236000 244300 

 

241600 348300 236600 338000 

GISS-E2-R 143200 188300 199400 182800 184300 

 

207300 271500 202600 259100 

IPSL-CM5A-LR 162800 249700 292900 245100 283100 

 

289600 406600 285800 397800 

IPSL-CM5A-MR 150900 228100 292200 222900 281900 

 

261200 387600 257000 378800 

IPSL-CM5B-LR 129300 180600 227900 174700 213600 

 

215900 299500 211100 286400 

MIROC-ESM-CHEM 140200 255900 295700 251500 285400 

 

300700 438200 298100 431000 

MIROC-ESM 139400 251300 281300 246800 269700 

 

279100 419100 276100 412300 

MIROC5 140600 212900 217200 207700 204100 

 

210500 263000 205500 250200 

MPI-ESM-LR 156100 263400 286700 259700 276900 

 

293900 423300 290600 415100 

MPI-ESM-MR 160300 250700 255100 246700 244300 

 

262600 402500 259100 394300 

MRI-CGCM3 129300 187600 225400 182400 212300 

 

230000 302500 225500 290300 

NorESM1-M 153200 203200 218100 197700 203000 

 

233800 325600 229600 315000 

Average 146800 222200 251100 217400 239100 

 

254100 352300 250100 342600 

SD 10300 25400 36100 25900 37700  28300 55800 28800 57500 

*This denotes the percentage change in mortality as a result of acclimatization  
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Table S.8 Future estimates of mortality for India for winter season across models 

Model  

RCP 4.5 

 

RCP 8.5 

Baseline 

  

Acclimatization 

   

Acclimatization 

2000s 2050s 2080s 2050s 2080s 

 

2050s 2080s 2050s 2080s 

ACCESS1-0 98400 69000 52900 65800 46300 

 

53300 40300 50200 36300 

BNU-ESM 94100 60700 54600 57400 45900 

 

47800 23200 44500 17700 

CCSM4 100500 79100 63200 75800 54600 

 

61100 39900 57900 33800 

CESM1-BGC 96400 79400 70100 76000 61400 

 

58100 38400 54900 32300 

CESM1-CAM5 101500 60000 48700 56800 40900 

 

49300 23300 46000 19800 

CMCC-CM 92400 57100 42500 53900 36200 

 

44900 13900 42000 12100 

CNRM-CM5 98200 75800 62200 72700 54700 

 

71900 40800 68900 34800 

FGOALS-g2 90900 57800 61500 54300 52900 

 

49100 35100 46000 29300 

FIO-ESM 94600 75800 65800 72500 57100 

 

58100 39200 54800 33200 

GFDL-CM3 96900 59400 44600 56400 38400 

 

43200 21900 40800 19700 

GFDL-ESM2G 94600 77600 72600 73900 63700 

 

62300 34800 59100 28700 

GFDL-ESM2M 94700 74200 68900 71000 60600 

 

64600 34100 61400 28200 

GISS-E2-R 95800 66400 59300 62800 51100 

 

54600 32600 51400 26900 

IPSL-CM5A-LR 95500 47500 42000 44700 36300 

 

36800 16100 34800 13700 

IPSL-CM5A-MR 89100 50200 34600 47300 28600 

 

32000 12400 29500 9200 

IPSL-CM5B-LR 100200 74300 66200 71200 59000 

 

48000 27500 45400 23800 

MIROC-ESM-CHEM 103700 60000 47800 56800 40300 

 

47000 21000 44000 17000 

MIROC-ESM 96200 67200 55300 63700 47200 

 

50700 23700 47600 19000 

MIROC5 93900 74500 56100 71200 48100 

 

57900 39200 54600 32800 

MPI-ESM-LR 88800 51300 49900 48300 42900 

 

43800 21000 41200 17600 

MPI-ESM-MR 93700 61100 51300 58100 43800 

 

47300 21600 44400 18100 

MRI-CGCM3 99900 71100 60700 67700 52800 

 

62700 32700 59100 26900 

NorESM1-M 98800 76000 77800 72800 70000 

 

54300 43300 50900 36300 

Average 96000 66300 56900 63100 49300 

 

52100 29400 49100 24700 

SD 3810 9870 10890 9750 10200 

 

9310 9550 9050 8290 

*This denotes the percentage change in mortality as a result of acclimatization 



 

42 
 

Table S.9 Future estimates of mortality for million plus cities for summer season 

        RCP 4.5   RCP 8.5   

        Baseline     Acclimatization Pop Inc*     Acclimatization Pop Inc* 

City Death rate Population Climate Zone 2000s 2050s 2080s 2050s 2080s 2080s 2050s 2080s 2050s 2080s 2080s 

Agra 6.1 1746467 Composite 2000 3000 3400 3000 3300 5100 3200 4300 3200 4200 6500 

Allahabad 6.1 1216719 Composite 1500 2100 2400 2100 2300 3500 2400 3100 2400 3100 4600 

Amritsar 5.6 1183705 Composite 600 1200 1400 1200 1400 2200 1400 2100 1400 2100 3200 

Bhopal 6.1 1883381 Composite 1800 2700 3100 2700 3100 4300 3100 4300 3100 4300 5900 

Chandigarh 4.1 1025682 Composite 100 300 400 300 400 600 400 800 400 800 1200 

Delhi 4.3 16314838 Composite 9000 14500 16700 14500 16500 23100 16600 24200 16600 24000 33300 

Dhanbad 5.2 1195298 Composite 400 800 1000 800 1000 1500 1000 1600 1000 1600 2500 

Durg-Bhilai 6.1 1064077 Composite 1200 1700 1900 1700 1900 2900 2000 2600 2000 2600 4000 

Faridabad 5.3 1404653 Composite 1100 1700 1900 1700 1900 2900 1900 2700 1900 2700 4100 

Ghaziabad 6.1 1101981 Composite 1600 2600 3000 2600 2900 3000 2900 4300 2900 4200 4300 

Gwalior 5.2 7749334 Composite 1300 2000 2200 2000 2200 3000 2100 2700 2100 2700 3600 

Hyderabad 6.1 2167447 Composite 2800 6300 7700 6200 7500 9100 7900 12700 7900 12600 15000 

Indore 5.2 1337131 Composite 2000 3200 3600 3200 3600 5100 3200 3600 3200 3600 7100 

Jabalpur 6.1 1267564 Composite 1200 1800 2000 1800 2000 3000 2000 2800 2000 2800 4300 

Jamshedpur 6.1 2920067 Composite 500 1000 1200 1000 1100 1700 1200 1800 1200 1800 2700 

Kanpur 5.6 1613878 Composite 3500 5200 5800 5200 5800 9200 5600 7400 5600 7400 11700 

Ludhiana 6.1 2901474 Composite 1200 2000 2300 2000 2300 3500 2000 2300 2000 2300 3500 

Lucknow 6.1 1424908 Composite 2900 4500 5100 4500 5100 7000 5000 6900 5000 6800 9500 

Meerut 5.1 2497777 Composite 1000 1700 2000 1700 2000 2900 2000 2900 2000 2900 4300 

Nagpur 5.5 2046652 Composite 2600 3600 4100 3600 4000 5800 4100 5400 4100 5300 7700 

Patna 6.1 1122555 Composite 700 1400 1800 1400 1700 2700 1800 3100 1800 3000 4800 

Raipur 5.2 1126741 Composite 1300 1900 2100 1900 2000 2400 2200 2800 2200 2800 3300 

Ranchi 6.1 1435113 Composite 300 700 800 700 800 1200 800 1400 800 1400 1900 

Varanasi 6.1 2358525 Composite 1500 2300 2600 2300 2600 3600 2600 3500 2600 3500 4900 

Ahmedabad 5.7 6352254 Hot & Dry 13600 22300 24700 22000 23900 30200 22000 31200 21700 30500 38100 
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Aurangabad 5.1 1189376 Hot & Dry 1900 2900 3300 2800 3200 4400 3400 4900 3400 4800 6600 

Jaipur 5.8 3073350 Hot & Dry 6200 9300 10500 9100 10100 14500 10300 14400 10200 14100 20000 

Jodhpur 5.8 1137815 Hot & Dry 2600 3900 4400 3900 4300 5900 4300 5900 4300 5800 7900 

Kota 5.8 1001365 Hot & Dry 2300 3300 3700 3300 3600 4600 3700 5000 3600 4900 6300 

Nashik 5.1 1562769 Hot & Dry 900 1500 1800 1300 1500 2500 1800 3100 1700 2900 4300 

Rajkot 5.7 1390933 Hot & Dry 1200 2000 2400 1900 2100 3200 2400 3900 2200 3700 5300 

Surat 5.7 4585367 Hot & Dry 4000 6600 7900 6200 7000 9700 7900 13000 7600 12400 16000 

Vadodara 5.7 1817191 Hot & Dry 3100 4800 5500 4700 5300 5100 5500 8100 5400 7900 11600 

Asansol 6.5 1243008 Warm & Humid 2200 2700 3000 2600 2900 3800 3000 3600 3000 3600 4600 

Coimbatore 6.4 8696010 Warm & Humid 600 1100 1300 1000 900 1500 1500 2400 1300 2100 2800 

Kochi 6.4 2151466 Warm & Humid 200 500 700 300 200 800 800 1600 600 1100 1700 

Chennai 6.6 2117990 Warm & Humid 14300 18500 20100 18300 19300 23600 20700 25100 20500 24800 29400 

Kolkata 6.5 14112536 Warm & Humid 17200 24300 27800 23600 25900 40500 28400 36600 27800 35600 53300 

Madurai 5.1 18414288 Warm & Humid 600 1100 1400 1000 900 1700 1500 2300 1400 2000 2900 

Mumbai 6.4 1462420 Warm & Humid 8000 12800 14800 12100 12600 21200 15500 23300 15000 22000 33400 

Pune 5.1 5049968 Warm & Humid 4000 5600 6200 5500 5900 7900 6400 8900 6300 8600 11200 

Tiruchirapalli 6.4 1021717 Warm & Humid 900 1400 1600 1400 1500 2300 1700 2400 1700 2300 3300 

Vishakhapatanam 5.2 1730320 Warm & Humid 1600 2400 2600 2300 2400 3300 2600 3500 2600 3300 4400 

Bhubhaneshwar 6.5 837737 Warm & Humid 700 1000 2000 900 1900 2100 1500 2000 1400 1900 3100 

Kozhikode 6.6 2030519 Warm & Humid 300 700 900 500 400 600 1000 1800 800 1400 1200 

Vijaywada 5.2 1491202 Warm & Humid 2000 2700 2900 2600 2800 3300 2900 3500 2900 3400 4000 

Mallapuram 6.6 1698645 Warm & Humid 200 600 700 400 300 700 800 1500 700 1200 1500 

Thrissur 6.6 1854783 Warm & Humid 200 600 800 400 300 800 900 1600 700 1300 1600 

Vasai-Virar 5.1 1221233 Warm & Humid 500 800 1000 800 800 1000 1000 1500 1000 1500 1500 

Bangalore 5.2 8499399 Temperate 13900 20100 22100 19900 21100 25200 23200 28800 23000 28000 32800 

Shimla 3.6 169758 Cold 100 200 300 200 300 300 300 400 300 400 400 

Srinagar 4.7 1273312 Cold 100 200 300 200 200 400 300 800 300 700 1000 
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Table S.10 Future estimates of mortality for million plus cities for winter season 

    RCP 4.5   RCP 8.5   

    Baseline     Acclimatization Pop Inc*     Acclimatization Pop Inc* 

City Climate Zone 2000s 2050s 2080s 2050s 2080s 2080s 2050s 2080s 2050s 2080s 2080s 

Agra Composite 2390 1820 1650 1820 1640 2500 1490 930 1490 920 1410 

Allahabad Composite 1270 920 800 920 800 1200 720 390 720 390 590 

Amritsar Composite 2120 1680 1540 1680 1540 2400 1480 980 1480 980 1530 

Bhopal Composite 1580 1010 820 1010 810 1140 730 330 730 310 460 

Chandigarh Composite 1410 1100 1010 1100 1010 1430 960 630 960 630 900 

Delhi Composite 17160 13060 11790 13050 11750 16270 10970 6900 10970 6840 9530 

Dhanbad Composite 790 540 430 540 430 660 390 190 380 180 290 

Durg-Bhilai Composite 470 260 190 260 180 280 170 50 160 40 80 

Faridabad Composite 1770 1340 1210 1340 1200 1840 1120 700 1120 690 1060 

Ghaziabad Composite 3040 2310 2090 2310 2080 2390 1940 1220 1940 1210 1400 

Gwalior Composite 1450 1090 980 1090 970 1300 890 540 890 530 720 

Hyderabad Composite 1010 400 280 390 230 330 230 60 220 40 70 

Indore Composite 1790 1120 900 1110 880 1250 750 1180 750 1170 1640 

Jabalpur Composite 1130 750 620 750 610 940 560 260 560 250 390 

Jamshedpur Composite 710 450 360 450 350 530 310 140 310 130 200 

Kanpur Composite 3610 2700 2410 2700 2400 3790 2170 1290 2170 1270 2020 

Ludhiana Composite 2600 2000 1820 2000 1820 2700 1740 1120 1740 1110 1650 

Lucknow Composite 3340 2510 2240 2500 2230 3080 1970 1180 1970 1160 1620 

Meerut Composite 2110 1610 1450 1610 1450 2120 1340 850 1340 840 1240 

Nagpur Composite 1050 590 430 580 410 610 390 130 390 110 180 

Patna Composite 1520 1020 870 1020 860 1350 770 420 770 410 650 

Raipur Composite 510 270 200 270 190 230 180 50 180 40 60 

Ranchi Composite 860 590 490 590 480 670 440 220 440 210 300 

Varanasi Composite 1450 1030 900 1030 890 1230 790 430 790 420 600 

Ahmedabad Hot & Dry 1490 690 430 590 230 520 360 100 280 40 120 
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Aurangabad Hot & Dry 150 60 40 50 10 50 30 10 20 0 10 

Jaipur Hot & Dry 2440 1640 1350 1600 1220 1880 1200 550 1160 410 760 

Jodhpur Hot & Dry 730 460 360 450 300 470 310 120 290 80 170 

Kota Hot & Dry 520 310 240 300 190 300 210 80 190 50 100 

Nashik Hot & Dry 210 80 50 60 20 70 40 10 30 0 10 

Rajkot Hot & Dry 240 100 60 80 30 80 50 10 40 0 20 

Surat Hot & Dry 330 110 60 70 20 80 50 10 30 0 10 

Vadodara Hot & Dry 270 110 70 80 30 2500 60 10 40 0 20 

Asansol Warm & Humid 1630 1360 1220 1310 1070 1550 1140 760 1080 580 970 

Coimbatore Warm & Humid 480 190 120 80 10 140 90 10 30 0 20 

Kochi Warm & Humid 0 0 0 0 0 0 0 0 0 0 0 

Chennai Warm & Humid 410 100 60 20 0 70 40 10 10 0 10 

Kolkata Warm & Humid 12940 9640 8330 8890 6230 12150 7630 4280 6860 2380 6230 

Madurai Warm & Humid 0 0 0 0 0 0 0 0 0 0 0 

Mumbai Warm & Humid 11300 7070 5610 5840 2720 8040 5010 1830 3810 550 2620 

Pune Warm & Humid 3920 2740 2310 2450 1470 2930 2130 940 1800 400 1190 

Tiruchirapalli Warm & Humid 0 0 0 0 0 0 0 0 0 0 0 

Vishakhapatanam Warm & Humid 440 200 140 120 30 180 120 30 60 0 30 

Bhubhaneshwar Warm & Humid 450 270 220 220 100 340 190 80 140 20 120 

Kozhikode Warm & Humid 260 80 40 20 0 30 30 0 10 0 0 

Vijaywada Warm & Humid 270 100 60 50 10 70 50 10 30 0 10 

Mallapuram Warm & Humid 220 70 40 20 0 40 30 0 10 0 0 

Thrissur Warm & Humid 20 0 0 0 0 0 0 0 0 0 0 

Vasai-Virar Warm & Humid 750 470 370 390 180 370 330 120 250 40 120 

Bangalore Temperate 380 110 70 70 10 80 50 10 30 0 10 

Shimla Cold 3 1 1 1 0 0 1 0 0 0 0 

Srinagar Cold 320 210 180 210 180 230 160 80 160 80 100 
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Uncertainty analysis (estimates across 23 models) 

 

Table S.11 shows the mean and standard deviation of future estimates across different models 

Models 

Summer Winter 

 
RCP 4.5 RCP 8.5 

 
RCP 4.5 RCP 8.5 

Baseline 2050s 2080s 2050s 2080s Baseline 2050s 2080s 2050s 2080s 

ACCESS1-0 152500 213400 269500 246300 332100 98400 69000 52900 53300 40300 

BNU-ESM 152700 209100 242800 267300 372400 94100 60700 54600 47800 23200 

CCSM4 153400 195800 228900 265800 350100 100500 79100 63200 61100 39900 

CESM1-BGC 165100 215300 239100 262000 328400 96400 79400 70100 58100 38400 

CESM1-CAM5 130500 220200 281200 269400 358100 101500 60000 48700 49300 23300 

CMCC-CM 147100 226000 276800 273700 419600 92400 57100 42500 44900 13900 

CNRM-CM5 149500 198400 224200 221800 291300 98200 75800 62200 71900 40800 

FGOALS-g2 140900 200100 197900 229700 251400 90900 57800 61500 49100 35100 

FIO-ESM 131500 222900 205900 242500 350000 94600 75800 65800 58100 39200 

GFDL-CM3 151200 266800 330200 300000 419800 96900 59400 44600 43200 21900 

GFDL-ESM2G 148100 229500 230900 240700 342700 94600 77600 72600 62300 34800 

GFDL-ESM2M 147900 240400 256000 241600 348300 94700 74200 68900 64600 34100 

GISS-E2-R 143200 188300 199400 207300 271500 95800 66400 59300 54600 32600 

IPSL-CM5A-LR 162800 249700 292900 289600 406600 95500 47500 42000 36800 16100 

IPSL-CM5A-MR 150900 228100 292200 261200 387600 89100 50200 34600 32000 12400 

IPSL-CM5B-LR 129300 180600 227900 215900 299500 100200 74300 66200 48000 27500 

MIROC-ESM-CHEM 140200 255900 295700 300700 438200 103700 60000 47800 47000 21000 

MIROC-ESM 139400 251300 281300 279100 419100 96200 67200 55300 50700 23700 

MIROC5 140600 212900 217200 210500 263000 93900 74500 56100 57900 39200 

MPI-ESM-LR 156100 263400 286700 293900 423300 88800 51300 49900 43800 21000 

MPI-ESM-MR 160300 250700 255100 262600 402500 93700 61100 51300 47300 21600 

MRI-CGCM3 129300 187600 225400 230000 302500 99900 71100 60700 62700 32700 
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NorESM1-M 153200 203200 218100 233800 325600 98800 76000 77800 54300 43300 

µ (Mean) 146800 222200 251100 254100 352300 96000 66300 56900 52100 29400 

σ (SD) 10300 25400 36100 28300 55800 3800 9900 10900 9300 9500 

Cells with italics fill indicate three highest estimates of summer baseline and winter baseline mortality respectively 

 

 

Of the models used in the analysis, those that provide the three highest estimates of summer baseline mortality include the CESM-M1-BGC, 

IPSL-CM5A-LR and MPI-ESM-MR (Table S.11). Correspondingly, those models that show the highest increases in winter baseline mortality 

include the CCSM4, CESM1-CAM5 and MIROC-ESM-CHEM.  

 

 

Table S.12 shows the percentage change in morality estimates across different models  

Models 

Summer Winter 

RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

2050s 2080s 2050s 2080s 2050s 2080s 2050s 2080s 

ACCESS1-0 39.9% 76.7% 61.5% 117.8% -29.9% -46.2% -45.8% -59.0% 

BNU-ESM 36.9% 59.0% 75.0% 143.9% -35.5% -42.0% -49.2% -75.3% 

CCSM4 27.6% 49.2% 73.3% 128.2% -21.3% -37.1% -39.2% -60.3% 

CESM1-BGC 30.4% 44.8% 58.7% 98.9% -17.6% -27.3% -39.7% -60.2% 

CESM1-CAM5 68.7% 115.5% 106.4% 174.4% -40.9% -52.0% -51.4% -77.0% 

CMCC-CM 53.6% 88.2% 86.1% 185.2% -38.2% -54.0% -51.4% -85.0% 

CNRM-CM5 32.7% 50.0% 48.4% 94.8% -22.8% -36.7% -26.8% -58.5% 

FGOALS-g2 42.0% 40.5% 63.0% 78.4% -36.4% -32.3% -46.0% -61.4% 

FIO-ESM 69.5% 56.6% 84.4% 166.2% -19.9% -30.4% -38.6% -58.6% 

GFDL-CM3 76.5% 118.4% 98.4% 177.6% -38.7% -54.0% -55.4% -77.4% 

GFDL-ESM2G 55.0% 55.9% 62.5% 131.4% -18.0% -23.3% -34.1% -63.2% 
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GFDL-ESM2M 62.5% 73.1% 63.4% 135.5% -21.6% -27.2% -31.8% -64.0% 

GISS-E2-R 31.5% 39.2% 44.8% 89.6% -30.7% -38.1% -43.0% -66.0% 

IPSL-CM5A-LR 53.4% 79.9% 77.9% 149.8% -50.3% -56.0% -61.5% -83.1% 

IPSL-CM5A-MR 51.2% 93.6% 73.1% 156.9% -43.7% -61.2% -64.1% -86.1% 

IPSL-CM5B-LR 39.7% 76.3% 67.0% 131.6% -25.8% -33.9% -52.1% -72.6% 

MIROC-ESM-CHEM 82.5% 110.9% 114.5% 212.6% -42.1% -53.9% -54.7% -79.7% 

MIROC-ESM 80.3% 101.8% 100.2% 200.6% -30.1% -42.5% -47.3% -75.4% 

MIROC5 51.4% 54.5% 49.7% 87.1% -20.7% -40.3% -38.3% -58.3% 

MPI-ESM-LR 68.7% 83.7% 88.3% 171.2% -42.2% -43.8% -50.7% -76.4% 

MPI-ESM-MR 56.4% 59.1% 63.8% 151.1% -34.8% -45.3% -49.5% -76.9% 

MRI-CGCM3 45.1% 74.3% 77.9% 134.0% -28.8% -39.2% -37.2% -67.3% 

NorESM1-M 32.6% 42.4% 52.6% 112.5% -23.1% -21.3% -45.0% -56.2% 

µ (Mean) 51.7% 71.5% 73.5% 140.4% -31.0% -40.8% -45.8% -69.5% 

σ (SD) 16.8% 24.5% 19.0% 37.1% 9.5% 11.0% 9.2% 9.7% 

Cells with bold & italics indicate three highest percentage increases in the summer and winter season under RCP 8.5 in 2080s 

Cells with underline and italics indicate three lowest percentage increases in the summer and season under RCP 8.5 in 2080s 

 

The percentage changes in the mortality estimates by model are provided in Table S.12. For the summer season, the highest percentage changes 

in estimates are observed for models CMCC-CM, MIROC-ESM-CHEM and MIROC-ESM under RCP 8.5 scenario in the 2080s. 

Correspondingly the models that show the least percentage changes for summer season are FGOALS-g2, GISS-E2-R and MIROC5.  

 

For the winter season, the highest percentage declines are shown by models IPSL-CM5A-LR, IPSL-CM5A-MR and CMCC-CM under the RCP 

8.5 scenario in 2080s. The models that show the least percentage decline in mortality estimates for the winter season are NorESM1-M, MIROC5 

and CNRM-CM5. 
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