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Abstract 

 

The multi-mode resource-constrained project scheduling problem (MM RCPSP) is an NP-hard 

problem representing a generalization of the well-studied RCPSP. Depth-first tree search 

approach by Sprecher & Drexl (1998) is the best-known exact solution tree search procedure for 

this problem. In this paper we modify an existing breadth-first algorithm for multiple processors. 

It is a computer-cluster implementation of the breadth-first procedure which improves the 

solution time taken for these problem instances. 

 

Keywords: project scheduling, regular measures, exact multi-objective solutions, breadth-first 

tree search, computer-cluster algorithm. 
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1 INTRODUCTION 

1.1 Overview 

The project scheduling problem (PSP) has attracted the attention of a large number of 

researchers, especially since the World War-2. Enhancement of computational power has 

progressively enabled the search for solutions to large and more complex problems. However, 

the search for optimal solutions to projects with even a few hundred or more activities, in a 

reasonable time, poses a challenge even today. Various approaches such as heuristic, 

metaheuristic, and exact solution approaches – have been developed by researchers to find a 

solution to the PSP. Among the exact solution approaches, the branch and bound (B&B) 

approaches are further classified as depth-first, breadth-first, and best-first approaches, based on 

the direction chosen for search path. The appeal of the problem is enhanced by the wide range 

and variety of desirable objectives which can be studied – makespan, (total and minimum) 

lateness, earliness, tardiness, number of late jobs, flowtime, their weighted measures, and several 

others. 

 

Initial scheduling approaches primarily emanated from shop floor experience and resulted in the 

generation of a large number of heuristics or thumb rules; a few popular ones being Earliest Due 

Date First (EDD), Shortest Processing Time First (SPT), First In First Out (FIFO), and Shortest 

Remaining Time First (SRT). These thumb rules are quite effective and yield good solutions for 

simple instances of the PSP. However, these rules are not guaranteed to yield an optimal solution. 

 

Support for development of linear, binary and integer programming techniques, and 

enhancement of computational power and memory has enabled modeling and development of 

algorithms for problems of moderate size. However, for problems of larger sizes even the mixed 

integer linear programming (MILP) solvers have limitations (for example, 2^32 variables in 

CPLEX 12) due to the number of variables involved as it rises very rapidly for even problems of 

moderate size. These implementations use one approach from: the primal simplex (or dual 

simplex) algorithm, the network optimizer, barrier algorithm, or the sifting algorithm. MILP 

problem instances are solved using branch and cut procedures. Our algorithm differs in that it is 

a breadth-first tree generation branch and bound approach. The exploration of search for exact 

solutions to concurrent multiple objectives (i.e. exact multi-objective solution) enhances the 

involved challenge several folds, a feature which is missing from the best MILP solvers. 

 

The objective of this paper is to design and develop improved exact algorithms for optimally 

scheduling partially ordered multi-mode activities under resource constraints, and to test whether 

current computational power is enough to solve real life problems. This problem is known as the 

Multi-Mode Resource Constrained Project Scheduling Problem (MM-RCPSP). We design and 

develop single processor algorithms for exact solutions to a single objective. We then extend our 

breadth-first tree-search approach to yield multiple exact optimal solutions for a single objective. 

Among this set of optimal single objective solutions we search for exact multi-objective optimal 

solutions. Finally, we extend the exact multi-objective breadth-first algorithm to a distributed 
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version (using OpenMP) for implementation over a computer-cluster. Our experiments show 

promising results on benchmark problem sets from PSPLIB. 

 

1.2 Problem Statement 

A project is a set of activities which are partially ordered by precedence relationships. An activity 

can be performed infinite number of modes, where each mode is unique and has a corresponding 

non-negative duration. An activity is ready to be processed only when all its predecessor 

activities are completed and the number of units of the various resource types required by it, in 

the mode that it is to be performed, are free and can be allocated to it. Once started, an activity is 

not interrupted (non-preemptive) and runs to its completion. The dummy (start and end) activities 

consume no resources and take no time. For each of its modes, an activity uses different types of 

resources, such as manpower and machinery, in different amounts, which are specified in 

advance. A mode specifies an activity's resource requirements for each resource type and its 

duration in that mode. A resource is an essential facilitator of an activity to be performed. It may 

be durable (renewable) or consumable (non-renewable). The resources are allocated exclusively 

to a single activity for its entire duration in the selected mode. A resource may also be doubly 

constrained, i.e. it has an overall limit of availability for the whole project, as well as, time 

period wise limit of consumption for each time period. The availability of each resource type is 

known in advance. After completion of an activity, renewable resources may be assigned to 

another activity, whereas, the amounts of non-renewable and doubly constrained resources 

decrease by the respective amounts of each of these resources consumed in completion of the 

activity in its assigned mode, and only the residual amounts can be used further. 

 

Scheduling is the process of selecting the mode and committing resources to the realization of 

each activity, while meeting the precedence and resource restrictions, to optimize a given 

objective. The aim is to assign modes and start times to all activities so that the desired objective 

(for example, makespan, flowtime, maximum tardiness, number of tardy jobs, etc.) is optimized. 

 

The objective to be optimized may be regular or non-regular. Regular measures are those 

measures for which no performance improvements will occur with delay in the start of the 

activities, for example, minimizing completion time or minimizing the tardiness. Non-regular 

measures are those measures for which the performance may improve with delay in start of the 

activities, for example, in objectives like minimizing the earliness-tardiness in just in time (JIT) 

and maximizing net present value (NPV). 

 

In the case of non-regular measures (NPV), every mode of each activity has an associated cash 

flow (either inflow or outflow) at the start of the activity, for each unit time of its duration in the 

selected mode, and at the end of the activity. The objective in this case is to schedule all activities 

such that the NPV of their cash flows, at a given rate of interest is maximized. 

 

1.3 Literature Survey 

This section reviews the literature in project scheduling focusing mainly on MM-RCPSP. 

While small projects and shop floor scheduling problems may use exact approaches, large 
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problems, being complex for the human mind or computer to comprehend and solve, are 

dependent on heuristics. The pursuit of one or more of several desirable objectives, 

simultaneously, enhances the complexity of the problem further. 

 

Several heuristic and metaheuristic approaches have been presented in the literature to solve 

large scheduling problems. However, these approaches do not guarantee the yield of an optimal 

solution. Usually, these approaches deploy one or more checking procedures for termination of 

the algorithm, such as, acceptable limit on minimum percentage improvement from previously 

found best solution, run time bounds, and/or the number of iterations limit. In these approaches, 

it is possible that in multiple runs of the same algorithm using same termination criteria, and on 

the same problem instance and computing machine, an inferior or superior result is obtained. 

This clearly establishes the need for improved exact algorithms for finding the exact solutions to 

such problems. However, the research approaches pursuing inexact or approximate solutions is 

many times more than that for exact solutions. Our research attempts to cover this gap. 

 

Exact solution approaches for the MM-RCPSP problem are few, and restricted in application to 

problems of small sizes only. Carefully implemented explicit enumeration algorithms promise 

the yield of an optimal solution, if one exists. These approaches are classified into three types – 

depth-first, breadth-first, and best-first. It is also possible to conceptualize hybrid approaches 

which merge features of more than one approach, especially in multi-thread/multiprocessor 

algorithms, however, this area of research is hardly explored. The resources (time and memory) 

consumed in these approaches make them unattractive for large problem instances. Due to this, 

currently, managers have to take recourse to available non-optimal approaches for solving large 

scale project scheduling problems. 

1.3.1 Exact Approaches 

Developing a mode alternative, similar to Demeulemeester and Heroelen’s (1992) delay 

alternative, and applying a B&B procedure with search tree reduction scheme, Sprecher, 

Hartmann, and Drexl (1997) and Sprecher and Drexl (1998) presented algorithms for obtaining 

an exact solution to the MM-RCPSP. Daniels and Mazzola (1994) studied the problem in a flow 

shop environment where non-renewable resource allocation is of a flexible nature. They identify 

the properties of optimal B&B solutions and apply these to solve the problems using their 

iterative heuristics. 

 

Hartmann and Drexl (1998) compare three B&B approaches for the MM-RCPSP and conclude 

that the precedence tree guided enumeration scheme performs the best. A B&B depth-first 

procedure for obtaining the optimal solution and its truncated version are presented by Sprecher 

and Drexl (1998) for obtaining exact solutions and tested on a large number of problem 

instances. This approach remains the best exact approach to date. They also discuss the impact of 

variation in several project characteristics on solution time and quality. Erenguc, Ahn and 

Conway (2001) presented an integer programming model and an exact solution B&B procedure 

adopting branching rules, minimal resource conflict sets, and node fathoming rules for improving 

efficiency. Heilmann (2003) has presented another exact B&B approach for small instances and a 

priority rule based heuristic approach (2004) for larger instances of the MM-RCPSP. 
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Buddhakulsomsiri and Kim (2006) apply the B&B procedure and concluded that in resource 

vacations and temporary resource unavailability, activity splitting can improve the optimal 

project makespan, and that makespan improvement is dependent on those parameters which 

determine resource utilization. Sabzehparvar and Seyed-Hosseini (2008) studied the problem in a 

mode dependent time lag environment and presented an exact algorithm. They relate the problem 

to a bin-packing problem and present its mixed-integer programming formulation. They also 

presented a geometric formulation of the problem and a B&B approach to obtain solutions to the 

problem instances tested. 

 

Exact approaches are attractive because they guarantee an optimal solution. However, the 

adopted approaches, so far, have examined only depth-first B&B strategy enhanced with pruning 

and truncation rules. Breadth-first approach is extremely challenging due to the rapid expansion 

of the state space tree. The best-first approach too expands the search tree rather fast needing a 

large amount of memory. It also often explores several branches before reaching the optimal 

solution. The depth-first approach, once it starts backtracking, always outputs a feasible solution 

whenever it terminates. The other two approaches have to run to completion to produce a 

complete feasible solution. Best-first and depth-first approaches are able to make use of lower 

and upper bounds effectively in pruning branches, thus, reducing the size of the search space tree 

as they reach the solution. If time bound executions of the breadth-first and best-first algorithms 

are used, they are often likely to result in incomplete solutions and would need to be augmented 

by some fast heuristic schemes to generate feasible solutions. Hybrid approaches, such as a mix 

of metaheuristic and tree-search approaches: (a) to generate partial solutions and identify 

promising directions of search, and then (b) to develop the exact final solutions, may be 

attractive directions of research. 

 

1.3.2 Multi-Objective Solution Approaches 

Finding even a single objective optimal solution to the NP-hard MM-RCPSP problem is a 

computationally expensive task. However, real world situations require managers to strive to 

optimize multiple objectives together (for example reducing both, completion time of a project 

and consumption of precious resources in its completion). Not surprisingly, at times the 

objectives are mutually incompatible! The initial approaches adopted for Multiple Criteria 

Decision Making (MCDM) involved assignment of weights or priorities to various decisions. It 

is unrealistic to estimate the correct weights or even priorities for various criteria. Further, in 

decisions which are based on one or more subjective criteria, the assignment of such weights 

may be impractical, if not infeasible. 

 

Analytic Hierarchy Process (AHP) is a popular approach for evaluating available options and 

their outcomes in MCDM. The stepwise development of a decision tree can simultaneously 

process objective, as well as, subjective criteria, while allowing more important criteria to be 

considered before others. However, it is not free from the subjectivity of estimations of mutual 

and relative weights of objectives considered, and from assignment of equivalents (in terms of 

cost or other suitable metric) to various alternatives. It also relies on the decision maker's choice 

or order of criteria for objective selection. The method and analysis of its results become difficult 
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to apply with increase in elements in the list of criteria, particularly when stochastic success rates 

of various options are also involved. For a detailed review of the MCDM approaches and their 

classification we refer the reader to Behzadian, Kazemzadeh, Albadvi, and Aghdasi (2010). 

 

Mathematical programming approaches attempt to solve a problem separately for two (or more) 

single objectives, and then, within the bounds thus established by the single objective solutions, 

perform Pareto analysis from one solution point to the other, generating Pareto boundaries of 

good solutions. Typically, such analysis involves comparison of relative gain and loss, and its net 

effect on the objective function value, in the entire neighborhood of the hyperspace path between 

two known single objective optimal solutions, almost always sacrificing even the single 

optimality earlier achieved. For large problems, the two starting solutions themselves may not be 

optimal for even a single objective. The need to repeatedly solve a sub-problem many times 

makes these approaches computationally expensive and good only for small problems. However, 

for quantitative decision analysis, these approaches appear to be an interesting research direction 

with rapidly rising attention of researchers. 

 

In problems which have multiple single objective optimal solutions, among which exact multi-

objective optimization search is feasible, it is possible that the optimal solution points for a single 

objective are placed extremely far apart in the solution hyper-space. Thus, a neighborhood 

search, or a directed path search between two single objective optimal solutions, may actually be 

unable to yield an exact multi-objective optimal solution even if one exists. Further, a hyper-line 

connecting two exact optimal solutions for two different objectives, may actually not even touch 

any other single or multiple objective optimal solutions for any objective, at all. 

 

Even though it is understood that a PSP problem may have multiple optimal solutions, the task of 

finding a single solution itself is so arduous that effort to find all or multiple optimal solutions 

has been missing in literature. MILP solvers, given a different random starting seed, may 

generate different solutions, though only for problems of modest sizes in a reasonable time. In 

project scheduling problem instances, trivial multiple optimal solutions can be rapidly developed 

from one optimal solution by carefully shifting the non-critical path activities within the 

available slack, without changing their assigned modes. However, no approach to developing 

multiple exact single objective solutions, and further, exact multi-objective solutions from them, 

for even small problems exists in literature. Our research fills this essential gap in the literature 

and opens new directions for further research. 

1.3.3 Multi-Processor Algorithms 

The advent of multi-processor architectures and availability of computer-clusters renders ever 

increasing computational power available for solving difficult problems. However, algorithms to 

exploit such architectures in solving difficult problems are lacking and research in this direction 

is slowly gaining momentum. To the best of our knowledge, no multiprocessor or distributed 

computing approach appears in the literature to obtain exact solutions for the MM-RCPSP. We 

develop our breadth-first algorithm for implementation over a computer-cluster and test it on a 

cluster of sixteen CPUs in shared memory processors (SMP) architecture. The algorithm scales 

very well and solves small problems extremely fast and larger problems in much less time when 
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compared to a single processor. To the best of our knowledge, our multi-processor exact breadth-

first algorithm for the MM-RCPSP implemented over a computer-cluster is the first of its kind to 

be able to exploit multiple processors, generate multiple optimal solutions, and enable exact 

solutions to multi-objective optimization problems, with modest memory requirements in a 

reasonable time. At the same time, it shows promising scalability with increase in number of 

processors in our tests on up to sixteen processors, although not uninfluenced by Amdahl's law 

(Amdahl (1967) and Gustafson(1988)). However, it is a disappointment that compute-clusters 

being extremely expensive, this solution methodology may take some time before it becomes 

available for exploitation to relatively small and medium sized organizations. As per our 

literature review, no other exact solution tree search implementation on multiple processors is 

available for the MM-RCPSP. 

 

1.3.4 Other Important Studies 

A project scheduling problem may be easy if resources are abundantly available. It may also be 

easy if the resources are highly scarce, as in both the cases, the number of options to be explored 

for simultaneously performed activities is reduced, reducing the needed search in the space tree. 

Herroelen and De Reyck (1999) have studied the project scheduling problem's transition from 

easy to hard and hard to easy levels under varying levels of resource availability and network 

complexity. They concluded that while network complexity measures seem to reveal continuous 

phase transitions for project scheduling problems, the resource parameters exhibit a relatively 

sharp transition behavior in the problem's difficulty level. Sprecher (2000) has presented an 

efficient model for the problem and a solution approach which requires far less memory than 

other approaches. 

 

As early studies examine only a few problem instances, there is a need to generate problems with 

controllable difficulty levels. Klingman, Napier and Stutz (1974) have presented a network 

generator, NETGEN, for generating assignment, transportation and Minimum Cost Flow 

networks. For project networks, Kolish, Sprecher and Drexl (1995) presented ProGen, a 

controlled-difficulty project network problem generator. However, in ProGen the feasibility of 

the problems generated is required to be tested separately. Their work is extended by 

Demeulemeester, Dodin, and Herroelen (1993) for generating feasible instances from the 

generation space. Kolisch and Sprecher (1997) proposed a continuously upgraded bank of 

problems including suggesting the collection of best-known solutions contributed by various 

researchers, the PSPLIB (http://129.187.106.231/psplib/). Drexl, Nissen, Patterson, and 

Salewski, (2000) have presented ProGen/Лx, which is able to generate problems for a variety of 

networks, including crew scheduling and timetabling. 

 

Testing a small number of benchmark problems is arguably only a limited proof of wide 

applicability of any solution approach. Hence, researchers have chosen to generate a large 

number of test problems and apply their algorithms on these. We test our algorithms on 

established benchmark problem instances, as well as, on our own generated problem instances. 
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1.4 Motivation 

Among the approaches to obtain exact solutions to the PSP, including multiple resource 

constrained projects, very few have considered the possibility of performing an activity in more 

than one mode (Multi-mode). The existing studies of the problem use heuristic and/or 

metaheuristic approaches to obtain good solutions. The exact solution approaches, both MILP 

and the depth-first B&B technique, are able to solve only problems of a limited size. Research to 

develop alternate techniques is, hence, continuously needed. 

 

Nazareth and Bhattacharya (1993) and Nazareth, Verma, Bhattacharya and Bagchi (1999) 

develop and apply a breadth-first approach to solving the single mode RCPSP, which generates 

results comparable to the other existing algorithms. They also apply the best-first approach with 

comparable results. However, these approaches have not been studied or applied further to the 

MM-RCPSP. We study the MM-RCPSP for an exact solution for regular and non-regular 

measures, developing breadth-first and best-first search procedures with pruning rules that do not 

sacrifice the optimality of the solution. We extend our work to implement the breadth-first 

approach on an SMP computer-cluster using OpenMP and show that it scales extremely well. 

1.5 Summary of Results 

In this paper we develop exact algorithms for the multi-mode project scheduling problem with 

renewable and non-renewable resources. Though we do not treat doubly constrained resources 

separately, these can be easily modeled by considering them as a pair of joint renewable and non-

renewable resources. We develop and test two different algorithmic approaches: (a) an exact 

breadth-first tree search approach, and (b) a monotone best-first heuristic approach, both of 

which yield an exact solution. We develop these algorithms to solve problems with regular 

performance measure, as well as, non-regular measures. 

 

These algorithms are described with examples in Shukla and Verma (2014a and 2014b) with 

experimental results on problem sets from the PSPLIB. Proofs of the optimality of the algorithms 

are included. The methods have been compared with the depth-first method of Sprecher and 

Drexl (1998) using similar data structures for both approaches, and prove to be faster. Among the 

two, the best-first is faster on a single processor. However, the first advantage of breadth-first is 

in its ability to generate multiple exact single-objective solutions, from which exact multi-

objective solutions can be readily obtained. Secondly, exploiting the design of our breadth-first 

algorithm, we develop it for implementation on an SMP architecture multi-processor compute-

cluster. Extensive tests of the distributed version of breadth-first algorithm show a promising 

scalability. 

 

Our non-regular measures algorithm considers the maximization of NPV. We consider the 

generalized case of activities with positive or negative cash flows at each time period of their 

being performed, as well as, at the start and end of each activity. In our analysis, we also include 

a component of bonus for the project to be completed earlier than its due date for up to four unit 

time periods. The algorithms are explained using examples. We test both these algorithms on 

payment schedules generated by our own problem generator using PSPLIB instances as the base 

problems. The results are briefly indicated in Table 1.1 below. 
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Table 1.1: Study of Exact Solutions to MM-RCPSP – Summary of Research Results 

Multi-mode resource constrained project scheduling problem – exact solution algorithms 

Single processor results 

Problem set Resource type(s) Measure 

studied 

New algorithm(s) 

developed 

Algorithm 

compared with 

Brief 

results 

(fastest 

algorithm) 

PSPLIB set n0 Renewable Makespan 

(regular 

measure) 

Breadth-first and 

Best-first 

Sprecher and 

Drexl (1998) 

Depth-first 

Best-first, 

Breadth-

first 

PSPLIB sets 

j10, j12, j14, 

j16, j18, j20, 

j32 

Renewable and 

non-renewable 

Makespan 

(regular 

measure) 

Breadth-first and 

Best-first 

Sprecher and 

Drexl (1998) 

Depth-first 

Best-first, 

Breadth-

first 

NPV problem 

sets generated 

using PSPLIB 

sets j10, j12, 

j14, j16, j18, 

j20 

Renewable and 

non-renewable 

Net present 

value (non-

regular 

measure) 

Breadth-first and 

Best-first 

No exact 

solution 

algorithm to 

compare with 

Best-first, 

Breadth-

first 

Multiprocessor results 

PSPLIB sets 

j10, j12, j14, 

j16, j18, j20, 

j32 

Renewable and 

non-renewable 

Makespan 

(regular 

measure) 

Breadth-first No exact 

solution 

algorithm to 

compare with 

Faster than 

a single 

processor 

Breadth-

first 

The best-first approach outperforms the breadth-first approach on a single processor for the size 

of problems studied. The performance of breadth-first approach improves on multi-processor 

compute-cluster implementation as more processors are deployed and becomes nearly as good as 

the best-first approach on sixteen processors using SMP. It remains to be seen whether it 

outperforms the best-first monotone heuristic on even larger compute-clusters. Results obtained 

have been compared with CPLEX and shown. The breadth-first approach for NPV objective is 

also adaptable to distributed implementation on multiprocessor SMP architecture computer-

cluster to solve the problems faster, though for non-regular measures multiple optimal solutions 

and the possibility of exact multi-objective solutions is rather rare. 
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2 MULTI-PROCESSOR BREADTH-FIRST ALGORITHM FOR REGULAR MEASURES 

2.1 Introduction 

Advances in computer architecture have enabled development of computers with multiple 

processors. Common desktop and laptop machines now possess multiple processor 

motherboards. For high performance computing requirements computer-clusters with a large 

number of central processing units (CPUs), each with their own arithmetic and logic unit (ALU) 

and substantially larger random access memory (RAM) have become available in recent years. 

Development of standards and programming paradigms to exploit multiple processors, such as, 

Message Passing Interface (MPI) and OpenMP has closely followed developments in 

technology. However, beyond the operating systems, relatively less development has been seen 

on the front of designs of algorithms and applications which exploit multiple processors. Their 

growth is picking up momentum and it is expected that in the coming years, as multicore systems 

become more affordable, matching commercial applications shall become available in the 

markets. 

 

A special characteristic of our regular and non-regular measure Breadth-first algorithms is their 

ability to be modified for execution over multiple CPUs. In fact, the core algorithm's strategy and 

data structures can be gainfully deployed for solving a large number of problems of scientific 

and managerial interest (a few of which are suggested in the last chapter with ideas for further 

research). The primary interest in developing a distributed processors algorithm is many folds: 

(a) a problem instance can be solved faster; (b) larger problem instances can be solved in realistic 

time; and (c) the benefit of exact multiple objective optimization solutions can be sought, as 

compared to currently available practices such as MCDM or Pareto bound analysis, which 

sacrifice the single objective optimality. To the best of our knowledge, no other methodology 

exists to obtain multiple exact single objective solutions to an MM-RCPSP problem, and no 

other methodology exists for exact multi-objective optimization, though existence of multiple 

single objective solutions has been recognized. There also does not exist any methodology for 

exploiting multiprocessor architectures for solving the MM-RCPSP and this is the gap we 

address with our multiprocessor implementation. 

 

MPI is an Application Programming Interface (API) library specification, which enables 

communication between processors, say connected over a LAN or Internet, thus, enabling them 

to pass values of variables, data structures, and/or control messages to each other. A feature that 

differentiates it from OpenMP, is its ability to execute code on distributed processors of even 

different architectures. However, a drawback is the delay due to the inherent latency of 

communication between processors connected over an LAN or Internet. 

 

OpenMP enables specifying compile time directives in the code which enable parallelization of 

loops (typically for loops) when the compiled code is running on a Symmetric Multi-Processors 

(SMP, often also called Shared Memory Processors) system. OpenMP utilizes specification of 

pragmas in the code as parallelization directives, with declarations of shared and private 

variables. These directives are used during compilation of the code to distribute the execution of 

a number of threads on different processors. Both, MPI and OpenMP, are supported by large 
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groups of researchers, academia, vendors, implementors, and users. 

 

2.2 Multi-Processor Breadth-first Algorithms (MPBFA) 

To exploit the Breadth-first algorithm's distributable structure we develop two different versions 

of the Breadth-first algorithm for regular measures for tests on a computer-cluster – one using 

MPI and another using OpenMP. The characteristics and results of experiments with these 

versions are discussed below. 

 

2.2.1 MPBFA using MPI 

The MPI version requires substantial passing of data between processors. In brief, the MPI 

version appears handicapped by: (a) the message passing latency over the communication 

network, and (b) the loss in advantage of the pruning rules (especially the dominance pruning 

rule) due to the generation of identical states by several processors. 

 

In our first Breadth-first MPI version (BRD-MPI-1) we solve the first level at the master node, 

and distribute its states for further processing to separate processors connected over a 1 GBPS 

LAN. After developing the child states for the incoming parent state, each processor 

communicates the results back to the master processor and waits for the next parent state to be 

assigned to it. We find that even for the small problem instances in PSPLIB, the message passing 

latency during communication between two processors outweighs the advantage of distributed 

processing by multiple processors using MPI. 

 

In an alternate implementation (BRD-MPI-2), after developing the first level at the master 

processor, we consider assigning each processor a state to be processed entirely up to the final 

level. This version results in the generation of (thousands of the) same states by various 

processors at interim levels. Thus, different processors end up solving same states, separately. 

The collective number of states processed in such an implementation sometimes is several times 

that of the same problem instance when solved using a single processor! No advantage gained in 

wall clock time in solving the problem is noted. 

 

We also consider an alteration wherein the processors communicate the best solution so far 

developed by anyone to all other processors, for use in pruning inferior partial solutions. 

However, by the time any processor reaches a solution state, other processors have also advanced 

substantially in their partitions of the search tree, and very little benefit appears to be gained. We 

hypothesize that an MPI version may be suitable for extremely large problem instances, where 

the message passing latency over a communication network is offset by the large computational 

time needed for solving the problem instances using a single processor. We hope the challenge of 

further research in this direction attracts more researchers. Our tests using OpenMP yield better 

results. Hybrid OpenMP and MPI versions, too, may prove beneficial for further research. 
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2.2.2 MPBFA using OpenMP 

We next develop an implementation using OpenMP and test it over multiple processors in SMP 

(Shared Memory Processors) architecture. Typically, OpenMP is used for parallelizing either 

processing of data (a simple example being finding the average of five hundred numbers using 

multiple processors) or parallelization of different tasks (for example, modern operating 

systems). 

 

In our distributed implementation of the Breadth-first algorithm, each processor is performing a 

large number of tasks in a sequence, some of which, for example, are: (a) computing the earliest 

finish time in a partial schedule which is provided for processing (in the real implementation this 

is actually done while a state is being built); (b) determining the activities which were in progress 

and have completed at this decision point; (c) building the new list of candidate activities; (d) 

building the resource satisfying sets (RSS); ... and so on. Hence, our algorithm is very different 

from “data parallelism” in OpenMP. Michael J. Quinn explains “data parallelism” and “task 

parallelism” in the book Parallel Programming in C with OpenMP and MPI (McGraw Hill, 

2004). 

   

Further, each of the processors in our algorithm is performing a series of tasks which are 

identical for all processors. Thus, it is also different from OpenMP “task parallelism”, where 

essentially processors are performing separate or different tasks. Only on a very broad scale, 

features of our algorithm may be called similar to task parallelism (for example, each processor 

may be said to be performing the key task of: “given a partial schedule as a parent schedule, 

generate all its partial child schedules”). However, our implementation is substantially different 

from both, “data parallelism” and “task parallelism”. As discussed above, our algorithm falls into 

a new category which characterizes “logic parallelism”. There is a complex logically arranged 

series of tasks that each processor has to perform. This task involves using data from the key 

problem instance (global constants), as well as, results of processing from some (any) processor 

earlier (i.e. the partial schedules). Each processor appends its results to the search tree being 

generated in shared memory. These results are accessible to all other processors to use. Each 

processor also picks up (or is assigned) its next job from this search tree. While the iterations 

performed on the same problem instance could vary substantially every time, the core set of tasks 

and their sequence of assignment (to whichever is the next available processor) remains the 

same. Note that even in a run of the same problem instance on the same cluster of processors 

using the same algorithm, it is not necessary that the processors solve the same set of parts of the 

problem instance which they solved in the previous run! Also, that if a single objective optimal 

solution is pursued, a different optimal solution may be yielded in two different runs (provided 

the problem instance has multiple single objective optimal solutions)! In exact multi-objective 

solution's pursuit, if multiple exact multi-objective solutions exist for a problem instance, then in 

different runs any one of them may be yielded as the final solution! 

 

At first we test a “master-worker” work distribution version of the Breadth-first algorithm, in 

which a single processor (the master processor) assigns tasks to all the remaining available 

worker processors. In this implementation, each processor produces and appends its results to a 

common tree which is being generated in the breadth-first manner, from where it is also assigned 
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its next task (by the master processor). Each assigned task needs substantial computational time 

for being processed keeping the worker processors busy. We find that in such a distribution, the 

“master” processor remains underutilized, as it is idle after workers have been assigned their 

current tasks till any-one submits its results. 

 

Hence, we develop another scheme in which all processors work at an equivalent level (as team 

members). This implementation yields better results. We keep all processors in a team as equal 

members (working with the same rank and sharing work), picking up their “next task” from a 

common pool of available tasks and also appending their results to it (making sure that only one 

processor is appending its results at a time). This common pool is actually the state tree 

generated by our algorithm, and being Breadth-first in nature, simplifies the selection of 

subsequent tasks (from the current level being processed) and appending the results generated 

(which is always at least one level further). Before a new level is started, the level before it is 

completely processed. 

 

Note that this leads to the intermittent processor idling (consonant with Amdahl's law, Amdahl 

(1967) and Gustafson (1988)) as in OpenMP's parallelization pragma the threads parallelize and 

close together. Thus, only when the last processor has appended its results to the main tree, all 

processors move to the next set of tasks. For example, when all states at a level are processed, 

the processors move to the next level. However, within a level, we organize the data structures in 

a manner that processors keep completing their task and collecting the next task, and minimal 

wait is encountered. An explanation of our data structure implementation and its advantages for 

distributed processing is now necessary to elaborate how the above drawback is partially 

overcome using linked lists (the parallelization of linked lists using OpenMP proves to be a little 

tricky!). 

 

For the conservation of memory, our data structures organize the search tree (using linked lists) 

such that common information for multiple states is shared. This aids in faster implementation of 

our pruning rules too. A state is completely identified by a set of three data structures: two sets of 

the data structures are shared with several other states, and a third data structure is exclusively its 

own. The first shared data structure (which we call OVER) preserves the information associated 

with the activities completed, non-renewable resources consumed, and the candidate activities. It 

is appended to a linked list of another data structure (which we call PROG) containing 

information pertaining to its associated (feasible) sets of activities and their modes, which are in 

progress. These two shared data structures may belong to several states at once (in even very 

small problem instances of twelve or fourteen activities, they may be shared by hundreds of 

states). The information pertaining to each state which exclusively identifies it from other states, 

primarily the start times of activities scheduled, is contained in the third data structure (which we 

call STET). A few supporting data structures are also deployed which we avoid discussing here 

for brevity. As thousands of instances of each of these data structures are generated for even 

small problem instances, there is immense scope for parallelization provided a distributable 

scheme to generate the search tree can be designed. The elements of design in Breadth-first 

algorithm possess this characteristic. 

 

Briefly, the way we parallelize the while loops in our algorithm is as below: 
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(a) Declare necessary thread private variables at global scope using #pragma omp 

threadprivate(...). 

(b) Set maximum number of threads using omp_set_num_threads()as desired for the 

experiment(s). 

(c) Deploy parallelization directives for the while loop to be parallelized (note that our main 

algorithm incorporates a for loop with three levels of embedded while loops, of which we 

parallelize only the innermost while loop): 

 while () {... 

 #pragma omp parallel num_threads(NumThreads) { 

 #pragma omp single firstprivate(parStet) nowait { 

 #pragma omp task {... 

 }}} ...} 
Thus, our algorithm enables the multiple processors to pick up separate nodes from the search 

tree, process it, and append the resultant nodes further in the search tree. By keeping a limitation 

on the numbers of processors and threads solving a problem in various versions, we study the 

ability of multiple processors to solve the MM-RCPSP problems. A critical part of our 

implementation involves the addition of new child states generated by a processor by comparing 

them to already existing child states in the search tree. At this stage, if two processors are 

simultaneously comparing and appending their child states to the tree, while also removing the 

dominated partial solution states already existing in the tree, one may cause the other to loose the 

trace of the last state that the processor was comparing its new child states with. Hence, in our 

implementation, we enable the appending of new child states for only a single processor at any 

given time. More research is needed to enable simultaneous appending of new child states by 

more than one processor at a time, for example, when the two processors are to append their new 

child states at different levels, which may improve the time taken to solve a problem instance. As 

different processors reach the stage of appending their new child states to the search tree at 

different times, this wait is not likely to be high, but it helps to avoid a crash of the run. We 

 

Figure 2.1: Wall Clock Time in Seconds for Entire Problem Set with Number of Threads 
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conduct computational experiments using the PSPLIB problem sets using up to sixteen 

processors and up to forty-eight threads. The next section discusses the results of our OpenMP 

multi-processor implementation. 

 

 

2.3 Experimental Observations 

We conduct detailed tests on the j10 and j12 problem sets from the PSPLIB. These problem sets 

are solved using one thread, two threads, and further up to forty eight threads using all 

combinations at an increment of two threads. As the number of processors available on one 

compute-cluster we use is sixteen, the number of threads per processor is one with sixteen 

threads and more than one beyond it, with three threads per processor at a total of forty eight 

threads. The improvement in real time or wall clock time as the number of threads is increased, 

along with total CPU time consumed by all threads is shown in graphs below. As the number of 

threads per processor rises above one, the performance starts deteriorating (note that only one 

Arithmetic Logic Unit (ALU) is available per CPU). The problem sets j10 and j12 are solved in 

298.9 and 971.42 seconds, respectively, on a single processor, while they are solved in 44.6 

and 108.06 seconds using sixteen threads with sixteen CPUs, which is faster than CPLEX (on 

the dektop machine). The problem set j14, too, was solved by breadth using sixteen threads with 

sixteen CPUs in 759.6 seconds compared to 4511.8 seconds by CPLEX.  Our Breadth-first 

approach is a tree search procedure with branch (but not bound) and pruning rules. Though 

CPLEX solves larger problems faster, it does not yield exact multi-objective solution like our 

Breadth-first algorithm. 

 

We also test run larger PSPLIB sets j14 and j16 with one, eight and sixteen threads and the 

results are similar. In set j16, five problem instances are not solved by a single thread even in two 

 

Figure 2.2: Percent Improvement in Wall Clock Time for Complete Problem Set 

j10 on Increasing Number of Threads 
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hours of run time each, however, the multi-processor implementation overcomes this limitation. 

Noticeably, the multi-processor implementation even with sixteen threads on as many processors 

is unable to solve the problem instances faster than our single thread Best-first algorithm! 

Perhaps, using even more processors this may be possible, and is fruitful due to the exact multi-

objective solutions delivered by the Breadth-first algorithm. Figure 2.1 to Figure 2.3 present the 

results of our observations. 

 

The improvement in real time taken to solve is observed only up to one thread per processor 

(note that there is only one ALU per processor), as seen in Figure 2.1 to Figure 2.3 for problem 

sets j10 and j12. Our experiments have been carried on a compute-cluster with sixteen 

 

Figure 2.3: Percent Improvement in Wall Clock Time for Complete Problem Set j12 on 

Increasing Numbers of Threads 

 

Figure 2.4: Screen Shot: Multi-processor Breadth-first Algorithm on Eight CPUs 
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processors. The fastest solutions in real time are obtained with one thread per processor on all 

sixteen processors. Time is lost due to switching of threads by processors when the number of 

threads rises above the number of processors. Hence there is a deterioration in the real time 

performance after the number of threads is increased above the number of processors (i.e. 

sixteen). 

 

 

During the runs we observe some more characteristics of multicore operating systems. A screen 

shot of the processors' usage (shown below) demonstrates some behavior of the processors. A 

small element of processing power is consumed by the (non-GUI thin version of the) operating 

system processes too. At the times when a processor is assigned no task by the algorithm (and is 

waiting for another processor(s) to complete), it is engaged in the default (user or system) idle 

process. This is visible in the screen shots shown in Figure 2.4 and Figure 2.5. 

 

In Figure 2.4, the task with process ID 10661 (COMMAND column showing 

'brmmnrmpj30P8T8') running on eight processors is our algorithm solving a problem instance 

from the PSPLIB j30 set using eight threads. In Figure 2.5 another j30 set problem instance is 

under process using sixteen processors and sixteen threads. The %CPU column in system statistics 

columns shows the CPU utilization over past few second(s) (in this case one second) and %MEM 

shows the percentage of system RAM used by the process. The TIME+ column shows the 

 

Figure 2.5: Screen Shot: Multi-processor Breadth-first Algorithm on Sixteen CPUs 
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cumulative time consumed by all processors (all threads) together and letter R in column S shows 

the sleeping or running status of the job. Note that when all sixteen processors are engaged, for 

its own tasks the operating system may wait till a processor is idle or interrupt a processor 

depending on the system tasks' priority. We execute our experiment runs at normal user priority 

in Red Hat Linux Enterprise 5 environment (which is twenty five). A particular, though 

small, percentage of CPU time is regularly needed for the operating system tasks. This is much 

higher for operating systems with GUI, though compute-clusters are mounted with relatively 

thinner versions of the operating system being primarily designed for computational purposes. A 

screen shot of all the sixteen processors engaged by the algorithm is shown in Figure 2.5 below 

with the task number 3754 of our interest. 

Some more interesting observations and analysis from the parallel processors runs are as follows: 

 

(a) As the number of processors is increased, the problem instances are solved faster. However, 

the incremental benefit of adding a processor gradually diminishes (diminishing return on 

investment, as indicated by Amdahl's law). This is due to one or more of several reasons: (i) 

Different (parent) states need different processing times. (ii) The parent states assigned to threads 

are in the order they were earlier appended in the tree. Any one of them could be longest for 

processing. (iii) The threads in a parallel OpenMP construct are required to culminate and 

terminate together, else some of them idle till the last one completes its assigned task. Thus, the 

single latest finishing thread determines when the next set of tasks can be picked up by all 

threads, and to that time other threads need to be idle. 

 

(b) The order of generation and addition of states to the search tree may become different in 

different runs on the same problem instance. As different partial solutions, i.e. parent states, are 

processed simultaneously by different processors, the order in which they append their results to 

the search tree is different from that in a single processor case. Hence, the states which dominate 

other states in a single thread implementation, as they were generated first, may sometimes 

themselves be dominated in a multi-processors implementation by other states which came to be 

generated first! 

 

(c) The above phenomenon leads to another interesting observation. The final solution yielded 

for a problem instance may be different in different runs of the same problem instance! If single 

objective optimization is pursued, even for the same problem instance in different runs, different 

optimal solutions may be yielded, depending up on which processor appended its results to the 

tree first, which later dominates some other partial schedules! In exact multi-objective solutions 

this situation arises if multiple exact multi-objective solutions for the problem instance exist and 

during different runs, different partial solutions were appended to the search tree first. 

 

(d) Increasing the number of threads beyond one per processor appears to be of no advantage as 

the algorithm requires intensive use of the ALU (for mathematical and logical operations), of 

which only one per processor is available. As soon as a processor is assigned two or more tasks, 

the switching of processing from one thread to another wastes much more time than is gained by 

having added one more thread. The situation is worse for three threads assigned to each available 

processor. This appears to be the reason for the rise in the time taken to solve the problem 

instances by increasing the number of threads to more than the number of processors. 
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The attraction of optimal solutions to real life size problems has supported research on project 

scheduling (and many other families of similar NP-hard problems) since several decades. Exact 

solutions have, however, remained elusive due to several bottlenecks, such as, speed of 

processors and the size of memory. Advances in past few years have raised both of these limits, 

though some constraints are now being faced, such as in increasing the CPU clock speed, and it 

may be some time before these are overcome. The available memory address space in a 

computing system with a 32 bit architecture was barely 4 GB (i.e. 2^32), which for 64 bit 

architecture has risen to 4 G times 4 GB. Multi-processor mother-boards and operating systems 

have driven out erstwhile single processor computers from the market almost entirely. Hence, the 

platform is now ripe for development of more and more distributable algorithms. Our 

implementation of the Breadth-first algorithm over multiple processors is a small step in this 

direction. 

 

2.4 Summary 

The Breadth-first regular measures algorithm is readily extendable to implementation over 

multiple processors. It is then able to solve problem instances faster or solve larger problems in a 

reasonable clock time. Many different design schemes for such implementations are possible. In 

this chapter we have described our OpenMP multiple processor algorithm including its 

comparison with MPI versions and presented the results of our experiments. While the multiple 

processor Breadth-first implementation is unable to solve the problem instances faster than the 

single processor Best-first algorithm, even when using up to sixteen processors, it is attractive as 

it yields exact multi-objective solutions commensurate with the needs of managers. A few 

alterations to the data structure designs and implementation on larger number of clusters may be 

able to yield solutions to real life problems of up to a few hundred activities, and is worthy of 

further research (we elaborate this in the last chapter). 

 

The development on the front of multi-processor algorithms has been somewhat slower, and is 

on road to gain momentum. Distributable algorithms and applications which exploit the 

availability of multiple processors and large amounts of memory, are now expected to attract 

more attention in the research domain. It is anticipated that solution methodologies to solve 

larger problems would become available through these directions of research in many more 

problem domains. We hope the results of our research will prove to be an additional step in this 

direction and stimulate more attention to distributed computing algorithms in the future. 

 

3 CONCLUSION 
 

3.1 Summary of Results 

In this research we have explored the breadth-first and best-first tree-search algorithms in solving 

the multi-mode resource constrained project scheduling problem (MM-RCPSP). Further, we 

have developed the breadth-first algorithm for implementation on a compute-cluster using 

OpenMP and deploying logic parallelism as compared to normal data or task parallelism. The 

algorithms are designed and tested for regular and non-regular performance measures and 

described in Chapters 2 and 3 respectively. Experimental comparison with the best-known tree-
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search algorithm, the depth-first algorithm of Sprecher and Drexl (1998) is presented. Both the 

algorithms solve the PSPLIB problems much faster when tested on a single processor in a cluster 

with Quad-Core AMD® Opteron® Processor 8360 SE, 2511.578 MHz running a thin (non-

GUI) version of Red Hat Enterprise Linux 5. 

 

The breadth-first algorithm reveals multiple optimal solutions for regular measures, and by re-

traversing the last level of the solution space tree, an exact multi-objective optimal solution can 

be found to minimize the non-renewable resources consumed for several possible multi-objective 

goals. Simple modifications can easily enable search for an exact multi-objective optimal 

solution which optimizes consumption of non-renewable resources (a) by their given priority, (b) 

by their given unit costs, or (c) by their relative weights or costs. Supporting examples have been 

used to describe the algorithms in detail and proof of optimality of the algorithm provided where 

necessary. 

 

Being extremely difficult problem sets to solve, no exact solution approaches for non-regular 

measures for MM-RCPSP exist in literature. Standard problem sets for non-regular measures are 

also missing from libraries of such problems. We test the algorithms for non-regular performance 

measures on payment schedules generated using our own generator, where the PSPLIB problem 

instances are used as the base problems. The breadth-first algorithm for non-regular measures is 

also extensible to multi-processor SMP implementation. As the difference in the performance of 

best-first for non-regular measures vis-a-vis breadth-first is not as large as in regular measures, 

the multi-processor implementation of breadth-first for non-regular measures may yield superior 

performance to best-first with only a few processors. 

 

Chapter 4 discusses the extension of the breadth-first algorithm for implementation on a 

distributed computing environment (using a computing-cluster) with OpenMP and results of its 

extensive tests with up to sixteen processors in SMP (shared memory processors) architecture. 

The new implementation demonstrates promising down scaling in real time taken to solve the 

problem instances enabling larger problem instances to be solved. 

 

3.2 Extension to other problems 

The breadth-first and best-first, as well as, the distributed breadth-first approach can be extended 

to several other problems of interest, such as, design and configuration problems (for example, 

sheet cutting, vessel loading, etc.), bin packing and partitioning problems, combinatorial 

mathematics problems (such as, perfect square placement and number partitioning), 

Bioinformatics (such as, DNA word design), etc. These are all known to be very tough families 

of problems to solve, and lack applications of exact tree-search algorithms. We refer the 

interested reader to The TPTP (Thousands of Problems for Theorem Provers) website 

(http://www.cs.miami.edu/~tptp/) which also provides links to many other problem libraries 

including the PSPLIB and ORLib. 

 

  

3.3 Scope for Further Research 

The work in this paper, especially the compute-cluster implementations, promise a mechanism 

for solving larger problem instances, both, faster and yielding multiple optimal solutions, among 
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which exact multi-objective solutions can be found. The computational requirements for exact 

solutions to even small problem instances are extremely large. We envisage further research for 

development in the following directions as fruitful: 

 

(a) Shared renewable resources: An interesting model of the problem to study would be the 

consideration of renewable resources which are shared among activities, as is typically the case 

in real life problems. Consider for example, resources such as a common pool vehicle or a 

photocopying machine in an office. The estimation of relative utilization of a resource by 

different activities (in its various modes) and a wait time if the resource is engaged may pose 

some difficulty. 

 

(b) Dynamic and stochastic problem models: Extension of these algorithms is also possible to 

cases in which activities are dynamically arriving (dynamic project scheduling) where job 

duration becomes known only when it becomes available for processing, and to stochastic 

project scheduling models. 
 

(c) Improved pruning rules: Identification of more powerful pruning rules to reduce the size of 

the search tree may enhance the overall performance of both algorithms. For example, 

computation of minimum requirements of non-renewable resources needed for completion of 

remaining activities and its comparison with the actual residuals of these non-renewable 

resources, may be able to reduce the size of the search tree by pruning some of its branches. 

 

(d) Hybrid algorithms: Use of a good available upper bound, computed through other heuristic 

algorithms, could help in cutting large portions of the tree as searched by the breadth-first 

approach. Such an integration could yield faster algorithms and is worth exploration. 

 

(e) Inclusion of resource vacations/withdrawals: An extension towards consideration of 

periods of resource vacations (for example a machine falling under repair for some time) or 

renewable resource withdrawals (for example, diversion of a renewable resource towards another 

project in a firm processing multiple projects) would further the algorithm towards solving 

problems closer to real life situations. Similarly, interim addition of renewable resources may 

also be considered for bringing the problem closer to real problems. 

 

(f) Improved data structures: Although the memory requirements of these algorithms are 

modest for the standard test problem sets, these would be much larger for bigger problems, 

especially for the best-first algorithm. Improved data structure implementations could aid in 

reducing this requirement as well as in reducing computational effort involved in pruning rules, 

thus enabling larger problems to be solved with limited memory usage. 

 

(g) Hybrid OpenMP and MPI implementations: It is noticed that MPI implementations of the 

algorithm over distributed processors are handicapped by the message passing latency between 

two processors over a network, which may be as high as 3 to 5 milliseconds in 100/1000 MBPS 

Ethernet networks of today. Hybrid (MPI and OpenMP) implementations of the algorithms may 

be able to solve larger problems, as the message passing latency would be countered by the gain 

in processing speed and expected resulting reduction in overall solution time. For approaching 
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solutions to large, real life, problems, this appears to be a promising field of research. Depth-first 

approach using OpenMP and/or MPI may also yield promising results. 
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