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Abstract 

 

The multi-mode resource constrained project scheduling problem (MM RCPSP) is a 

generalization of the well-studied RCPSP. A literature review reveals applications of 

inexact heuristics or metaheuristics approaches for solving these problems, however, exact 

approaches are few and do not consider non-renewable resources, as well as, generalized 

cash inflows and outflows at every time period of an activity, as is the case in real World 

problem instances. We present two exact solution single-processor approaches: a breadth-

first tree search procedure and a best-first monotone heuristic for solving these problem 

instances. The algorithms are thoroughly tested on problem instances using payment 

schedules generated for standard PSPLIB problem sets and results presented. 

 

Keywords: project scheduling, net present value, non-regular measures, exact solutions, 

breadth-first tree search, best-first. 
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1. Introduction 

The project scheduling problem (PSP) continues to be studied extensively for regular, as 

well as, non-regular measures of performance. A large number of researchers have 

developed and presented inexact solution approaches, primarily deploying metaheuristics 

procedures, for both the above types of objectives. We have presented breadth-first and 

best-first exact solution approaches for the regular measures of performance which study 

the objective of minimizing makespan. Both of these approaches can be readily altered to 

pursue other non-regular measures as well, such as, minimizing completion time or 

minimizing tardiness. In this paper we present new algorithms for the multi-mode multiple 

resource constrained project scheduling problem for maximization of the net present value 

(NPV). Other interesting non-regular measures can also be pursued with minimal 

alteration to the algorithms presented, for example, lateness, earliness, tardiness. 

 

The maximization of NPV in scheduling projects is an attractive objective frequently faced 

by managers in real life situations. However, the evaluation of the alternatives is extremely 

complex due to its tedious calculations, even with the help of modern computing support. 

Hence, sub-optimal approaches, for example thumb rules, are typically used by managers. 

However, these rules are not guaranteed to yield an optimal solution. 

 

The pursuit of maximization of net present value (NPV) as an objective has gained more 

momentum in the last two decades of project scheduling research, first as a single 

objective, and more recently as one of the objectives in bi-criteria or multi criteria 

optimization. We modify our regular measure algorithms to suite NPV as the non-regular 

measure of performance. The algorithm is generalizable to other non-regular measures 

with minor changes. NPV is the present value of all future cash inflows minus outflows, 

discounted at the given discount rate (β), implying that the time value of money is taken 

into consideration. We consider the problem in which positive or negative cash flows are 

associated with each activity's start, end, and all time periods of its duration in the mode 

that it is being performed. Additionally, we consider the payment of a bonus for early 

completion of the whole project for up to four unit time periods before the given due date. 

The involvement of a due date in a project prevents activities with negative net cash flows 

from being indefinitely delayed. In the model studied, we do not consider the imposition of 

a penalty for late completion of the project, however it can be easily included, for example, 
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by considering negative bonus for the last one or more time periods after the due date as a 

penalty. 

 

2. Literature review 

Exact solution approaches for the NPV objective have been studied by very few 

researchers. Though the single mode case for maximization of npv has been considered for 

exact solution, such as Icmeli and Erenguc (1996) and Dayanand and Padman (1997), and 

the multi-mode case with only renewable resources has been considered by Vanhoucke, 

Demeulemeester, and Herroelen (2001); no approach has considered problems with non-

renewable resources for exact solutions. The scheduling of partially ordered activities 

under renewable resource constraints exactly to optimize non-regular performance 

measures has been studied by Dhavale, Verma, and Bagchi (2003) applying a best-first 

tree search to minimize the total weighted earliness-tardiness and NPV. The primary 

reason for lack of research in solving this problem appears to be the substantial rise in 

computational overhead, even with only renewable resources, restricting feasibility to 

problem instances of a small size using exact approaches. The interest in the problem is 

clearly visible considering the large number of metaheuristic approaches which have been 

presented for solving this problem especially since 2000 AD. 

 

Among metaheuristic approaches, the multi-mode case with renewable and non-renewable 

resources and payments associated with progress of activities have been studied by Ulusoy, 

Funda and Sahin (2001) deploying a Genetic Algorithm (GA) approach and Waligora 

(2008) using Tabu search. Sabzehparvar and Seyed-Hosseini (2008) have used an MILP 

formulation to solve small instances of the multi-mode case exactly and considered an 

abridged version for approximate solutions to larger instances. Metaheuristic approaches 

dominate the research in this particular problem model. 

 

In this paper, we first describe the problem studied including the problem's mathematical 

formulation. Next we discuss the pre-processing rules applied before solving a problem 

instance for the NPV objective. Thereafter, the Breadth-first NPV and Best-first NPV 

algorithms for net present value maximization are presented. Subsequently, the proof of 

optimality of these algorithms is provided and experimental observations are discussed. 

The feasibility and potential of multi objective optimization using the Breadth-first NPV 
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algorithm is discussed briefly before the concluding remarks. 

 

3. Problem statement 

The non-regular measure NPV problem can be stated as follows. A project consists of N 

activities, N > 2. An activity i in its mode j, aij, has an integer duration pij ≥ 0, and a set Pi 

of predecessor activities. M distinct types of renewable resources are available, M ≥ 1, and 

the requirements for each of the M renewable resources for aij are given by rijm. The total 

availability of each of the M types of renewable resources is constant and a unit of 

renewable resource cannot be allocated to more than one activity at a given time. Once 

allocated, a renewable resource is free for allocation to another activity only when the 

activity to which it is allocated has finished. 

 

K distinct types of non-renewable resources are available, K ≥ 1, and the requirements for 

each of the K non-renewable resources for all activities in each of its modes (aij) are given 

by lijk. The total availability of each of the K types of non-renewable resources, Lk, is given 

at the start of the project and the total consumption of each non-renewable resource by all 

activities cannot exceed its given availability. Further, once scheduled an activity cannot 

be pre-empted. The given due date of the project is DD. 

 

The cash flow at the start of an activity ai in its mode j is CFij0, and at its end is CFijt+1, 

where t is its duration in mode j. The cash flows associated with each time period of its 

duration in mode j are CFijt, 0 < t ≤ dij, dij being the duration of aij (activity i in its mode j). 

Without loss of generality, it is assumed that a cash flow associated with a unit time period 

of an activity's mode occurs at the end of that unit time period. At the end of any activity, 

thus, the cash flow occurs on two accounts, viz. (a) one that is associated with the last unit 

time period of the activity's duration, and (b) the stipulated cash flow at the completion of 

that activity. The starting, ending, and all interim cash flows for an activity's mode are 

known prior to the start of the project, and are independent of each other, and also of its 

cash flows in any other mode. Any cash flow may be positive or negative, and the 

considered rate of discount per time period is β. For brevity, we consider a single 

applicable rate of interest per unit time period, for both, the short and long time periods. 

The incorporation of different interest rates applicable for given time slabs can also be 

easily modeled in our algorithm. 
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Payment of bonus is modeled as an activity consuming no time and no resources and 

occurring before the dummy end activity of the project. The bonus for the last four time 

periods up to the due date are B0, B1, B2, and B3 (B0 > B1 > B2 > B3). Note that the bonus 

values may be negative, indicating penalty for late completion. Typically, the largest bonus 

is associated with the earliest conceived finish time of the project (such as the feasible 

optimal makespan), and consecutively reducing amounts with each next unit time period 

up to the due date. In the completion horizon of four time periods, as soon as a negative 

bonus is encountered (representing a penalty for late completion), all subsequent 'bonuses' 

(i.e. penalties) are expected to be negative, too, and sequentially larger negative values. 

 

Thus, for each activity (ai) in all of its modes, given: (a) its predecessor set of activities, Pi; 

(b) processing times of the activity in each of its modes j, pij; (c) requirements of the 

renewable resources in each mode, rijm, for all renewable resources (for 1 ≤ m ≤ M); (d) 

requirements of the non-renewable resources in each mode, lijk, for all non-renewable 

resources (for 1 ≤ k ≤ K); (e) the associated cash flows with each mode (CFij0, CFijt (0 < t ≤ 

dij), and CFijt+1); (f) the due date, DD ; (g) the discounting rate per time period, β ; and (h) 

the applicable bonus for the project (B0, B1, B2, and B3); the scheduling problem is to 

determine the resource feasible modes and start times for each activity such that the NPV 

of the project is maximized within the due date. 

 

3.1. Mathematical formulation 

The MM-RCPSP for the NPV objective can be mathematically stated as follows: 

 

Max Gi =∑   
 
    (1) 

 

such that 

 

fi – fj ≥ pim, 1 ≤ j < i ≤ N, j Є Pi (processing time constraints). (2) 

∑     
 
   ≤ Rj , 1 ≤ j ≤ M, 0 ≤ t ≤ fN (renewable resource usage constraints). (3) 

∑     
 
   ≤ Lk , 1 ≤ k ≤ L, 0 ≤ t ≤ fN (non-renewable resource usage constraints). (4) 

fN ≤ DD (due date constraint) (5)  

i, j, k, m, t, L, M, R > 0 (non-negativity constraints). (6) 

i, j, k, m, t, L, M, R Є I (Integrality constraints). (7) 
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The objective is to maximize the net present value of total cash flows from all activities, 

such that: 

(i) The finishing time of an activity i processed in its mode m should be more than or 

equal to the finishing time of any of its predecessors plus the processing time of 

activity i in mode m. 

(ii) At every integer time instant t, the total amount of any renewable resource 

deployed in all activities in progress at that time instant, in their respectively 

assigned modes, should not exceed the availability of that renewable resource. 

(iii) At any time instant t, the total amount of any non-renewable resource consumed by 

activities completed and activities in progress, in their respectively assigned modes, 

should not exceed the total availability of that non-renewable resource. 

(iv) fN ≤ DD, i.e. the finish time of last activity should be within the given due date 

(Note that due dates are not assigned in problems studied by us for makespan 

objective in Dayal and Verma (2014)). 

 

4. Single-processor breadth-first NPV algorithm 

We use a tree-traversal mechanism substantially similar to the one given in Dayal and 

Verma (2014) with alterations for non-regular measures. The project bonus (or penalty) at 

the completion of the project is modeled as a cash flow associated with an end activity 

consuming no resources and no time. Thus, the dummy end activity, representing the 

actual completion of the project, now has a single predecessor activity consuming no 

resources and time, and involving no other cash flows except the bonus cash flow, which is 

determined by the completion time of the project. 

 

4.1. Pre-processing rules 

Similar to the pre-processing rules for regular measures, the NPV problem instances are 

also pre-processed through these rules to filter resource infeasible modes of an activity and 

remove redundant non-renewable resource(s) which are available in abundance. However, 

identification and removal of inferior or identical modes requires additional consideration 

with respect to the associated cash flows (see Dayal and Verma (2014) for complete 

description of pre-processing). 

 

The consideration of an inferior mode now involves the cash flows too, as even if a mode 
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yields an inferior net cash flow with respect to another mode when both are considered 

starting at t = 0, the situation may not be same for these modes for some start time other 

than zero (i.e., t > 0) with values of β strictly greater than zero. The pre-processing rule can 

also not be applied based only on discounted terminal cash flows (DCFij) of the two modes. 

Two modes of an activity with different durations are incomparable, as the longer mode 

would have associated cash flows for time periods which do not exist in the shorter mode. 

A change in the value of applicable interest rate β, too, may alter the superiority of two 

modes of an activity mutually. We consider a fixed value of β given at the start and 

applicable throughout the project's duration. Thus, a mode of an activity (mode j1) is 

superior to another mode of the activity (mode j2), iff, their durations are same, each of 

their renewable and non-renewable resource requirements are same or more in mode j2, 

and each time period's associated cash inflow in mode j1 is same or more than the 

corresponding cash inflow in mode j2. Identical modes in these problem instances are 

defined by identical resource requirements, identical durations, and identical cash flows. In 

randomly generated problem instances such a situation rarely arises, and if found, only one 

may be included in consideration to save computational requirements. 

 

We compute the earliest start time (EST) and latest start time (LST) for all activities, 

without considering the resource constraints using MPM (Metra Potential Method). We 

also determine the shortest mode of each activity (mis) and its duration in this mode (pis). 

LST underestimates the latest start time as when resource constraints are considered, it 

may have to be delayed further. The latest acceptable start time (LAST) for an activity is 

determined by subtracting the duration of its shortest mode and the length of the shortest 

path to completion of the project, from the project's due date (DD), i.e. DD – dis, which 

represents an upper bound on the start time of activity ai. Note that since all other modes of 

the activity are same or greater in duration, this upper bound is permissive, i.e. it may yield 

states where an activity completes after the due date, while it does not disqualify any states 

which may yield an optimal solution. To conserve repetitive computational effort, we also 

calculate and preserve the discounting factors for various time periods at the given rate of 

discount, β, for all time periods up to the due date. The time period just after the due date 

has a prohibitively large negative penalty associated with it, which enforces the completion 

of the project by the due date. As the NPV of a project may improve if we right shift an 
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activity (for example by delaying current activity's cash out flow, or to make resources 

available for another activity in such a mode which yields a higher cash inflow), hence, we 

consider the generation of all Delayed Resource Satisfying Sets (DRSS) for the finish time 

of the activity and its mode under consideration, for each time period, up to the due date. A 

DRSS is generated by right shifting an activity in its selected mode, one time period at a 

time. One DRSS is generated for each time period up to DD - dij, where dij is the duration 

of activity i in its mode j. This concept is explained with an example involving activity 

mode(s) with negative cash flows (after an example involving only positive cash flows) 

later in this paper. 

 

 

 

The procedure for determining the start times of activities in a child state for the NPV 

objective is as follows. If an activity with a positive terminal cash flow in its given mode, 

aij, was in progress in the parent state, then its start time in the parent state is retained in the 

child state. If the activity was not present in the parent state, its start time is set as the 

current time (the decision point) in the child state. 

 

The treatment for an activity and mode with a negative terminal cash flow is different. If 

the activity was in progress in the parent state and its start time is less than the decision 

point in child state, its start time is retained. However, if the activity's start time is greater 

than the decision point, then all possible start times from current time to the activity's 

Figure 1: Example 1 Project for Non-regular Objective (NPV) 
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LAST in its current mode are considered and a corresponding child state generated. Only 

activity and modes with negative terminal cash flows are considered for right shifting as 

right shifting the activity and modes with positive terminal cash flows would reduce the 

NPV. Due to this, even a small NPV problem instance is more difficult to solve, and 

results in generation of a large number of states. The one child set rule, explained in Dayal 

and Verma (2014), used for regular measures is no longer applicable. Necessary alterations 

to the local left-shift rule and the dominance pruning rule are explained below. 

 

The local left-shift rule for NPV objective involves shifting of activities with positive 

terminal cash flows only. An activity ai in mode j with start time si in a partial schedule X 

is left-shiftable if CFi ≥ 0, and ai can be started earlier, in the same mode j, without 

violation of precedence and resource restrictions, and without affecting the start time of 

any other activity in FX or AX (i.e. FX U AX). A DRSS (AD) of state X, at a decision point 

dpX, is left-shiftable if it contains an activity which is left-shiftable. 

 

4.2. Left-shift (LS) Pruning Rule for Maximizing NPV 

If a DRSS AD at a decision point dpX in state X is left-shiftable then do not generate any 

DRSS corresponding to this RSS. This is the local version of the left-shift rule. The global 

version of left-shift rule incorporates substantially more computational effort. To explain 

the LS rule, consider the problem instance in Example 1 shown in Figure 1 and its 

associated payment schedule in Table 1. 

 

Table 1: Payments Associated with the Example 1 Problem 
  

(1) (2) (3) (4) (5) (6) 

Actv Mode Durn At  

Start 

During 

Activity’s 

 Progress 

At end 

1 a 0 0 0 0 

2 a 4 61 5,5,9,4 56 

3 a 6 30 4,8,5,9,10,8 75 

4 a 5 20 7,1,8,9,1 -4 

5 a 8 4 1,8,1,10,3,8,7,1 -30 

6 a 5 54 5,8,10,5,5, 98 

6 b 7 77 9,8,7,6,6,9,7 55 

7 a 0 0 0 0 

Due date: 25. Bonuses are...Due date-3: 78, Due date-2: 63, Due date-1: 47, Due date: 31. 

 

In the above problem, R1 and R2 represent the two types of renewable resources and NR1 

and NR2 represent the two types of non-renewable resources. For each time period of each 
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activity's each mode, and at the start and end of the activity, there are associated payments, 

which are given in Table 1. The search tree states generated using Breadth-first NPV are 

shown in Table 2. The pruning of partial solutions (states) due to the left-shift rule is 

indicated by embedded comments. An explanation of the generation of states follows 

thereafter. 

 

Table 2: Breadth-first NPV Search with only LS Rule in Project of Example 1 
 
(1) (2) (3) (4) (5)  (6) (7)   (8)  

State Level Parent Decision 

Time dpx 

Completed 

Actvs (Fx) 

Value 

Fnsh 

Actvs in 

Prog (Ax) 

Value 

Prog  

Feasible 

RSS 

         

S1 0 -- 0 {} 0 {a11} 0 {a21}{a21,a41} 

{a31}{a31,a41} 

{a41} 

S2 0 S1 4 {1} 0 {a21} 137.23 {a31}{a31,a41} 

{a41} 

S3 0 S1 4 {1} 0 {a21,a41} 178.7  

S4 0 S1 10 {1} 0 {a31} 111.28  

S5 0 S1 5 {1} 0 {a31,a41} 152.75  

S6 0 S1 5 {1} 0 {a41} 41.47  

S7 1 S2 14 {1,2} 137.23 {a31} 106.92  

S81 1 S2 14 {1,2} 137.23 {a31,a41} 146.76  

S92 1 S2 14 {1,2} 137.23 {a41} 39.84  

...and so on. 

1,2  
Pruned as Left-shiftable 

 

Note, activity a41 is simultaneously and resource feasibly processable with a21, hence, it is 

left-shiftable. In actual implementation, the states S8 and S9 are not generated at all, and 

are shown here only for explanation. The progress of algorithm with both rules solving the 

complete problem instance follows later. 

 

We begin the algorithm with starting state S1. The candidate activities are 1, 2, and 3. The 

resource feasible activity-mode combinations which can be processed are indicated in 

column 9. Each of these is developed into a partial schedule as state numbers S2, S3, S4, 

S5, and S6, respectively, and appended to the tree at Level 1 (which indicates that one 

activity is completed in these partial schedules, namely, the dummy starting activity 1). 

After completing the processing of all states at Level 0 we proceed to the next level. 

Column 4 indicates the earliest completion time of any activity in progress where the next 

decision is required to be taken, i.e. the decision point. 
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In breadth-first order, the state S2 is eligible for processing, where activity a11 is completed 

and a21 is in progress. The next set of feasible RSS is again indicated in column 9. Only the 

RSS {a31} is processed and state S7 is generated, as the other two RSS are left-shiftable 

(note only activity-modes with positive cash flows are considered for left-shift). The value 

of finished activity (its contribution to the project's NPV) is computed and indicated in 

column 6, while the expected additional value on completion of the activity (or activities) 

in progress is shown in column 8. 

 

4.3. Dominance Pruning Rule 

We now explain the implementation of the Dominance Pruning Rule for NPV objective 

and show its implementation using the same example problem instance, Example 1. 

 

Dominance Pruning (DP) Rule for Maximizing NPV: If at any time during the execution of 

the algorithm there are two states X and Y, such that: 

(i) FX = FY, i.e., the activities completed (or finished sets) are same; 

(ii) AX = AY, i.e. activities in progress and their corresponding modes are same; 

(iii) the residual of each non-renewable resource, after consumption by all activities 

 completed or allocation to all activities in progress in set X, is same or more than 

 in set Y; 

(iv) the starting time in state X of each activity in AX with a non-negative terminal 

 cash flow is less than or equal to its starting time in state Y, i.e. six≤siy, aiЄAY,

 CFi ≥ 0 ; 

(v) the starting time in state X of each activity in AX with a negative terminal cash 

 flow is equal to its starting time in state Y, i.e. six=siy, aiЄAY, CFi<0 ; 

(vi) the total expected cash flow from finished activities in state X is greater than or 

 equal to that from state Y, i.e. GX ≥ GY, where the total expected cash flow from 

  finished activities for a state I (GI) is defined as, GI =∑   
 
   for all ai Є FI,  and Ei 

 is the expected terminal cash flow from activity ai; 

then prune state Y from the search tree, as state X dominates state Y. 

 

As an example, consider the same problem instance, Example 1, again. We shall now 

solve it applying only the Dominance Pruning rule. The generation of states is shown in 
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Table 3 and explanation follows thereafter. 

 

Table 3: Breadth-first NPV Search with only DP Rule in Project of Example 1 
 (1) (2) (3) (4) (5) (6) (7)   (8)    

State Level Parent Decision 

Time dpx 

Completed 

Actvs (Fx) 

Value 

Fnsh 

Actvs in 

Prog (Ax) 

Value 

Prog  

Feasible 

RSS 

S1 0 -- 0 {} 0 {a11} 0 {a21}{a21,a41} 

{a31}{a31,a41}{a41} 

S2 0 S1 4 {1} 0 {a21} 137.23 {a31}{a31,a41}{a41} 

S3 0 S1 4 {1} 0 {a21,a41} 178.7 {a31}{a31,a41}{a41} 

S4 0 S1 10 {1} 0 {a31} 111.28  

S5 0 S1 5 {1} 0 {a31,a41} 152.75  

S6 0 S1 5 {1} 0 {a41} 41.47  

S7 1 S2 14 {1,2} 137.23 {a31} 106.92  

S8 1 S2 14 {1,2} 137.23 {a31,a41} 146.76  

S9 1 S2 14 {1,2} 137.23 {a41} 39.84  

S101 1 S3 14 {1,2} 137.23 {a31} 106.92  

S112 1 S3 5 {1,2} 137.23 {a31,a41} 148.39  

S12 1 S3 5 {1,2} 137.23 {a41} 41.47  

1
 Dominated by S7 

2
 Dominates S8 

Note, the LS rule has not been applied. State S7 dominates state S10, and state S11 dominates state 

S8. The progress of algorithm with both rules solving the complete problem instance follows later. 

 

We begin the algorithm with starting state S1. The generation of states at first level is 

similar to the previous explanation. After the child states of (parent) state S2 have been 

generated, the next parent state, S3, is taken for processing. The feasible set of RSSs is: 

{a31}, {a31,a41}, and {a41}. The state S10 is generated developing the RSS {a31} and DP 

rule applied. This state is pruned by the previously developed state S7. The next RSS, 

{a31,a41}, is then developed and DP rule applied again. It is seen that state S11 dominates 

state S8, hence, state S8 is removed. Similarly, state S9 is dominated by state S12. After 

processing state S3 from level one completely, the processing continues to the next 

available state at level one, i.e. state S4, and so on. We present the complete solution to the 

example problem, Example 1, with both the rules applied, below. 
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The complete breadth-first algorithm with pruning rules for maximization of NPV is thus, 

as follows. 

 

Algorithm Breadth-first NPV with Pruning Rules 
Preprocessing  remove infeasible modes, redundant resources, and inferior modes 

Preparing calculate mis, esti, lsti, lasti, and CFi for each activity ai in the project 

Step 1 (Initialization) create the root state I at level 0 in the search tree 

Step 2 (Loop-1)  for level L from 0 to N-1 do 

Step 3A (Loop-2)   for each state X at level L do 

Step 3B (Expansion)  determine dpX, completed activities, and 

child states' level (Lc) 

     construct KX and all the RSSs 

Step 3C (LSR)  for each RSS (A), if the left-shift rule does 

not apply, construct DRSSs 

   for each DRSS (AD), construct a child 

state at level Lc  

Step 3D (DPR) apply the dominance pruning rule to all states at level Lc 

Step 4 (Termination) Traverse the states at level N and output the complete optimal 

  schedule associated with the state X with maximum NPV 

 

Following are the problem instance's states generated when the example problem instance 

is solved with both the rules applied. 
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Table 4: Breadth-first NPV Search with both Rules 
  (1) (2) (3) (4) (5) (6) (7)   (8)   (9) 

State Level Parent Decision 

Time dpx 

Completed 

Actvs (Fx) 

Value 

Fnsh 

Actvs in 

Prog (Ax) 

Value 

Prog  

Feasible 

RSS 

S1 0 -- 0 {} 0 {a11} 0 {a21} 

{a21,a41} 

{a31} 

{a31,a41} 

{a41} 

S2 1 S1 4 {1} 0 {a21} 137.23 {a31} 

{a31,a41}* 

{a41}* 

S3 1 S1 4 {1} 0 {a21,a41} 178.7 {a31}{a31,a41} 

{a41} 

S4 1 S1 10 {1} 0 {a31} 111.28 {a21} 

{a21,a41}* 

{a41}* 

S5 1 S1 5 {1} 0 {a31,a41} 152.75 {a21}*{a31} 

S6 1 S1 5 {1} 0 {a41} 41.47 {a21}* 

{a31}* 

S7 1 S2 14 {1,2} 137.23 {a31} 106.92 {a41}* 

S81 1 S3 14 {1,2} 137.23 {a31} 106.92  

S9 1 S3 5 {1,2} 137.23 {a31,a41} 148.39 {a31} 

S102 1 S3 5 {1,2} 137.23 {a41} 41.47 {a31} 

S11 1 S4 14 {1,3} 111.28 {a21} 124.17 {a41}* 

S12 1 S5 10 {1,4} 41.47 {a31} 111.28 {a21} 

S13 2 S9 14 {1,2,4} 178.7 {a31} 106.92 {a51}{a51,a61} 

{a51,a62}{a61} 

{a62} 

S14 2 S12 14 {1,3,4} 152.75 {a21} 124.17 {a51}{a51,a61} 

{a51,a62}{a61} 

{a62} 

S15 3 S13 22 {1,2,3,4} 285.62 {a51} 11.78 {a61}* 

{a62}* 

S16 3 S13 19 {1,2,3,4} 285.62 {a51,a61} 167.64 {a51} 

S17 3 S13 21 {1,2,3,4} 285.62 {a51,a62} 166.79 {a51} 

S18 3 S13 19 {1,2,3,4} 285.62 {a61} 155.86 {a51}* 

S19 3 S13 21 {1,2,3,4} 285.62 {a62} 155.01 {a51}* 

S203 3 S14 22 {1,2,3,4} 276.92 {a51} 11.78  

S214 3 S14 19 {1,2,3,4} 276.92 {a51,a61} 167.64  

S225 3 S14 21 {1,2,3,4} 276.92 {a51,a62} 166.79  

S236 3 S14 19 {1,2,3,4} 276.92 {a61} 155.86  

S246 3 S14 21 {1,2,3,4} 276.92 {a62} 155.01  

S25 4 S16 22 {1,2,3,4,6} 441.48 {a51} 11.78 {a71} 

S267 4 S17 22 {1,2,3,4,6} 440.63 {a51} 11.78  

S27 5 S25 22 {1,2,3,4,5,6}   515.86  {a71}    0.00  

* Pruned by Left Shift Rule 
1Dominated by S7 2 Dominated by S15,3 Dominated by S16, 4 Dominated by S17, 5 Dominated by S18, 6 Dominated by 

S19, 7Dominated by S25. 

Example1 Due date:25 Optimal NPV makespan: 22 Optimal NPV: 515.855591 
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We begin the algorithm with starting state S1. The candidate activities are 1, 2, and 3. The 

resource feasible activity-mode combinations which can be processed are indicated in 

column 9. Each of these is developed into a partial schedule as state numbers S2, S3, S4, 

S5, and S6, respectively, and appended to the tree at Level 1 (which indicates that one 

activity is completed in these partial schedules, namely, the dummy starting activity 1). 

After completing the processing of all states at Level 0 we proceed to the next level. 

Column 4 indicates the earliest completion time of any activity in progress where the next 

decision is required to be taken, i.e. the decision point. 

 

In breadth-first order, the state S2 is eligible for processing, where activity a11 is completed 

S2 S3 S4 S5

S7

S6

S1

S9S8 S11S10 S12

S14S13

S25

S27

Left shift

Left shift Dominated Left shift Left shift

S20 S21 S22 S24S23S15 S16 S17 S19S18

Dominated
Dominated

Dominated Dominated
Dominated

S26

Dominated

Left shift
Left shiftLeft shift

Figure 2: The Tree for Example 1 Project for Non-regular (NPV) Objective 
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and a21 is in progress. The next set of feasible RSS is again indicated in column 9. Only the 

RSS {a31} is processed and state S7 is generated, as the other two RSS are left-shiftable 

(note only activity-modes with positive cash flows are considered for left-shift). These two 

RSS are marked with 'LS' in Table 4. The value of finished activity (its contribution to the 

project's NPV) is computed and indicated in column 6, while the expected additional value 

on completion of the activity (or activities) in progress is shown in column 8. 

 
 

Figure 3: Example 2 Project for DRSS 

The state S3 is processed next, where activity a21 completes and the next feasible RSS are 

{a31} with retraction of a41, {a31,a41} and {a41}. State S8, developed using the RSS {a31}, is 

dominated by state S7. A child state corresponding to each of the remaining two RSS is 

generated and appended to the tree at appropriate level (level 2); these are states S9 and 

S10, respectively. The npv values due to the finished activities and activities in progress 

are computed and shown in respective columns 6 and 8. 

 

State S4 follows, and from the three feasible RSSs for this state, two are left-shiftable and 

hence not developed (i.e. pruned). The state S11 is generated as a child state for S4 using 

the RSS {a21} and associated values computed. 

 

State S5 is the next state to be processed as parent state, generating RSS {a21} which is 

left-shiftable and {a31} which is developed as state S12 and appended at level 2. This 

completes the processing of all states at level 1, and the states at level 2 are now taken up 

for processing. 

 

Among the five states available for processing at level two, the RSS for three are left-

NR1: 20, NR2: 31
R1: 5, R2: 6

1

2

3 5

4

6

a11: 0,0,0,0,0

a21: 1,3,0,1,3

a31: 2,0,6,2,8 a51: 2,0,5,5,5

a41: 3,4,0,5,10

a61: 0,0,0,0,0

a52: 3,0,4,5,5

Legend

Actv no., mode: duration, needed renewable resources R1 and R2, needed non-renewable 
resources NR1 and NR2.
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shiftable. Thus, only two states, S9 and S12, result into child states, S13 and S14, 

respectively, for level 3. 

 

Processing S13 first, five RSSs are generated and a child state for each, S15 to S19, is 

developed and appended at level 4. Note that one child rule is not applicable for non-

regular measures (if applied, it may result into a sub optimal solution). Thus, five child 

states from parent state S13 are generated. Five child states would also be generated from 

the parent state S14, however, these are dominated by the child states of S13, and hence, 

pruned. 

 

Processing of the next level (level four) is now started and the child states of S13 are 

processed. The RSS generated for S15, S18 and S19 are left-shiftable, hence, no states are 

generated for these. The child state from S16, namely S25, is generated and appended to 

the search tree at level 5. It dominates the state S26 resulting from the processing of state 

S17. Finally, we schedule the 'bonus' dummy activity to add the applicable bonus to value 

obtained at finish of S25 which gives the optimal NPV and applicable makespan. The 

mutual relationships of the states are pictorially represented in the Figure 2. 

 

We now provide a small example, Example 2, involving negative cash flows and explain 

the implementation of DRSS. Consider the example problem instance shown in Figure 3. 

The payments associated with the activities in their given modes and the bonus/penalty for 

completion within due date for the above problem instance are as given in Table 5. 

 

Table 5: Cash Flows associated with the Example 2 
  

(1) (2) (3) (4) (5) (6) 

Actv Mode Duration Cash 

Outflow 

At  

Start 

Cash 

Outflow 

For all t>0 

Cas

h Outflow 

At end 

1 a 0 0 0 0 

2 a 1 5 1 5 

3 a 2 5 1,2 5 

4 a 3 5 1,2,3 5 

5 a 2 -5 1,2 2 

5 b 3 5 1,2,3 2 

6 a 0 0 0 0 

Due date: 6. Bonuses are: Three days before Due date: 9, Two days before Due date: 2, One day 

before Due date: 7, On Due date: 8. 

  

The generation and pruning of states in breadth-first NPV algorithm is given in Table 6 

below and explained thereafter. 
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Table 6: Breadth-first NPV Search in Example 2 Project for DRSS 
  (1) (2) (3) (4) (5) (6) (7)   (8)   (9) 

State Level Parent Decision 

Time dpx 

Completed 

Actvs (Fx) 

Value 

Fnsh 

Actvs in 

Prog (Ax) 

Value 

Prog  

Feasible 

RSS 

S1 0 -- 0 {} 0 {a11} 0 {a21}{a21,a31} 

{a31} 

S2* 1 S1 1 {1} 0 {a21} 10.94 {a31} 

S3 1 S1 1 {1} 0 {a21,a31} 23.79 {a31} 

S4* 1 S1 2 {1} 0 {a31} 12.85 {a21} 

S5 2 S3 2 {1,2} 10.94 {a31} 12.85 {a41}{a41,a51} 

{a41,a52}{a51} 

{a52} 

S6* 3 S5 5 {1,2,3} 23.79 {a41} 15.4 {a51}{a52} 

S7 3 S5 4 {1,2,3} 23.79 {a41,a51} 15.32 {a41} 

S8 3 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 {a61} 

S9 3 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 {a51}{a52} 

S10 3 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 {a41}{a41,a51} 

{a51} 

S11 3 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 {a41}{a41,a51} 

S12 3 S5 5 {1,2,3} 23.79 {a41,a52} 27.95 {a41} 

S13 3 S5 4 {1,2,3} 23.79 {a51} -0.09 (LS) 

S14 3 S5 5 {1,2,3} 23.79 {a51} -0.09 (LS) 

S15 3 S5 6 {1,2,3} 23.79 {a51} -0.09 (LS) 

S16 3 S5 7 {1,2,3} 23.79 {a51} -0.08 (LS) 

S17 3 S5 8 {1,2,3} 23.79 {a51} -0.08 (LS) 

S18 3 S5 5 {1,2,3} 23.79 {a52} 12.55 (LS) 

S19 3 S6 7 {1,2,3,4} 39.19 {a51} -0.08 {a61} 

S20 3 S6 8 {1,2,3,4} 39.19 {a51} -0.08 {a61} 

S21 3 S7 5 {1,2,3,5} 23.7 {a41} 15.4 {a61} 

S22# 3 S8 5 {1,2,3,4,5} 31.5 {a61} 0 {a61} 

S23 3 S9 6 {1,2,3,4} 39.19 {a51} -0.09 {a61} 

S24 3 S9 8 {1,2,3,4} 39.19 {a52} 12.18 {a61} 

S25# 3 S10 7 {1,2,3,4} 39.19 {a51} -0.08 {a61} 

S26# 3 S10 8 {1,2,3,4} 39.19 {a51} -0.08 {a61} 

S27# 3 S10 8 {1,2,3,4} 39.19 {a51} 12.18 {a61} 

S28# 3 S11 8 {1,2,3,4} 39.19 {a51} -0.08 {a61} 

S29# 3 S11 8 {1,2,3,4} 39.19 {a51} 12.18 {a61} 

S30# 3 S12 5 {1,2,3,4,5} 44.13 {a61} 0 {a61} 

S31# 4 S19 7 {1,2,3,4,5} 39.11 {a61} 0 -- 

S32# 4 S20 8 {1,2,3,4,5} 39.11 {a61} 0 -- 

S33# 4 S23 6 {1,2,3,4,5} 39.11 {a61} 0 -- 

S34# 4 S24 8 {1,2,3,4,5} 51.37 {a61} 0 -- 

S35# 4 S21 5 {1,2,3,4,5} 31.5 {a61} 0 -- 

S36# 5 S34 8 {1,2,3,4,5,6} 51.37 -- 0  

*Left-shift, # DP by S30 

Optimal NPV value: 51.37, Optimal NPV makespan: 8 



 

  

 
W.P.  No.  2015-03-06 Page No. 20 

 

We begin the algorithm with (dummy) activity one in progress in state S1. The resource 

feasible sets to proceed with are {a21}, {a21,a31}, and {a31}. These are developed into states 

at the level one S2, S3, and S4. The states S2 (to be continued with a31 on completion of 

a21) and S4 (to be continued with a21 on completion of a31) are pruned by the left-shift rule. 

The states S3 is developed into state S5 at the next level. The NPV of activities completed 

and activities in progress are shown in columns 6 and 8 respectively. 

 

As the state S5 is developed, an activity {a51} is encountered that has a net negative cash 

flow. For maximization of NPV we would like to delay the activities with negative cash 

flows. However, the given due date keeps a cap on the maximum right shift for such an 

activity. Whenever such an activity-mode combination is encountered, we develop and 

generate one partial schedule each for it (in that mode) starting at all time periods from 

current time, such that it completes before or on the due date. Note that if it has successors, 

then we keep allowance for the shortest path from its completion in that mode to the end of 

the project. As already stated earlier, the shortest paths for all activities are computed by 

the established Metra Potential Method (MPM) ignoring the resource constraints. All the 

child states generated represent the complete set of delayed resource satisfying sets (DRSS) 

for the activity with negative flow encountered. If two or more activities with such modes 

whose final cash flows are negative are encountered, the tree's size explodes! This gives 

rise to a large number of states due to which the NPV objective (and in general, most of 

the non-regular objective problems) become extremely difficult to solve exactly using tree 

search procedures. 

 

For the state S5, with the RSS {a41,a51} and {a51}, both of which involve negative cash 

flows due to the activity {a51}, five child states each are generated considering the time of 

its start, such that it completes on or before the due date. These states are, respectively, S7 

to S11 for {a41,a51} and states S13 to S17 for {a51}. A few of these states are pruned due to 

application of the NPV versions of the left-shift rule or the dominance pruning rule. The 

other states are developed one by one in breadth-first order. The pruning rule applied and 

the state causing the pruning are mentioned in the remarks column in Table 6. 

It is extremely rare in NPV problems to find multiple optimal solutions, and hence, the 

possibility of finding exact multi objective solutions, as in breadth-first regular measure 
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algorithm, appears to be negligible. 

 

We now describe our single-processor best-first algorithm for non-regular performance 

measures, namely the NPV. 

 

4.4. Single-processor best-first NPV algorithm 

The Best-first NPV algorithm differs from Breadth-first NPV in the manner of selection of 

the next state to process. The criteria for selection of the next state to be processed are the 

best estimated project NPV ignoring the resource constraints. The partial schedule is 

converted into a pseudo-complete schedule and its project NPV is estimated as the sum of 

NPV of: (a) the activities in FX, (b) the activities in AX, (c) the activities not yet scheduled 

by determining their best mode at dpX, and assuming they all started at dpX, and (d) the 

applicable project bonus as per the latest finish time determined from all the incomplete 

and unscheduled activities. A tie in the forward estimates of two partial schedules is 

broken by considering the number of activities completed (the finished activities set, FX) 

and choosing the larger; and further, by the smaller finish time (dpX) of the partial 

schedules. Here, as the heuristic value over estimates the actual NPV, the first solution 

state selected yields a schedule of maximum NPV. Though two different schedules with 

same project NPV are theoretically possible, such cases are rare in practice. The optimal 

schedules revealed by Breadth-first and Best-first in our test sets are identical. 

 

We present two example problems for the non-regular objective, NPV, below. The first 

considers only positive cash flows, while the next example also considers negative cash 

flows. For convenience, the example problem is the same as used in demonstrating the 

Breadth-first NPV algorithm above, i.e. in Example 1. We present the states generated by 

the Best-first NPV algorithm incorporating all pruning rules with the optimal solution 

obtained in Table 7. 
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Table 7: Best-first Search in Example 1 Project with Pruning Rules 

  
  (1) (2) (3) (4) (5) (6) (7)   (8)   (9) (10) 

State Parent Decision 

Time dpx 

Completed 

Actvs (Fx) 

Value 

Fnsh 

Actvs in 

Prog (Ax) 

Value 

Prog  

Upper 

Bound 

Number 

Finshd 

Res. Fsble 

RSS 

S1 -- 0 -- 0 {1a} 0 0 0 {a21} 

{a21,a41} 

{a31}{a31,a41} 

{a41} 

S2 S1 4 {1} 0 {a21} 137.23 531.86 0 {a31} 

{a31,a41} 

-LS{a41}-LS 

S3 S1 4 {1} 0 {a21,a41} 178.7 533.49 0 {a31} 

{a31,a41} 

{a41} 

S4 S1 10 {1} 0 {a31} 111.28 510.05 0  

S5 S1 5 {1} 0 {a31,a41} 152.75 529.31 0 {a21} 

-DP{a31} 

S6 S1 5 {1} 0 {a41} 41.47 523.89 0  

S7 S3 14 {1,2} 137.23 {a31} 106.92 510.44 1  

S8 S3 5 {1,2} 137.23 {a31,a41} 148.39 531.64 1 {a31} 

S9 S3 5 {1,2} 137.23 {a41} 41.47 530.58 1  

S10 S2 14 {1,2} 137.23 {a31} 106.92 510.44 1  

S11 S8 14 {1,2,4} 178.7 {a31} 106.92 515.86 2 {a51} 

{a51,a61} 

{a51,a62} 

{a61}{a62} 

S12 S5 10 {1,4} 41.47 {a31} 111.28 514 1  

S13 S11 22 {1,2,3,4} 285.62 {a51} 11.78 503.87 3  

S14 S11 19 {1,2,3,4} 285.62 {a51,a61} 167.64 515.86 3 {a51} 

S15 S11 21 {1,2,3,4} 285.62 {a51,a62} 166.79 515.01 3  

S16 S11 19 {1,2,3,4} 285.62 {a61} 155.86 515.28 3  

S17 S11 21 {1,2,3,4} 285.62 {a62} 155.01 514.21 3  

S18 S14 22 {1,2,3,4,6} 441.48 {a51} 11.78 515.86 4 {a71} 

S19 S18 22 {1,2,3,4,5,6} 515.86 {a71} 0 515.86 5  

Example1 Due date:25 Optimal NPV makespan: 22 Optimal NPV value: 515.855591 

 

The algorithm starts with the starting state S1 where only the dummy start activity a11 is 

scheduled. The next set of RSS is generated and each is developed into a state representing 

a partial solution. The RSS are: {a21}, {a21,a41}, {a31}, {a31,a41}, and {a41}. These are 

respectively developed into the states S2, S3, S4, S5, and S6. The cash flow values of 

finished activities and activities in progress appear in columns 5 and 7 respectively, and 

the activities in progress in a state in column 6. 
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Note that for a makespan optimization, which requires minimization, the Best-first 

monotone heuristic underestimates the objective value, and the most promising state, 

which appears at the top of the heap, is processed first. However, for the NPV 

maximization objective, the upper bound over-estimates the possible net present value of 

the likely solution to be arrived at from a partial solution, and finally converges on the 

optimal value. 

 

The upper bound for each of the new child states is computed and each is added to the 

heap. The most promising state, which appears at the top of the heap is then selected for 

development further, which in this case is the state S3, with a likely NPV value of 533.49. 

Its RSS are generated and developed into child states, namely, S7, S8 and S9. Their 

estimates of NPV too are computed and these are accordingly added to the heap, breaking 

any ties with the larger number of activities completed, and further by the lesser finish 

time. 

 

The next state at the top of the heap is now processed, which is state S2. Its RSS are {a31}, 

{a31,a41}, and {a41}. Only {a31} is developed into a state, i.e. state S10, as the other two are 

pruned by the left-shift rule, as they involve activities in modes with positive cash flows 

which can resource-feasibly be left-shifted. The new child state is also added to the heap at 

the right place. 

 

Taking the next state from the top of the heap, state S8, its RSS is generated, which is only 

{a31}. This is developed into the child state of S8, i.e. state S11. Its forward estimate of 

NPV value is computed and the new state S11 is added to the heap at its right place. 

State S5, which is now at the top of the heap, is taken for expansion. The RSS generated 

are: {a21} and {a31}. The state corresponding to {a21} is dominated and hence pruned, 

while the child state generated using the RSS {a31}, i.e. state S12, is appended to the heap 

at its right place. 

 

The state S11 now appears at the top of the heap, whose RSS are now generated. These are: 

{a51}, {a51,a61}, {a51,a62}, {a61}, and {a62}. These are developed into the states S13, S14, 

S15, S16, and S17. Their upper bounds are computed and each is appended to the heap at 

the right place. State S14 appears at the top of the heap now and is taken for development 
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further. Its child state S18 is generated which also reaches the top of the heap when 

appended to it. It is further developed into state S19 yielding the optimal solution. The 

optimal NPV for the project is 515.85591 and the makespan for this schedule is 22. 

 

Next we consider another example problem instance with a mode of an activity with 

negative cash flows to demonstrate its processing by the algorithm. The example taken is 

the same as for Breadth-first NPV objective earlier, i.e. in Example 2. The development of 

states for this problem instance is as shown in Table 8. 

Table 8: Best-first Search in Example 2 Project with Pruning Rules 

  (1) (2) (3) (4) (5) (6) (7)   (8)   (9) (10) 

State Parent 

State 

Decision 

Time dpx 

Completed 

Actvs (Fx) 

Value 

Fnsh 

Actvs in 

Prog (Ax
)
 

Value 

Prog  

Upper 

Bound 

Number 

Finshd 

Res. Fsble 

RSS 

S1 -- 0 -- 0 {1a} 0 0 0 {a21}{a21,a31} 

{a31} 

S2 S1 1 {1} 0 {a21} 10.94 60.72 0  

S3 S1 1 {1} 0 {a21,a31} 23.79 60.85 0 {a31} 

S4 S1 2 {1} 0 {a31} 12.85 60.35 0  

S5 S3 2 {1,2} 10.94 {a31} 12.85 60.57 1 {a41}{a41,a51} 

{a41,a52}{a51} 

{a52} 

S6 S5 5 {1,2,3} 23.79 {a41} 15.4 60.19 2 {a51}{a52}-LS 

S7 S5 4 {1,2,3} 23.79 {a41,a51} 15.32 47.93 2  

S8 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 47.93 2  

S9 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 47.93 2  

S10 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 47.93 2  

S11 S5 5 {1,2,3} 23.79 {a41,a51} 15.32 47.93 2 {a51}{a52} 

S12 S5 5 {1,2,3} 23.79 {a41,a52} 27.95 60.57 2 {a61} 

S13 S5 4 {1,2,3} 23.79 {a51} -0.09 47.62 2  

S14 S5 5 {1,2,3} 23.79 {a51} -0.09 47.47 2  

S15 S5 6 {1,2,3} 23.79 {a51} -0.09 47.33 2  

S16 S5 7 {1,2,3} 23.79 {a51} -0.08 47.18 2  

S17 S5 8 {1,2,3} 23.79 {a51} -0.08 47.04 2  

S18 S5 5 {1,2,3} 23.79 {a52} 12.55 60.11 2  

S19 S12 5 {1,2,3,4,5} 44.13 {a61} 0 4.13 3  

S20 S6 7 {1,2,3,4} 39.19 {a51} -0.08 47.93 3  

S21 S6 8 {1,2,3,4} 39.19 {a51} -0.08 47.93 3 {a61} 

S22 S21 8 {1,2,3,4,5} 39.11 {a61} 0 39.11 4  

S23 S11 8 {1,2,3,4} 39.19 {a51} -0.08 47.93 3  

S24 S11 8 {1,2,3,4} 39.19 {a52} 12.18 60.19 3 {a61} 

S25 S24 8 {1,2,3,4,5} 51.37 {a61} 0 51.37 4  

Optimal NPV: 51.372875, Optimal NPV makespan: 8 
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The algorithm begins with starting state S1 in which dummy activity a11 is scheduled. The 

next set of RSS are generated, which are: {a21}, {a21,a31}, and {a31}. The corresponding 

partial solutions, i.e. states S2, S3, and S4 are generated and added to the heap. The state at 

the top of the heap is next taken for development, i.e. state S3. Its RSS are generated, i.e. 

only {a31}, and the child state developed along with its upper bound and added to the heap 

at the right place. 

 

State S5 now appears at the top of the heap with the best estimated NPV, and hence, is 

processed next. Its RSS are generated, which are: {a41}, {a41,a51}, {a41,a52}, {a51}, {a52}. 

Note that activity a51 has a negative cash flow. This activity and mode combination 

appears in two RSSs. For both of these RSSs, a child state is generated for all its feasible 

start times from the maximum of previous finish time and the activity's earliest start time, 

and up to the latest start time of the activity. This gives rise to a large number of child 

states to be appended to the heap, and demonstrates the difficulty of the problem in being 

solved. Upper bounds of all the child states are computed and they are appended to the 

right place in the heap. 

 

The next partial solution state from the top of the heap is next selected for development, 

which is S12. Only the last dummy activity remains to be scheduled in this state, which is 

scheduled and the upper bound of NPV computed. The new child state is then added to the 

heap at the right place. The next state from the top of the heap, i.e. state S6, is then 

selected for processing. Its RSSs are generated and each developed into a partial solution 

state (i.e. states S20 and S21) and appended to the heap. From the top of the heap again, 

another state, state S21 now, is selected for development and its child state S22 generated 

and appended to the heap. The state S11 now appears at the top of the heap, which is 

developed next, generating the child states S23 and S24. State S24 appends at the top of 

the heap and is therefore selected next for development, generating the state S25 with the 

optimal NPV value:∑   
 
      . 

 

In larger problems facing several activities with multiple modes yielding a net negative 

cash flow, the complexity of the problem rises many folds, and so does the time taken to 

solve them. 
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5. Theoretical results 

We now present proof of the optimality of the solutions generated by the two algorithms. 

We use the following abbreviations to represent versions of the algorithm: (a) BRD-NPV 

and BST-NPV, the Breadth-first NPV and Best-first NPV algorithms without any pruning 

rules; (b) BRD-NPV-ALL and BST-NPV-ALL, hypothetical versions of the two NPV 

algorithms with right-shift permitted for activities with positive or negative terminal cash 

flows; (c) BRD-NPV-DP for the algorithm with dominance pruning rule; (d) BRD-NPV-

LS for the algorithm with left-shift pruning rule; and (e) BRD-NPV-DPLS for the 

algorithm with both pruning rules. We wish to establish that both algorithms, with pruning 

rules, generate optimal solution to the maximization of NPV problem. 

 

Theorem 1: BRD-NPV-ALL generates all possible feasible complete schedules. 

Proof: Since the method of generation of states is exhaustive, and activities are scheduled 

at all possible times consistent with the precedence, renewable, and non-renewable 

resource constraints without pruning any states, the result immediately follows. Note that 

as activities may be retracted, some left-shiftable schedules are likely to be additionally 

generated. □  

 

Corollary 1: BRD-NPV-ALL generates an optimal schedule, if one exists. 

Proof: Assume that an optimal schedule exists, then by Theorem 3.1, as all possible 

schedules are generated; BRD-NPV-ALL yields an optimal schedule. It is noteworthy that 

if a feasible schedule exists, an optimal schedule also exists. □  

We avoid the generation of problems with infeasible due dates when we use our payment 

schedule generator for the PSPLIB problems. Now consider the adoption of the dominance 

pruning rule to BRD-NPV-ALL. 

 

Lemma 1: If a state X is pruned by another state Y during the execution of BRD-NPV-DP, 

and X is optimizable, then so is Y. 

Proof: Let state X, dominated by state Y during the execution of BRD-NPV-DP, be 

optimizable. Since state Y dominates state X, FY = FX, and AY = AX. Activities with 

positive terminal flow in state Y start respectively in same mode and no later than the 

corresponding activities in state X, and activities with negative terminal flow start 

respectively in same mode and at exactly the same time as in AX. Both of the states X and 
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Y would be generated by BRD-NPV-ALL. Since X is optimizable, it has a successor state 

X' which is optimal. This state is also generated by BRD-NPV-ALL. 

 

Consider the decision points t1, t2,..., and corresponding RSSs along the path in the search 

tree BRD-NPV-ALL from X to X'. Now, starting from state Y instead, and choosing 

exactly the same DMRSs at the same time instants t1, t2,..., obtain the schedule Y', which 

has no precedence or resource conflicts. Y' may have intervals of time where no activity is 

in progress, that is, it may have left-shiftable activities, each scheduled in one of its modes 

(note a left-shiftable activity in its given mode must have a positive terminal cash flow). 

Take each such activity and, in order of activity numbers, shift each as far left as possible 

retaining its mode, and without introducing any precedence or resource conflicts. Left-

shifting an activity with a positive terminal cash flow can not decrease the NPV. Let the 

resulting schedule be Y”. Y” can never have an NPV less than X', therefore Y” is 

optimizable and will be generated by BRD-NPV-DP as a successor of Y. Hence, Y is 

optimizable. □  

 

Theorem 2: BRD-NPV-DP generates an optimal schedule. 

Proof: This follows immediately from Lemma 3.1, as regardless of the states that are 

pruned, the search tree of BRD-NPV-DP will always contain a schedule which is optimal. 

□  

We now prove that the introduction of the (new form of) left-shift rule for NPV 

maximization, i.e. BRD-NPV-DPLS, produces an optimal schedule. 

 

Theorem 3: BRD-NPV-DPLS generates an optimal schedule. 

Proof: By Theorem 3.2, it should suffice to prove that the schedule generated by BRD-

NPV-DPLS is at least as good as that yielded by BRD-NPV-DP. 

 

Note that we consider child states corresponding to all RSSs, and all the resource feasible 

MRSs are a subset of these RSSs. Consider a partial schedule, parent state X, whose child 

states are under development. There is a set of activities which is completed at or before 

the decision point dpX, the earliest finish time of an activity in progress in the parent state 

X. Let the candidate set of activities for child states of parent X be represented by C. C 

includes the activities in progress in X but not completed at dpX. 
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As stated earlier, in generating the child states, all renewable and non-renewable resource 

feasible sets (the RSSs) are considered for the parent state X. Let one child state generated, 

state Y, be such that in it an activity, ai in mode j, is left-shiftable, i.e., it can be started at a 

time before dpX, without violating any resource and precedence constraints and without 

affecting the start time of any other activity in progress. Let time t denote the earliest such 

time when activity ai in mode j can be scheduled. Since ai is ready at time t, it belongs to 

some (at least one) RSS at t in its resource feasible mode j, and thus, is included in at least 

one RSS, for which a child state has been generated (say, child state Z). As the terminal 

cash flow of ai in mode j is non-negative, if an optimal schedule is generated by a child 

state of parent X scheduling activity ai in mode j, at t ≥ dpX, then a schedule with at least 

the same NPV shall also be generated by state Z. Hence, state Y may be pruned without 

the loss of optimality. □  

 

Theorem 4: If BRD-NPV-ALL generates an optimal schedule, BRD-NPV-DPLS will also 

generate an optimal schedule. 

Proof: BRD-NPV-ALL generates DMRSs by assigning all possible start times to all 

activities in each RSS. Further, for an RSS, BRD-NPV-DP will right shift only the 

activities with negative terminal cash flows, in their respective modes. 

Note that we consider child states corresponding to all RSSs, and all the resource feasible 

MRSs are a subset of these RSSs. Consider a partial schedule, parent state X, whose child 

states are under development. Let Y be an RSS, and let Y1, Y2, Y3,..., YN, be the 

corresponding DRSSs. Let Yi and Yi' be two DRSSs such that the start times of activities 

with negative terminal cash flows are the same, and in Yi the start times of activities with 

positive terminal cash flows are less than or equal to the corresponding start times of these 

activities, in same modes as in Yi'. Since expected cash flow (∑   
 
   ) of finished activities 

is the same, Yi' will be dominated and pruned by Yi. For any state of the type Yi', a state of 

the type Yi will always be generated. BRD-NPV-DPLS will not generate Yi', while it will 

generate and process Yi, thus not missing the optimal solution. Therefore, BRD-NPV-

DPLS will yield an optimal solution. The optimality of BST-NPV with both pruning rules 

can be proved similarly. □  
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6. Experimental observations 

The computational machines used in the experiments are as follows. 

 

Computational Machines: The development and initial experiments were carried out on a 

desktop machine (details provided below), while the tests were carried out using one CPU 

on a node in a high performance compute-cluster (HPCC) at the Physical Research 

Laboratory, Ahmedabad. The HPC has twenty-one nodes, each node with sixteen CPUs. 

Each compute-node is a collection of four boards, each with four Quad-Core AMD® 

Opteron™ Processor 8360 SE with 2511.578 MHz clock speed. At each node a total of 64 

GB shared DDR2 SDRAM, 677 MHz is available, though in practice far less is used. The 

size of L1 cache is 128 KB, L2 cache is 512 KB, and L3 cache is 2048 KB. The core speed 

is 2500 MHz, integrated memory controller speed is 2000 MHz, and the system bus speed 

is 1000 MHz. The operating system used on the access server (the head node) is Red Hat 

Enterprise Linux 5 (RHEL 5), while on the compute nodes its light weight variant (or thin 

version without GUI for computational purposes) is deployed. All the algorithms were 

coded in C and compiled using Intel C Compiler without using any compile time 

parallelization or optimization directives. The details of computational machines used are 

as follows. 

(A) Details of developmental and experimental operating systems used: 

Operating System : (a) Fedora 11, 12, and 13 for development and testing. 

: (b) RHEL 5 for experiments. 

Compiler : GNU C Compiler (gcc), Intel C Compiler (icc). 

Analysis tools : valgrind, Kcachegrind. 

 

(B) Details of the developmental and testing platform (desktop) used: 

Vendor_id : Intel Corp. 

Model name : Intel® Pentium® D CPU 3.00GHz 

CPU cores : 2 

Core Speed (MHz) : 3000 (Max 4000 MHz) 

L1 Cache Size (KB) : 2 x 16 

L2 Cache Size (KB) : 2 x 1024 

L3 Cache Size (KB) : Not provided. 
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System Bus Speed (MHz) : 533 

 

(C) Details of compute-cluster platform used: 

The computational experiments were conducted on a compute-cluster with sixteen 

processors, organized as four Quad-Core boards using AMD processors. The essential 

details are as given below. 

Vendor_id : AuthenticAMD. 

Model name : Quad-Core AMD® Opteron™ Processor 8360 SE 

CPU cores : 4 

Core Speed (MHz) : 2500 

L1 Cache Size (KB) : 128 

L2 Cache Size (KB) : 512 

L3 Cache Size (KB) : 2048 

System Bus Speed (MHz) : 1000 

CMOS : 65nm SOI 

IM Controller Speed (MHz) : 2000 

Virtualization : Yes 

Siblings : 4 

Bogomips : 5026.04 

TLB size : 1024 4K pages. 

Address sizes : 48 bits physical, 48 bits virtual.  

We discuss the results of our experiments with both the algorithms below. 

 

Problem sets generated: Standard test problem sets for regular measures with known 

optimal results are available online, for example on websites of PSPLIB and ORLib. These 

problem sets have proved extremely useful as a benchmark for researchers in testing their 

new algorithms and sharing the obtained results. However, libraries for such problem sets 

for non-regular measures are missing and hence, newly generated test problem sets, 

typically a small number, have been used by most researchers. The non-regular objectives 

have attracted less attention due to the large computational requirements involved making 

even small problems hardly feasible within a limited time using a single modern processor. 

Multi-processor algorithms could prove beneficial for such problems. 
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In our research, we use PSPLIB problem sets with known optimal solutions as base 

problems, and generate random payment schedules using our own payment schedule 

instance generator. We consider payments at the start, the end, and for each unit time 

period of the duration of an activity, in each of its modes. Additionally, we consider a 

bonus payment for completion of the whole project within due date for four unit time 

periods. This model represents a generalized NPV problem model that covers most 

situations of interest. For each problem in a PSPLIB problem set, we generate ten random 

payment schedules. As the exact optimal makespan should be known before payments 

schedules can be generated in our NPV problem generator, the NPV versions for PSPLIB 

set j30 were not generated. 

 

Computational environment: The algorithms were tested on a single processor in a cluster 

with Quad-Core AMD® Opteron® Processor 8360 SE, 2511.578 MHz running a thin 

(non-GUI) version of Red Hat Enterprise Linux 5. 

 

Breadth-first NPV and Best-first NPV results 

Both the algorithms yield an optimal solution on termination. In the problem sets where all 

the problems are solved by both the algorithms, Best-first NPV solves the problems much 

faster. A mutual comparison between these two algorithms reflects that while for regular 

measures Best-first is several times faster than Breadth-first; same is not the case for non-

regular measures. Hence, the multi-processor implementation of Breadth-first NPV may 

yield substantially better results. The non-regular measures appear far more difficult to 

pursue, and both the algorithms are able to solve only small problems given a limited time. 

The results are briefly portrayed in Table 9 given below. 
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Table 9: Summary of Results of Computational Experiments 

 

   (1) (2) (3) (4) (5) (6) (7)   (8)   (9) 

 % 

solved 

Total 

time(s) 

Mean 

time(s) 

Std 

dev 

Max 

time(s) 

Solved 

<5 min 

Solved 

<10 

min 

Solved 

<15 

min 

Solved 

<30 min 

Problem set: PSPLIB j10 set with payment schedules for activities generated by our problem generator (total 

5360) 

BRDMM 100% 7163 1.3 21.8 1582.5 5359 0 0 1 

BSTMM 100% 5293 1 6.18 401.6 5359 1 -- -- 

Problem set: PSPLIB j12 set with payment schedules for activities generated by our problem generator (total 

5470) 

BRDMM 100% 24116 4.4 22.4 1225 5465 4 0 1 

BSTMM 100% 21694 4 14.4 655.3 5469 0 1 -- 

Problem set: PSPLIB j14 set with payment schedules for activities generated by our problem generator (total 

5510) 

BRDMM 99.46% 380276 69.4 162.2 1620 5162 188 78 52 

BSTMM 99.71% 332842 60.6 136.8 1734 5239 178 42 35 

Problem set: PSPLIB j16 set with payment schedules for activities generated by our problem generator (total 

5500) 

BRDMM 14.42% 314419 396.5 455.8 1787 469 126 79 119 

BSTMM 19.60% 366570 340.1 402.4 1779 702 156 93 127 

Problem set: PSPLIB j18 set with payment schedules for activities generated by our problem generator (total 

552)  

BRDMM 3.08% 118644 697.9 533.5 1781 58 25 18 69 

BSTMM 3.30% 133159 731.6 526.8 1759 49 38 29 66 

Problem set: PSPLIB j20 set with payment schedules for activities generated by our problem generator (total 

554)  

BRDMM 0% -- -- -- -- 0 0 0 0 

BSTMM 0.18% 9876 987.6 580.6 1717 2 2 0 6 

  

Note: To generate payment schedules with bonus for PSPLIB problem sets, the optimal 

makespan should be known. Hence, for PSPLIB set j30, only some of whose optimal 

solutions are known (solved by our Breadth-first and Best-first in limited time), the npv 

problems were not created. 

 

Breadth first is unable to solve any problem from the npv problems generated for the 

PSPLIB problem set j20 within 30 minutes. While all the problems in the smaller sets j10, 

j12 are solved rapidly by both algorithms, further increase in problem size seems to 

handicap their ability substantially. The memory requirements by both the algorithms for 

small problems are modest. Nearly all problems are solved by both the algorithms in the 

NPV set j14 problems within thirty minutes. However, beyond this set only a limited 

numbers are solved in a run time limit of thirty minutes per problem. 
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For non-regular measure (npv), the Best-first algorithm appears to be not as superior to 

Breadth-first algorithm, as is the case in algorithms for regular measure (makespan). 

Problems involving negative net cash flows in an activity's mode appear to cause the size 

of the search tree to expand substantially. This is so because the activity mode combination 

with a negative net cash flow has to be tested at each time instant from a child state's dpX 

to the activity-mode's latest acceptable schedule time, and this results in the generation of 

far too many states. If several activities with such cash flows are involved, the numbers of 

child states and the time needed to solve the problem rises substantially. Note that the 

number of problems, which were solved by both the algorithms (within thirty minutes of 

run time limit) becomes smaller as the problem size increases. 

 

Best-first appears to perform better than the Breadth-first algorithm in npv problem sets 

generated from PSPLIB sets j14 and j16. As observed for set j18 the Best-first algorithm 

appears to need more time to solve the problems, however, this result is over only one 

hundred and twenty nine (129) problems solved by both algorithms within a limit of thirty 

minutes, out of a total of five thousand five hundred and forty (5540) problems. 

 

6.1. Non-regular measure multi-objective solutions 

As is expected, the advantage of multiple single objective optimal solutions and 

subsequent multi objective optimization, which is possible in regular measures as 

objectives, is not seen in non-regular measures. It appears that only tailor made special 

instances may possess multi objective optimization characteristics for non-regular 

measures. However, multiple feasible solutions (not all optimal) are indeed generated by 

Breadth-first NPV at the last level and these solutions consume varying amounts of non-

renewable resources, too. Given the per unit costs of non-renewable resources, a better 

solution which sacrifices the optimal NPV value but in return, preserves non-renewable 

resources, can be found by simply re-traversing among the leaves of the tree at the last 

level. However, such analysis appears feasible only when the per unit cost of non-

renewable resource(s) along with their quantities saved, the cash flows involved with 

completion of activities, and the project's bonus are of comparable magnitudes. 
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7. Conclusion 

This paper describes the non-regular measure (NPV) implementations of the breadth-first 

and best-first algorithms for multi-mode projects, namely Breadth-first NPV and Best-first 

NPV. Both the algorithms yield an optimal solution, for which theoretical proofs are 

included. The experimental results of tests on problem sets generated using PSPLIB 

problem sets as base problems are presented and discussed. Being extremely difficult 

problems to solve, no exact solution approach for these problems considering renewable, 

as well as, non-renewable resources, appears in the literature to the best of our knowledge. 

Additionally, we consider cash inflows and outflows which may be associated with each 

time period of the activity in any of its mode that it is performed, and a bonus for up to 

four time periods of the projects' due date. 

 

Being extremely difficult problem sets to solve, no exact solution approaches for non-

regular measures for MM-RCPSP exist in literature. Standard problem sets for non-regular 

measures are also missing from libraries of such problems. We test the algorithms for non-

regular performance measures on payment schedules generated using our own generator, 

where the PSPLIB problem instances are used as the base problems. The breadth-first 

algorithm for non-regular measures is also extensible to multi processor SMP 

implementation. The extension of Breadth-first NPV over shared memory multi processor 

compute-clusters has not been tested by us and appears to be of immense interest for future 

research, especially as unlike for regular measures where the run times between Breadth-

first and Best-first differ by a large scale, in non-regular measures the difference appears to 

be less. 

 

Other interesting further research directions include incorporation of improvements in 

pruning rules, consideration of shared renewable resources, incorporation of resource 

vacations/withdrawals, dynamic and stochastic models of problem instances, and 

development of hybrid algorithms incorporating strengths of heuristics, metaheuristics, and 

exact solution algorithms. 
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