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Abstract

It is a well known fact that race and ethnicity specific variations exist in the treatment

and survival of cancer patients. Studies based on breast cancer patients admitted to

community hospitals in U.S depicted that there is significant difference in patterns

of care between black and white breast cancer patients with blacks receiving lower

quality and quantity of care. In this study, we look at this problem from a different

perspective, treating the hospitals as small areas, and employing Bayesian techniques

for parameter estimation. Two separate models are constructed to estimate the odds

ratio of receiving liver scan (a pattern of care) for blacks and whites. The first model

uses hospital-specific information while the second one uses pooled hospital data by

borrowing strength from neighbouring hospitals. We have used the non-central hyper-

geometric distribution as the basis for constructing the likelihood while estimation has

been carried out using the griddy Metropolis-Hastings sampler. We apply our method-

ology on a National Cancer Institute (NCI) database. Although our results corroborate

some of the observations from previous studies, it proposes a computationally attractive

alternative to the established procedures in formulating and analyzing this problem.
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1 Introduction

It is a well documented fact that survival rates of women with breast cancer in the U.S is

lower in blacks than whites. An obvious question that comes up in this context is whether

this difference can be attributed, at least partly, to differences in treatment and diagnostic

methods. In fact, some studies have indicated that, in general, blacks face more barriers to

access and lower quality (and quantity) of treatment and care compared to whites (Flaherty

et al., 1980; Yergan et al., 1987; Diehr at al., 1989). This discrimination has also been

reflected in some studies specific to breast cancer. In one such study (Axtell and Myers,

1978), it was observed that twice as many blacks as whites had no treatment for their breast

cancer between 1960 and 1966 while the five-year survival rates of whites were significantly

higher than blacks (65% vs. 51%) across all stages of the disease between 1967-73. Another

study (McWhorter and Mayer, 1987) reported that blacks were more likely to have their

breast cancer go untreated (or treated surgically) compared to whites. These results were

unchanged after adjustment for age, stage and histology. The five year survival rate was

also found to be associated with treatment type (and favoured whites) after controlling for

age, stage of disease and histology. Based on data collected by the National Cancer Institute

Surveillance, Epidemiology and End Results [NCISEER], it was concluded that blacks had

lower relative survival rates than all other racial groups except American Indians (Young et

al., 1984).

One of the studies mentioned above (Diehr at al., 1989) used a dataset based on a

National Cancer Institute funded program to explore whether there are significant differences

in patterns of care for black and white breast cancer patients. The program generated data

on 7,781 breast cancer patients treated at 107 community hospitals in the US between

1982 and 1985. This study explored whether these differences can be attributed to age,

stage of disease, insurance, hospital type and physician characteristics. It was observed

that, after controlling for age and stage of disease, black patients received significantly less

appropriate care than whites in four out of the ten patterns of care originally considered

(progesterone receptor assay, rehabilitation services, liver scan and radiation therapy). The

race differences for the last three patterns remained significant even after controlling for

hospital, insurance and physician variables. Last but not the least, race and care pattern

were significantly related to insurance, physician and hospital characteristics in most of

the cases; nevertheless, race difference remained significant even after controlling for these

factors. This work employed classical statistical approaches, based on logistic regression,

to arrive at the above conclusions. However, the sample sizes in the hospitals were quite

restrictive (considering that only 19 of the 107 hospitals had a significant number of black
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patients).

Recent articles have also corroborated race and ethnicity-specific variations in treatment

and survival of cancer patients. A review article (Shavers and Brown, 2002) looked at 87

studies carried out between 1990 and 2001 concerning racial/ethnic variation in treatment

given to breast, cervical, colorectal, prostate and lung cancer patients. The overall observa-

tions were : (i) African-Americans have a 33% higher risk of dying (from cancer) compared

to whites while this value is 100% (two times) when compared to Asian/Pacific islanders,

American Indians and Hispanics; (ii) 5-year survival rates for African-Americans are lower

than those for whites for all of the major cancer types; (iii) racial disparities exist in the

receipt of definitive primary therapy, conservative therapy and adjuvant therapy; (iv) al-

though mortality rates have been decreasing among both African-Americans and whites,

the decrease generally have been smaller and less consistent among the former while racial

disparities have persisted; (v) African-American women with stage I or II breast cancer have

shorter overall survival than white women controlling for treatment and chemotherapy rates;

(vii) elderly African-American women generally are two times more likely than whites not to

receive radiation therapy after breast-conserving surgery; (viii) African-American women are

significantly less likely (than whites) to have a mammogram after diagnosis and treatment of

breast cancer and finally (ix) controlling for tumour size and comorbidity, African American

women were significantly less likely than whites to receive breast conserving surgery and

radiation therapy.

A study (Shavers et al., 2002) based on the SEER (Surveillance, Epidemiology and End

Results) program data for 1990-1998 too found racial and ethnic variation in treatment and

survival of breast cancer patients under age 35. Specifically for this age group, the cancer

incidence rate for African-American women was more than twice that for white women of

similar age while the mortality rate was more than three times higher. Also African-American

and Hispanic women had poorer overall survival after controlling for clinical and demographic

characteristics and treatment type. Finally, an article (Smigal et al., 2006) by researchers at

the American Cancer Society concluded that breast cancer incidence rates increased rapidly

among women of all races from 1980-1987 but increased at a much slower pace between

1987-2002. It was also observed that trends in incidence vary by age, race, socioeconomic

status and stage and lastly that death rates for African-American women remain 37% higher

than in whites. Their findings were based on incidence data from 1975-2002.

In this paper, we have viewed the above problem from an altogether different perspective

by treating the hospitals as small areas. Small area estimation techniques have been widely

used for estimating various features of small domains - domains for which the sample size is

prohibitively small to yield direct survey-based estimates of adequate precision (Ghosh and
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Rao, 1994; Rao, 2003). Thus, classical statistical procedures, when applied in this context,

may yield erroneous conclusions and thus can fail altogether. Small domains can be specific

regions like a state, county or school district (hospitals in our case) or can even be identified

by particular socio-demographic characteristics like specific racial or ethnic groups. These

estimates play an increasingly vital role in government policy making, administration of fed-

eral programs and allocation of federal funds to local jurisdictions. For example, state level

estimates of median income for four-person families are needed by the U.S Department of

Health and Human Services (HHS) in order to formulate its energy assistance program to

low income families. Due to smallness of the sample sizes, a popular approach in this esti-

mation procedure is to “borrow strength” from neighbouring areas to improve the accuracy

of estimates for a given area. This entails the need to develop and incorporate alternative

estimation procedures, one of them being the hierarchical Bayesian methodology.

In the present study, we have viewed hospitals as small domains. Patients in a given

hospital are considered a sub-population of all hospital patients. For the purpose of our

study, we have considered 1,856 patients from 19 of the 107 hospitals with the highest

percentage (more than 10%) of black patients. We have used Bayesian methodology to

infer about the population of interest, which, in our case, are the breast cancer patients

categorized by race (blacks vs. whites) who received a liver scan (a pattern of care; Sec 2 has

details). Specifically, we estimate the odds ratio of receiving liver scan for the two groups of

patients in a hierarchical Bayesian framework with the goal of identifying a valid method of

obtaining parameter estimates from small areas in a context like ours. For reasons that will

be detailed later, we believe that our proposed approach is computationally advantageous

compared to some of the existing ones.

The rest of the paper is organized as follows. In Section 2, we describe the breast cancer

dataset that motivated our study. Section 3 gives an overview of some classical statistical

procedures that forms the foundation of the proposed Bayesian approach. Section 4 details

the hierarchical Bayesian procedure that we have used to analyze this data. Section 5 outlines

the analysis of the breast cancer data using the proposed methodology including details on

MCMC computation. We end with a discussion in Section 6.

2 Data description

The dataset used in this article is based on a study (Diehr et al., 1989) to assess the rela-

tionship between race and patterns of care for 7,781 breast cancer patients treated at 107

community hospitals in the US between 1982 and 1985. This study was initiated and funded

by the National Cancer Institute (NCI) through the Community Clinical Oncology Program
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(CCOP) in 1983 with a view to increase community physicians participation in national

clinical trials. To assess the effectiveness of the above program, the NCI also funded the

Community Cancer Care Evaluation (CCCE) project (Young at al., 1984).

A patterns-of-care study was conducted as part of this project to observe changes in

patient care. Based on expert recommendation, a set of ten (10) patterns of care for breast

cancer was defined which were intended to be sensitive to the effect of an increase in physician

participation in the trials. These were further categorized as “more appropriate” or “less

appropriate” according to whether a pattern was expected to occur more (less) frequently

over time given an increased physician participation. An example of a pattern is that the

clinical size of the tumour should be recorded; this is a “more appropriate” pattern since it

was expected to increase over time under the influence of protocol participation. Treatment

information during the first four months after diagnosis was obtained from a systematic

sample of inpatient and outpatient records of female breast cancer patients. The final data

set comprised patients admitted on October 1, 1982 onwards till September 30, 1985. This

information was used to determine the pattern of care followed for each patient.

In this study, we have only dealt with 1,856 patients from 19 of the 107 hospitals with the

highest percentage (more than 10%) of black patients. As per pattern of care is concerned,

we have only concentrated on liver scan which is a specialized radiological procedure used

to examine the liver to identify certain conditions or to assess its function. It is basically

a nuclear radiological procedure that uses a radiological substance called a radionuclide,

which, when absorbed by a liver tissue, emits gamma radiation. The radiation is detected

by a scanner which transforms it into an image of the liver. Physicians can measure the

behaviour of the radionuclide in the body during a scan and assess and diagnose various

conditions such as tumors, abscesses, hematomas, organ enlargement or cysts. Liver scan is

a “less appropriate” procedure since “Liver scans and CT scans are not routinely required

for a patient with local or regional disease because the likelihood of finding an abnormality

is low in the absence of abnormal liver chemistries or hepatomegaly” (Diehr et al., 1989, pg

951, lines 11-15).

We are well aware of the fact that the dataset is old. However, as mentioned in Section

1, the main thrust of the paper is to propose an alternative estimation procedure for the

odds ratios based on a Bayesian paradigm that will be computationally more efficient and

advantageous than the existing ones.
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3 Review of classical statistical approaches

The liver scan data is a classic example of a two-sample problem where each sample is

binomial with a given number of successes and failures. Clearly, the samples consist of black

and white patients admitted to a particular hospital while success (failure) signifies receiving

(not receiving) a liver scan. Thus, the number of successes and failures vary across hospitals.

Hence, this data can be conveniently represented in a 2 × 2 contingency table. For example,

Table 1 depicts the data for hospital 1.

Table 1: 2 × 2 contingency table for hospital 1

Hospital 1 Liver scan No liver scan Total

Black patients 4 9 13

White patients 12 34 46

Total 16 43 59

Analysing 2 × 2 tables boils down to testing for the association between two categorical

variables, in this case, race and treatment, each having two categories. Thus, we would like

to see whether the race of an individual has a significant effect on the chances of his/her

receiving a liver scan. This is synonymous to testing for the equality of two proportions i.e

the proportion of blacks (pb) and whites (pw) receiving a liver scan. Thus, we can test the

hypotheses,

H0 ∶ pb = pw vs Ha ∶ pb > pw, (1)

with the alternative stating that the population proportion of blacks receiving a liver scan

is higher than that of whites. The above hypotheses can be alternatively stated in terms of

odds ratios as

H0 ∶ Γ = 1 vs Ha ∶ Γ > 1, (2)

where Γ = pb
1 − pb

/ pw
1 − pw

, the numerator (denominator) respectively being the odds of a black

(white) patient receiving liver scan.

Probably, the most well known procedure for performing the above test is the celebrated

Pearson chi-square test which is based on comparing the observed and expected counts of

the contingency table. However, this test is governed by some strict conditions with regard

to the sample size in each cell (specifically, expected sample size in each cell should be no

less than 5). However, this condition is often violated as in the case of the above breast
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cancer data (expected frequency for cell (1, 1) in Table 1 is 3.53). In situations like this, an

analogous test is the Fisher’s exact test.

Fisher’s exact test of independence conditions on both margins (not naturally fixed) of

a 2× 2 table leading to a hypergeometric distribution under independence. The “exactness”

of the Fisher’s test is attributable to the fact that the probabilities of the hypergeometric

distribution can be calculated exactly under the hypotheses of independence. However, due

to the discreteness of the hypergeometric distribution, it is not possible to obtain a specific

significance level (say .05); as a result, both Fisher’s exact test and Pearson chi-squared tests

are conservative, i.e. their actual significance level falls short of the nominal level. Fisher’s

exact test has also been criticized due to the fact that its marginal totals are informative,

which results in smaller variability and hence, smaller p-values (Berkson, 1978). In this

article too, we will use the hypergeometric distribution as a basis of our proposed framework

(see Sec 4).

Recently, some research has been carried out towards obtaining exact tests of indepen-

dence for sparse tables (ie. expected counts less than 5). In one such work (Nandram et al.,

2015), a likelihood ratio test of quasi-independence is proposed for sparse two-way contin-

gency tables in which many cells have observed zero counts. It uses a truncated multinomial

distribution to model the positive counts and Monte Carlo methods to derive the parameter

estimates.

Although there have been some classic works on the Bayesian analysis of contingency

tables (Lindley, 1964; Altham, 1969), not much attention has been given to the analysis of

2×2 tables, specially for small domains. However, one study (Hashemi et al., 1997) analyzed

this problem in a Bayesian paradigm and obtained highest posterior density intervals (both

exact and approximate) for three commonly used measures viz. relative risk, odds ratio

and attributable risk. Bayes factors were also obtained to test whether the two binomial

proportions are similar or not. The methodology was applied to the Worcester Heart Attack

Study to test for gender differences in the therapeutic management of patients with acute

myocardial infarction by demographic and clinical characteristics.

A situation may as well arise where the above test needs to be carried out for a series of

2×2 contingency tables - in fact, this was one of the limitations of the above study (Hashemi

et al., 1997). For example, in our case, it may be of interest to test the hypotheses in (2) for

each of the 19 hospitals in question. Clearly this would entail an extension of the Fisher’s

exact test. One such test for analyzing sets of 2×2 contingency tables is the Mantel-Haenszel

test (Mantel and Haenszel, 1959). In order to implement this test, we first need to construct

a 2× 2 table out of each of the 19 hospitals in question. Each of those tables would allow us

to compare the proportions of black and white patients receiving a liver scan in a particular
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hospital. Table 2 depicts the 2 × 2 table for the ith hospital

Table 2: 2 × 2 table for hospital i

Successes Failures Total

Black patients xi n1i − xi n1i

White patients mi − xi n2i −mi + xi n2i

Total mi Ni −mi Ni

Here mi is the total number of patients (blacks and whites combined) receiving a liver

scan in hospital i, n1i and n2i are respectively the number of blacks and whites admitted

to hospital i, while Ni = n1i + n2i is the total number of patients admitted to hospital i,

(i = 1, ...,19). Let p
(i)
b (p(i)w ) be the probability that a black (white) patient in hospital i

receives a liver scan. The Mantel-Haenszel procedure tests the null hypotheses that within

each hospital, the probabilities of receiving a liver scan are the same for black and white

patients against the alternative that in at least one hospital, a black patient is more likely

to receive a liver scan i.e,

H0 ∶ p
(i)
b = p(i)w i = 1, ...,19 vs Ha ∶ p(i)b > p(i)w for at least one i, i = 1, ...,19. (3)

Alternatively, the above hypotheses can be written in terms of the odds ratios (for hospital

i) as follows

H0 ∶ Γi = 1 i = 1, ...,19 vs Ha ∶ Γi > 1 for at least one i, i = 1, ...,19, (4)

where Γi =
p
(i)
b

1 − p(i)b
/ p

(i)
w

1 − p(i)w
is the odds ratio for hospital i.

In the present article, we propose an altogether different approach for estimating Γi,

based on a Bayesian framework. We hope that the proposed framework will be easier to

implement and computationally advantageous than the classical approaches detailed above

(which often suffer from intractable analytical forms of the test statistics, thus leading to

a cumbersome estimation process). The proposed methodology is based on the non-central

hypergeometric distribution. One of the important applications of this distribution has been

to model and analyze counts in a general two-way contingency table in the presence of

covert biases (Rosenbaum, 2002). This is an important problem, specially when the odds

ratio is not the parameter of interest. In the next section, we will discuss the non-central

hypergeometric distribution.
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4 Proposed methodology

4.1 Noncentral hypergeometric distribution

The noncentral hypergeometric distribution arises quite naturally out of a 2× 2 contingency

table setup and hence we use it as a basis of our proposed Bayesian framework. Let n1

and n2 be the number of subjects in the two groups to be compared while the corresponding

counts of successes be Y1 and Y2 respectively. We assume that Yi ∼ Bin(ni, pi) be independent

binomial random variables with success probabilities pi, i = 1,2. Assuming Y1 + Y2 = m, Y1

can be shown to have a noncentral hypergeometric distribution given by

P (Y1 = x∣Y1 + Y2 =m) =
(n1

x
)( n2

m − x)Γx

∑
x∈I

(n1

x
)( n2

m − x)Γx
, x ∈ I, (5)

where I ∶ {x ∶ max(0,m − n2) ≤ x ≤ min(n1,m)}.

In the context of our data set, let Y1i(Y2i) be the number of black (white) patients who

received a liver scan at the ith hospital (i = 1,2, ...,19). Thus we have

P (Y1i = xi∣Y1i + Y2i =mi) =
(n1i

xi
)( n2i

mi − xi
)Γxii

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)Γxii

, xi ∈ Ii, (6)

where Ii ∶ {xi ∶ max(0,mi − n2i) ≤ xi ≤ min(n1i,mi)} and Γi is the odds ratio for the ith

hospital given by
p1i

1 − p1i

/ p2i

1 − p2i

.

As mentioned before, inferences regarding the difference between the two groups with

respect to treatment outcomes (for the ith hospital) are based on the odds ratios Γi. If

the credible interval of the odds ratios contain 1, that would imply no significant difference

in the likelihood of receiving liver scans between black and white patients. On the other

hand, if the credible interval contain values greater than 1, that would imply a significantly

higher chance of a black patient receiving liver scans compared to whites. The present study

is concerned with the estimation of Γi given data from the local hospitals. We will also

propose a general framework for drawing inferences on Γi using the combined (or pooled)

hospital data by borrowing strength across hospitals.
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4.2 Prior construction

Here the parameter of interest is Γ, the ratio of the odds of blacks and whites receiving a

liver scan. Thus, the posterior of Γ would be

p(Γ∣x)∝ p(x∣Γ)p(Γ), (7)

where p(x∣Γ) is given in (5). Thus, in order to implement our proposed methodology, we

need to figure out an appropriate prior density of Γ.

Let p1(p2) be the population probability of receiving liver scans for black (white) patients

respectively. We assume (p1, p2) to be independent with pi ∼ U(0,1), i = 1,2. Let y1 =
p1/(1 − p1) and y2 = p2/(1 − p2); then the probability density function of yi can be shown to

be

f(yi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1

(1 + yi)2
if 0 < yi <∞

0 if yi = 0, i = 1,2.

This leads to the cumulative distribution function (cdf) of Γ( p1

1 − p1

/ p2

1 − p2

) to be

FΓ(v) = ∫
∞

0

1

(1 + y2)2

vy2

(1 + vy2)
dy2, (8)

while the probability density function (pdf) of Γ will be

fΓ(v) = ∫
∞

0

1

(1 + y2)2

y2

(1 + vy2)2
dy2. (9)

By transforming y2 to a bounded variable, say φ, where y2 =
φ

1 + φ , (9) can be rewritten as

fΓ(v) = E [ φ(1 − φ)
(1 − φ + vφ)2

] , (10)

where expectation is taken over φ ∼ U(0,1) and E(φ) = 0.5. Now, using a first order Taylor

expansion, we can approximate fΓ(v) as

fΓ(v) ≈ E(φ)E(1 − φ)
(1 −E(φ) + vE(φ))2

,

= 1

(1 + v)2
, v ≥ 0. (11)

Based on the above derivations, we think that fΓ(v) above will be a reasonable candidate

for the prior density of Γ.
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In order to support the above choice of prior, we numerically compared the Riemann

sum of (9) to fΓ(v). The numerical difference between the two was negligible. This was also

reflected in the plot of the two quantities which was virtually a straight line with slope 1, as

shown in Figure 1. Monte Carlo methods were also used to check our results which were in

accordance with the Reimann summation.
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Figure 1: Comparison of Riemann sum of exact and approximated prior densities

5 Data analysis

5.1 Hospital specific estimation

As mentioned in Section 1, our principle target of inference are the odds ratios, Γi’s (mea-

suring the relative likelihood of black and white patients receiving liver scans) for each of the

19 hospitals and of all the hospitals taken together. Towards that purpose, we first explain

the hospital specific estimation procedure. Here the goal is to generate samples from the

posterior distribution of the Γi’s and make inferences about the same. The procedure is

explained next.
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5.1.1 The grid method

As discussed in Section 4.1, the likelihood function of Γi (i = 1, ...,19) has the following form

f(xi∣Γi) =
(n1i

xi
)( n2i

mi − xi
)Γxii

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)Γxii

, xi ∈ Ii. (12)

Combining this with the prior distribution of Γi in (11), we have the following posterior

distribution of Γi

f(Γi∣xi) =
(n1i

xi
)( n2i

mi − xi
)Γxii

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)Γxii

1

(1 + Γi)2
, Γi > 0. (13)

For computational convenience, we transform Γ as θ = Γ/(1 + Γ) such that θ ∈ (0,1). This

results in the following transformed posterior

f(θi∣xi) =
(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi , θi ∈ (0,1).

Since θ is computationally stabler than Γ (being bounded in (0, 1)), hereafter we will use θ

for computational purposes. (Like the odds ratio Γ, θ has a straightforward interpretation;

for example, θ = 0.5 would imply independence of the two variables).

Since our new parameter of interest θ is bounded in (0, 1), we will take advantage of

the grid method to draw a sample of fixed size (say 10,000) from its posterior distribution.

Towards that purpose, we first partition the interval (0, 1) into 100 segments. Let rk be

the mid-point of the kth segment and F (rk∣x) be the cumulative probability distribution

of rk. Now we draw a sequence of 10,000 numbers from a uniform distribution, uk being

the kth number. Then we compare each uk with the cumulative probability F (rk∣x); if

uk ≤ F (rk∣x) < uk+1, we select rk+1. Since the cdf of a random variable follows a uniform

distribution in (0, 1), the sequence of grids rk generated as above can be assumed to be

samples from the posterior distribution f(θ∣x).
Table 3 shows the mean, standard deviation and 95% credible intervals of θ while Figure 2

depict the histograms and the corresponding kernel density estimates of θ for the 19 hospitals.

In both the above illustrations, the last row (plot) depicts the respective summaries (density

estimates) corresponding to the combined hospital data.

In Table 3, the credible intervals of θ for hospitals 8, 18 and 19 contain values exceeding

0.5. Thus the odds ratios (of receiving a liver scan) at these hospitals are significantly greater
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Figure 2: Kernel density plots of θ obtained through hospital-specific estimation procedure

(last plot for combined hospital data)
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Table 3: Hospital specific and pooled posterior summaries of θ obtained

through the grid method

Hospital Posterior mean Standard deviation 95% Credible interval

1 0.573 0.136 (0.295, 0.815)

2 0.463 0.139 (0.195, 0.735)

3 0.746 0.135 (0.435, 0.945)

4 0.532 0.137 (0.215, 0.785)

5 0.732 0.104 (0.495, 0.895)

6 0.620 0.126 (0.355, 0.835)

7 0.758 0.123 (0.465, 0.935)

8 0.825 0.119 (0.525, 0.975)

9 0.652 0.146 (0.345, 0.905)

10 0.677 0.127 (0.395, 0.885)

11 0.480 0.170 (0.145, 0.785)

12 0.739 0.116 (0.465, 0.915)

13 0.673 0.093 (0.475, 0.835)

14 0.499 0.148 (0.215, 0.785)

15 0.426 0.131 (0.195, 0.705)

16 0.678 0.165 (0.315, 0.925)

17 0.757 0.139 (0.445, 0.965)

18 0.863 0.058 (0.725, 0.945)

19 0.736 0.074 (0.575, 0.865)

Overall 0.629 0.032 (0.565, 0.685)

than 1 implying that black patients have a significantly higher odds of receiving a liver scan

at any of these hospitals compared to whites. The credible interval for the combined hospital

data also exceeds 0.5 indicating the validity of the above conclusion (higher odds of liver

scan for blacks) for all the 19 hospitals taken together. The same hospital data was used in

another study (Hollander and Wolfe, 1999) to perform a Mantel-Haenszel test. The resulting

p-value was very small (less than 0.0002) indicating that the common odds ratio (for all the

hospitals combined) is significantly greater than 1 i.e a similar conclusion as above.
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5.1.2 Validation of the grid method

It would be of interest to test the validity of the above approach (of generating θ) with a

frequentist one; we do so by comparing the coverage probabilities of the intervals obtained

above with that obtained using a frequentist method i.e. for each hospital, we generate a

large number of 95% credible intervals and look at the proportion of those containing the

true θ.

However, before generating the credible intervals, we need to generate contingency tables

as well. The mechanism of generating a contingency table for a given θ is similar to the way

we generated θ in Sec 5.1.1. As shown in Sec 4.1, for the ith hospital, the observed number

of success for group 1 (i.e. xi) lies in the range Ii ∶ {xi ∶ max(0,mi−n2i) ≤ xi ≤ min(n1i,mi)}.

For each xi lying in the above range, we calculated the cumulative probability recursively

using (12). Thus, for the (i + 1)th iteration, we have

f(xi+1∣Γi) =
( n1i

xi+1

)( n2i

mi − xi+1

)Γxi+1i

∑
xi+1∈Ii

( n1i

xi+1

)( n2i

mi − xi+1

)Γxi+1i

.

Taking the ratio of f(xi+1) to f(xi), we have

f(xi+1∣Γ)
f(xi∣Γ) = n1i − i

i + 1

mi − i
n2i −mi + i + 1

Γ.

where Γ = θ/1 − θ. After calculating the cumulative probability for each xi, we drew 1000

random numbers ui, i = 1,2, ...,1000 from U ∼ (0,1). Now using the inverse CDF sampling

technique, we generated 1000 new contingency tables for each hospital. From each of the new

tables thus generated, we generated 10,000 values of θ and calculated the corresponding 95%

credible intervals. We reproduced each interval 1000 times and calculated the proportion of

those intervals which contain the true value of θ. The hospital-specific coverage proportions

are displayed in Table 4 below.

Table 4: Hospital specific coverage probabilities of frequentist intervals

Hospital 1 2 3 4 5 6 7 8 9 10

Coverage 96.0% 78.3% 97.1% 100% 96.2% 98.3% 96.0% 97.5% 99.2% 98.7%

Hospital 11 12 13 14 15 16 17 18 19 Overall

Coverage 96.7% 98.0% 97.1% 94.7% 95.6% 99.4% 98.9% 95.9% 95.9% 96.2%

We notice that for 17 of the 19 hospitals, as well as the combined hospital data, the

proportions (of credible intervals containing the true θ) are greater than 95%. For hospital
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2, this percentage was unacceptably low at 78.3% while for hospital 14 it is 94.7% which can

be approximated to 95%. Thus, except for hospitals 2 and 14, all other credible intervals are

too conservative. This indicates that there is a need of a different approach for estimating θ

- we achieve this using the pooled hospital data, as explained in the next section.

5.2 Pooled estimation

In the hospital specific estimation procedure, the credible intervals of θ were found to be

quite conservative (as per their coverage probabilities). In this section, we carry out a similar

Bayesian approach by pooling data across all the hospitals. Our aim in doing so is to improve

the estimates for a particular hospital by borrowing strength across other hospitals. Along

that line, the modified likelihood function of θ is given by

f(xi∣θi) =
(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi , i = 1,2, ...,19 θi ∈ (0,1), (14)

where Ii ∶ {xi ∶ max(0,mi − n2i) ≤ xi ≤ min(n1i,mi)}. We assume the following prior for θ

f(θi∣µ, τ) = Beta(µτ, (1 − µ)τ), 0 < µ < 1,

and for (µ, τ), we assume the following density

f(µ, τ) = 1

(1 + τ)2
, τ > 0.

Thus, the joint density of θ(= θ1, ..., θ19), µ, τ given x(= x1, ..., x19) is given by

f(θ, µ, τ ∣x) ∝ f(µ, τ)
19

∏
i=1

{f(xi∣θi)f(θi∣µ, τ)},

= 1

(1 + τ)2

19

∏
i=1

⎧⎪⎪⎨⎪⎪⎩

(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi

θµτ−1
i (1 − θi)(1−µ)τ−1

B(µτ, (1 − µ)τ)

⎫⎪⎪⎬⎪⎪⎭
.

Thus the full conditional distribution of θi will be as follows

f(θi∣µ, τ, xi)∝
(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi

∑
xi∈Ii

(n1i

xi
)( n2i

mi − xi
)( θi

1 − θi
)
xi θ

µτ−1
i (1 − θi)(1−µ)τ−1, i = 1,2, ...,19, (15)
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where given (µ, τ, xi), θi’s are assumed to be independent for i = 1,2, ...,19.

The full conditionals of µ and τ will be as follows

f(µ∣τ,θ,x) ∝
19

∏
i=1

θµτ−1
i (1 − θi)(1−µ)τ−1

B(µτ, (1 − µ)τ) , 0 < µ < 1, (16)

f(τ ∣µ,θ,x) ∝ 1

(1 + τ)2

19

∏
i=1

θµτ−1
i (1 − θi)(1−µ)τ−1

B(µτ, (1 − µ)τ) , τ > 0. (17)

For computational convenience and stability, we transform τ to [0, 1] as φ = τ/1+ τ resulting

in the modified conditional

f(φ∣µ,θ,x) ∝
19

∏
i=1

θ
µφ/(1−φ)−1
i (1 − θi)(1−µ)φ/(1−φ)−1

B(µφ/(1 − φ), (1 − µ)φ/(1 − φ)) ,0 < φ < 1. (18)

5.2.1 Posterior sampling

Since the conditional density of θ given in (15) has a complicated form, it is not computa-

tionally efficient to generate samples from it using the grid method. This prompted us to

experiment with the Metropolis-Hastings (M-H) algorithm.

For the purpose of M-H algorithm, the target densities are the 19 conditional distributions

of θi given θj(i ≠ j), µ and τ while the corresponding proposal densities are the approximated

posterior distributions of θi’s given by

f(θi∣µ, τ,xi) = Beta(µ0τ0, (1 − µ0)τ0)θµτ−1
i (1 − θi)(1−µ)τ−1,

= θµ0τ0−1
i (1 − θ0)(1−µ0)τ0−1

B(µ0τ0, (1 − µ0)τ0)
θµτ−1
i (1 − θi)(1−µ)τ−1,

= Beta(µ0τ0 + µτ − 1, (1 − µ0)τ0 + (1 − µ)τ − 1), i = 1, ...,19. (19)

The griddy M-H sampler iteratively uses the full set of univariate conditionals which even-

tually converge to the true posterior distribution. At each iteration, posterior samples of

θi(i = 1, ...,19) are drawn. In fact, the grid method embedded within this procedure enabled

us to draw samples of µ and τ more efficiently. For the purpose of implementing the griddy

M-H sampler, we used the univariate conditionals as given in (15)-(17), while rewriting (16)

and (17) as

f(µ∣τ,θ,x) =
⎡⎢⎢⎢⎢⎣

Gµτ−1
1 G

(1−µ)τ−1
2

B(µτ, (1 − µ)τ)

⎤⎥⎥⎥⎥⎦

19

,0 < µ < 1,

f(τ ∣µ,θ,x) = 1

(1 + τ)2

⎡⎢⎢⎢⎢⎣

Gµτ−1
1 G

(1−µ)τ−1
2

B(µτ, (1 − µ)τ)

⎤⎥⎥⎥⎥⎦

19

, τ > 0,

where G1 and G2 are respectively the geometric means of θi and (1 − θi) respectively (i =
1, ...,19).
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Table 5: Posterior summaries of θ obtained through pooled data estima-

tion

Hospital Posterior mean Standard deviation 95% Credible interval

1 0.557 0.099 (0.360, 0.741)

2 0.500 0.099 (0.305, 0.688)

3 0.633 0.098 (0.422, 0.808)

4 0.536 0.098 (0.345, 0.723)

5 0.657 0.083 (0.482, 0.805)

6 0.582 0.095 (0.391, 0.755)

7 0.566 0.100 (0.366, 0.756)

8 0.654 0.102 (0.443, 0.835)

9 0.587 0.101 (0.380, 0.773)

10 0.610 0.097 (0.410, 0.789)

11 0.520 0.110 (0.303, 0.722)

12 0.643 0.097 (0.439, 0.814)

13 0.631 0.077 (0.478, 0.773)

14 0.522 0.101 (0.324, 0.717)

15 0.519 0.102 (0.317, 0.714)

16 0.647 0.090 (0.460, 0.809)

17 0.641 0.091 (0.454, 0.810)

18 0.776 0.057 (0.655, 0.876)

19 0.686 0.065 (0.553, 0.805)

Overall 0.662 0.031 (0.602, 0.726)

5.2.2 Analytical results

Table 5 shows the estimates and credible intervals of θ for each hospital and across all hos-

pitals obtained from the above mentioned pooled data estimation technique. The posterior

mean of θ is greater than 0.5 for all but hospital 2, for which it is exactly 0.5. Moreover, the

95% credible intervals of θ were significant (i.e contains values exceeding 0.5) for hospitals

18, 19 and for the combined data. Since a value of 0.5 for θ implies a value of 1 for the

odds ratio Γ = 1 (i.e. independence), we conclude that overall the odds of a black patient

receiving liver scan is significantly higher than whites.

Two important things to notice while running an M-H algorithm are the acceptance rate
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Table 6: Acceptance rates (AR) for M-H algorithm for pooled data estimation

Hospital 1 2 3 4 5 6 7 8 9 10

AR 0.836 0.789 0.835 0.841 0.361 0.863 0.575 0.660 0.835 0.796

Hospital 11 12 13 14 15 16 17 18 19

AR 0.766 0.437 0.449 0.820 0.803 0.810 0.837 0.058 0.457

and auto-correlation of the simulated data. As a rule of thumb, the acceptance rates should

lie within 0.5 and 0.75. Table 6 depicts the hospital-specific acceptance rates those were

obtained from the pooled data estimation technique. Figure 3 depicts the autocorrelation

plots of the sampled values of θ obtained using 20 lags. Based on this, it is evident that

independence has been achieved. The trace plots of θ’s (not shown here) also corroborate

convergence of the sampled θ’s.

5.3 Comparison of hospital-specific and pooled data

In order to compare the hospital specific and pooled data estimation methods, we examined

the 95% credible intervals of the odds ratio Γ for each of the 19 hospitals generated by each of

these procedures. Table 7 has the details. It is quite obvious from the results that the pooled

method leads to narrower intervals for Γ. For example, the pooled intervals corresponding to

hospitals 8 and 17 are respectively (0.8087, 5.3778) and (0.7462, 4.4577) while the same for

the hospital specific procedure are much wider ([1.1053, 39] and [0.77, 27.5714]) respectively.

A similar trend was noticed for the other hospitals too.

An obvious reason for the shortening of the credible intervals based on the pooled method

is the lessening of the values of standard deviations corresponding to this method. Table

8 displays the percent difference of the standard deviations between the hospital specific

and pooled methods. Clearly, the pooled method resulted in smaller standard deviations

of the means (of Γ) and thus lesser variability compared to the hospital-specific estimation

procedure. This supports the notion that the pooled estimation procedure is more precise

(hence reliable) than the hospital-specific one.

For both methods however, the posterior means of Γ for all but hospital 15 are greater

than 1, indicating that some of the odds ratios may in fact be greater than 1. Based on

the intervals from the hospital-specific estimation procedure, hospitals 5, 8, 18, 19 and the

combined (1-19) data had odds ratios significantly greater than one. On the other hand,

the pooled data estimation method yielded only 3 intervals (for hospitals 18, 19 and the

combined data) for which the odds ratios were significantly greater than one. Since the
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Figure 3: Autocorrelation plots of θ obtained through pooled data estimation procedure

(last plot is for combined hospital data)

pooled estimation method seems to have lesser variability (hence higher reliability), it is

likely that only hospitals 18 and 19 were significantly more likely to give liver scans to

blacks than to whites. More importantly however, since the combined data (hospitals 1-19

inclusive) resulted in odds ratios significantly greater than 1, we can conclude that overall

black patients had higher odds of receiving liver scans than whites. Finally Figure 4 is a

pictorial representation of a comparison of estimates of Γ obtained by the two methods.
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Table 7: Means, standard deviations and 95% credible intervals of Γ corresponding to

the hospital-specific and pooled data methods

Mean Standard Deviation 95% Credible Interval

Hospital Specific Pooled Specific Pooled Specific Pooled

1 1.647 1.404 1.041 0.610 (0.418, 4.405) (0.578, 2.876)

2 1.058 1.085 0.673 0.475 (0.290, 2.774) (0.416, 2.246)

3 4.752 1.947 5.730 1.013 (0.770, 17.182) (0.702, 4.450)

4 1.391 1.276 0.911 0.571 (0.399, 3.878) (0.506, 2.710)

5 3.384 2.104 2.044 0.901 (1.062, 8.524) (0.892, 4.294)

6 2.047 1.551 1.280 0.666 (0.626, 5.452) (0.645, 3.187)

7 4.466 2.064 3.579 1.038 (0.835, 14.385) (0.719, 4.660)

8 10.191 2.268 17.845 1.211 (1.105, 39.000) (0.809, 5.378)

9 2.726 1.592 3.068 0.785 (0.527, 9.526) (0.616, 3.561)

10 2.707 1.761 1.879 0.800 (0.653, 7.696) (0.684, 3.755)

11 1.180 1.213 0.958 0.581 (0.183, 3.651) (0.452, 2.657)

12 3.761 2.087 2.473 1.000 (0.905, 10.765) (0.766, 4.559)

13 2.337 1.853 1.050 0.687 (0.905, 5.061) (0.844, 3.489)

14 1.235 1.206 0.916 0.546 (0.274, 3.444) (0.474, 2.559)

15 0.853 0.998 0.558 0.438 (0.242, 2.279) (0.409, 2.085)

16 3.416 1.686 3.723 0.911 (0.439, 12.333) (0.587, 3.969)

17 6.002 1.958 10.993 1.011 (0.770, 27.571) (0.746, 4.458)

18 7.834 3.871 4.318 1.638 (2.774, 17.182) (1.704, 7.825)

19 3.114 2.357 1.270 0.793 (1.353, 6.407) (1.183, 4.285)

1-19 1.717 2.301 0.238 0.195 (1.299, 2.279) (1.251, 2.206)

Table 8: Percent difference in standard deviations between pooled data

and hospital-specific estimation procedures

Hospital 1 2 3 4 5 6 7 8 9 10

% Diff 41.4 29.4 82.3 37.3 55.9 48.0 71.0 93.2 74.4 57.4

Hospital 11 12 13 14 15 16 17 18 19 1-19

% Diff 39.4 59.6 34.6 40.4 21.5 75.5 90.8 62.1 37.6 18.1
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Figure 4: Pictorial comparison of the estimates of Γ obtained by the two methods)

6 Discussion

In this study, we have revisited and reanalyzed a well documented problem dealing with the

perceived difference in survival rates between black and white breast cancer patients admitted

to community hospitals in the US. Research done thus far have established that black breast

cancer patients tend to have lower survival rates compared to their white counterparts. One

of the principal reasons behind that is the significantly lower quality and quantity of care (or

patterns of care, like treatment and diagnostic procedures) available to the blacks compared

to whites. In this study, we look at this problem from a different perspective in terms of

treating the hospitals as small areas and using a Bayesian paradigm to analyze the same.

Over the last decade or so, small area estimation has slowly but steadily emerged as a dis-

tinct statistical estimation procedure to tackle problems, mainly in survey sampling, where

the domain-specific sample sizes are too small for classical statistical approaches to yield
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regular survey based estimates of adequate precision. This procedure is now being exten-

sively used in Government agencies across the world (and specifically in US) for developing

estimates of various socio-economic characteristics (household level income for instance) for

states, counties or high school districts across the US. In fact, small area estimates like these

are increasingly playing a vital role in the formulation of critical policies by the Govern-

ment and for the administration of federal funds to local jurisdictions. Due to the small

sample sizes, a popular approach in this estimation procedure is to “borrow strength” from

neighbouring areas to improve the accuracy of estimates for a given area. This entails the

need to develop and incorporate alternative estimation procedures, one of them being the

hierarchical Bayesian methodology, which we have used in this study.

The data used in our study goes back to a program funded by the National Cancer

Institute in 1983 with regard to increasing physician participation in community hospitals in

national clinical trials. It originally dealt with 7,781 breast cancer patients admitted to 107

community hospitals in US between 1982 and 1985. However, in our present study, we have

worked with a subset of that, comprising of 1,856 patients from 19 (of the 107) hospitals

with the highest percentage (more than 10%) of black breast cancer patients.

The main contribution of our work lies in formulating two distinct modeling frameworks

for estimating the odds ratios (of receiving liver scan) for blacks and whites. The first of

these models uses hospital-specific information while the second one uses pooled hospital

data by borrowing strength across neighbouring hospitals. In doing so, we have used the

non-central hypergeometric distribution as the basis for modeling the likelihood function

of success (receiving a liver scan) for the blacks and whites. Finally, estimation has been

carried out through a Bayesian route while a griddy Metropolis-Hastings sampler has been

used for sampling. To our knowledge, such an analysis using the non-central hypergeometric

distribution has not been done before.

Our findings confirm some of the claims made in previous literature (Diehr et al., 1989

for instance) that black breast cancer patients were more likely to receive a liver scan than

the whites, when a liver scan is deemed as a less appropriate pattern of care. This was

evident as both the modeling frameworks yielded odds ratios significantly higher than 1 for

some of the hospitals considered in the study. In fact, the pooled data estimation procedure

seemed to be more reliable since it consistently produced tighter credible intervals of the

odds ratios for all the hospitals. This procedure (i.e. the idea of pooling) is based on the

premise that data within each hospital are similar (or homogeneous). Thus, pooling was done

to reduce variation, thereby improving the quality of information extracted from the data

itself. Having said that, there are potential shortcomings too. For example, pooling tends to

draw all the values closer to the mean while those with higher variability receiving a stronger
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pull. This is one of the issues to be careful about while applying this procedure. However,

as mentioned before, the aim of our study was to formulate a novel modeling framework to

estimate the odds of receiving liver scans and subsequently comparing those. Based on the

results we have got, we believe that we have been able to achieve our goals.
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