

Multi-processor Exact Procedures for Regular Measures of the

Multi-mode RCPSP

Madhukar Dayal

Sanjay Verma

W.P. No. 2015-03-25

March 2015

The main objective of the working paper series of the IIMA is to help faculty members, research
staff and doctoral students to speedily share their research findings with professional colleagues

and test their research findings at the pre-publication stage. IIMA is committed to maintain
academic freedom. The opinion(s), view(s) and conclusion(s) expressed in the working paper are

those of the authors and not that of IIMA.

INDIAN INSTITUTE OF MANAGEMENT
AHMEDABAD-380 015

INDIA

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 2

MULTI-PROCESSOR EXACT PROCEDURES FOR REGULAR MEASURES OF THE

MULTI-MODE RCPSP
1

Madhukar Dayal
Indian Institute of Management, Indore

madhukar@iimidr.ac.in

Sanjay Verma
Indian Institute of Management, Ahmedabad

sverma@iimahd.ernet.in

Abstract

The multi-mode resource-constrained project scheduling problem (MM RCPSP) is an NP-hard

problem representing a generalization of the well-studied RCPSP. Depth-first tree search

approach by Sprecher & Drexl (1998) is the best-known exact solution tree search procedure for

this problem. In this paper we modify an existing breadth-first algorithm for multiple processors.

It is a computer-cluster implementation of the breadth-first procedure which improves the

solution time taken for these problem instances.

Keywords: project scheduling, regular measures, exact multi-objective solutions, breadth-first

tree search, computer-cluster algorithm.

1
 This work was done as part of doctoral thesis of Prof. Madhukar Dayal at IIM Ahmedabad

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 3

1 INTRODUCTION

1.1 Overview

The project scheduling problem (PSP) has attracted the attention of a large number of

researchers, especially since the World War-2. Enhancement of computational power has

progressively enabled the search for solutions to large and more complex problems. However,

the search for optimal solutions to projects with even a few hundred or more activities, in a

reasonable time, poses a challenge even today. Various approaches such as heuristic,

metaheuristic, and exact solution approaches – have been developed by researchers to find a

solution to the PSP. Among the exact solution approaches, the branch and bound (B&B)

approaches are further classified as depth-first, breadth-first, and best-first approaches, based on

the direction chosen for search path. The appeal of the problem is enhanced by the wide range

and variety of desirable objectives which can be studied – makespan, (total and minimum)

lateness, earliness, tardiness, number of late jobs, flowtime, their weighted measures, and several

others.

Initial scheduling approaches primarily emanated from shop floor experience and resulted in the

generation of a large number of heuristics or thumb rules; a few popular ones being Earliest Due

Date First (EDD), Shortest Processing Time First (SPT), First In First Out (FIFO), and Shortest

Remaining Time First (SRT). These thumb rules are quite effective and yield good solutions for

simple instances of the PSP. However, these rules are not guaranteed to yield an optimal solution.

Support for development of linear, binary and integer programming techniques, and

enhancement of computational power and memory has enabled modeling and development of

algorithms for problems of moderate size. However, for problems of larger sizes even the mixed

integer linear programming (MILP) solvers have limitations (for example, 2^32 variables in

CPLEX 12) due to the number of variables involved as it rises very rapidly for even problems of

moderate size. These implementations use one approach from: the primal simplex (or dual

simplex) algorithm, the network optimizer, barrier algorithm, or the sifting algorithm. MILP

problem instances are solved using branch and cut procedures. Our algorithm differs in that it is

a breadth-first tree generation branch and bound approach. The exploration of search for exact

solutions to concurrent multiple objectives (i.e. exact multi-objective solution) enhances the

involved challenge several folds, a feature which is missing from the best MILP solvers.

The objective of this paper is to design and develop improved exact algorithms for optimally

scheduling partially ordered multi-mode activities under resource constraints, and to test whether

current computational power is enough to solve real life problems. This problem is known as the

Multi-Mode Resource Constrained Project Scheduling Problem (MM-RCPSP). We design and

develop single processor algorithms for exact solutions to a single objective. We then extend our

breadth-first tree-search approach to yield multiple exact optimal solutions for a single objective.

Among this set of optimal single objective solutions we search for exact multi-objective optimal

solutions. Finally, we extend the exact multi-objective breadth-first algorithm to a distributed

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 4

version (using OpenMP) for implementation over a computer-cluster. Our experiments show

promising results on benchmark problem sets from PSPLIB.

1.2 Problem Statement

A project is a set of activities which are partially ordered by precedence relationships. An activity

can be performed infinite number of modes, where each mode is unique and has a corresponding

non-negative duration. An activity is ready to be processed only when all its predecessor

activities are completed and the number of units of the various resource types required by it, in

the mode that it is to be performed, are free and can be allocated to it. Once started, an activity is

not interrupted (non-preemptive) and runs to its completion. The dummy (start and end) activities

consume no resources and take no time. For each of its modes, an activity uses different types of

resources, such as manpower and machinery, in different amounts, which are specified in

advance. A mode specifies an activity's resource requirements for each resource type and its

duration in that mode. A resource is an essential facilitator of an activity to be performed. It may

be durable (renewable) or consumable (non-renewable). The resources are allocated exclusively

to a single activity for its entire duration in the selected mode. A resource may also be doubly

constrained, i.e. it has an overall limit of availability for the whole project, as well as, time

period wise limit of consumption for each time period. The availability of each resource type is

known in advance. After completion of an activity, renewable resources may be assigned to

another activity, whereas, the amounts of non-renewable and doubly constrained resources

decrease by the respective amounts of each of these resources consumed in completion of the

activity in its assigned mode, and only the residual amounts can be used further.

Scheduling is the process of selecting the mode and committing resources to the realization of

each activity, while meeting the precedence and resource restrictions, to optimize a given

objective. The aim is to assign modes and start times to all activities so that the desired objective

(for example, makespan, flowtime, maximum tardiness, number of tardy jobs, etc.) is optimized.

The objective to be optimized may be regular or non-regular. Regular measures are those

measures for which no performance improvements will occur with delay in the start of the

activities, for example, minimizing completion time or minimizing the tardiness. Non-regular

measures are those measures for which the performance may improve with delay in start of the

activities, for example, in objectives like minimizing the earliness-tardiness in just in time (JIT)

and maximizing net present value (NPV).

In the case of non-regular measures (NPV), every mode of each activity has an associated cash

flow (either inflow or outflow) at the start of the activity, for each unit time of its duration in the

selected mode, and at the end of the activity. The objective in this case is to schedule all activities

such that the NPV of their cash flows, at a given rate of interest is maximized.

1.3 Literature Survey

This section reviews the literature in project scheduling focusing mainly on MM-RCPSP.

While small projects and shop floor scheduling problems may use exact approaches, large

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 5

problems, being complex for the human mind or computer to comprehend and solve, are

dependent on heuristics. The pursuit of one or more of several desirable objectives,

simultaneously, enhances the complexity of the problem further.

Several heuristic and metaheuristic approaches have been presented in the literature to solve

large scheduling problems. However, these approaches do not guarantee the yield of an optimal

solution. Usually, these approaches deploy one or more checking procedures for termination of

the algorithm, such as, acceptable limit on minimum percentage improvement from previously

found best solution, run time bounds, and/or the number of iterations limit. In these approaches,

it is possible that in multiple runs of the same algorithm using same termination criteria, and on

the same problem instance and computing machine, an inferior or superior result is obtained.

This clearly establishes the need for improved exact algorithms for finding the exact solutions to

such problems. However, the research approaches pursuing inexact or approximate solutions is

many times more than that for exact solutions. Our research attempts to cover this gap.

Exact solution approaches for the MM-RCPSP problem are few, and restricted in application to

problems of small sizes only. Carefully implemented explicit enumeration algorithms promise

the yield of an optimal solution, if one exists. These approaches are classified into three types –

depth-first, breadth-first, and best-first. It is also possible to conceptualize hybrid approaches

which merge features of more than one approach, especially in multi-thread/multiprocessor

algorithms, however, this area of research is hardly explored. The resources (time and memory)

consumed in these approaches make them unattractive for large problem instances. Due to this,

currently, managers have to take recourse to available non-optimal approaches for solving large

scale project scheduling problems.

1.3.1 Exact Approaches

Developing a mode alternative, similar to Demeulemeester and Heroelen’s (1992) delay

alternative, and applying a B&B procedure with search tree reduction scheme, Sprecher,

Hartmann, and Drexl (1997) and Sprecher and Drexl (1998) presented algorithms for obtaining

an exact solution to the MM-RCPSP. Daniels and Mazzola (1994) studied the problem in a flow

shop environment where non-renewable resource allocation is of a flexible nature. They identify

the properties of optimal B&B solutions and apply these to solve the problems using their

iterative heuristics.

Hartmann and Drexl (1998) compare three B&B approaches for the MM-RCPSP and conclude

that the precedence tree guided enumeration scheme performs the best. A B&B depth-first

procedure for obtaining the optimal solution and its truncated version are presented by Sprecher

and Drexl (1998) for obtaining exact solutions and tested on a large number of problem

instances. This approach remains the best exact approach to date. They also discuss the impact of

variation in several project characteristics on solution time and quality. Erenguc, Ahn and

Conway (2001) presented an integer programming model and an exact solution B&B procedure

adopting branching rules, minimal resource conflict sets, and node fathoming rules for improving

efficiency. Heilmann (2003) has presented another exact B&B approach for small instances and a

priority rule based heuristic approach (2004) for larger instances of the MM-RCPSP.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 6

Buddhakulsomsiri and Kim (2006) apply the B&B procedure and concluded that in resource

vacations and temporary resource unavailability, activity splitting can improve the optimal

project makespan, and that makespan improvement is dependent on those parameters which

determine resource utilization. Sabzehparvar and Seyed-Hosseini (2008) studied the problem in a

mode dependent time lag environment and presented an exact algorithm. They relate the problem

to a bin-packing problem and present its mixed-integer programming formulation. They also

presented a geometric formulation of the problem and a B&B approach to obtain solutions to the

problem instances tested.

Exact approaches are attractive because they guarantee an optimal solution. However, the

adopted approaches, so far, have examined only depth-first B&B strategy enhanced with pruning

and truncation rules. Breadth-first approach is extremely challenging due to the rapid expansion

of the state space tree. The best-first approach too expands the search tree rather fast needing a

large amount of memory. It also often explores several branches before reaching the optimal

solution. The depth-first approach, once it starts backtracking, always outputs a feasible solution

whenever it terminates. The other two approaches have to run to completion to produce a

complete feasible solution. Best-first and depth-first approaches are able to make use of lower

and upper bounds effectively in pruning branches, thus, reducing the size of the search space tree

as they reach the solution. If time bound executions of the breadth-first and best-first algorithms

are used, they are often likely to result in incomplete solutions and would need to be augmented

by some fast heuristic schemes to generate feasible solutions. Hybrid approaches, such as a mix

of metaheuristic and tree-search approaches: (a) to generate partial solutions and identify

promising directions of search, and then (b) to develop the exact final solutions, may be

attractive directions of research.

1.3.2 Multi-Objective Solution Approaches

Finding even a single objective optimal solution to the NP-hard MM-RCPSP problem is a

computationally expensive task. However, real world situations require managers to strive to

optimize multiple objectives together (for example reducing both, completion time of a project

and consumption of precious resources in its completion). Not surprisingly, at times the

objectives are mutually incompatible! The initial approaches adopted for Multiple Criteria

Decision Making (MCDM) involved assignment of weights or priorities to various decisions. It

is unrealistic to estimate the correct weights or even priorities for various criteria. Further, in

decisions which are based on one or more subjective criteria, the assignment of such weights

may be impractical, if not infeasible.

Analytic Hierarchy Process (AHP) is a popular approach for evaluating available options and

their outcomes in MCDM. The stepwise development of a decision tree can simultaneously

process objective, as well as, subjective criteria, while allowing more important criteria to be

considered before others. However, it is not free from the subjectivity of estimations of mutual

and relative weights of objectives considered, and from assignment of equivalents (in terms of

cost or other suitable metric) to various alternatives. It also relies on the decision maker's choice

or order of criteria for objective selection. The method and analysis of its results become difficult

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 7

to apply with increase in elements in the list of criteria, particularly when stochastic success rates

of various options are also involved. For a detailed review of the MCDM approaches and their

classification we refer the reader to Behzadian, Kazemzadeh, Albadvi, and Aghdasi (2010).

Mathematical programming approaches attempt to solve a problem separately for two (or more)

single objectives, and then, within the bounds thus established by the single objective solutions,

perform Pareto analysis from one solution point to the other, generating Pareto boundaries of

good solutions. Typically, such analysis involves comparison of relative gain and loss, and its net

effect on the objective function value, in the entire neighborhood of the hyperspace path between

two known single objective optimal solutions, almost always sacrificing even the single

optimality earlier achieved. For large problems, the two starting solutions themselves may not be

optimal for even a single objective. The need to repeatedly solve a sub-problem many times

makes these approaches computationally expensive and good only for small problems. However,

for quantitative decision analysis, these approaches appear to be an interesting research direction

with rapidly rising attention of researchers.

In problems which have multiple single objective optimal solutions, among which exact multi-

objective optimization search is feasible, it is possible that the optimal solution points for a single

objective are placed extremely far apart in the solution hyper-space. Thus, a neighborhood

search, or a directed path search between two single objective optimal solutions, may actually be

unable to yield an exact multi-objective optimal solution even if one exists. Further, a hyper-line

connecting two exact optimal solutions for two different objectives, may actually not even touch

any other single or multiple objective optimal solutions for any objective, at all.

Even though it is understood that a PSP problem may have multiple optimal solutions, the task of

finding a single solution itself is so arduous that effort to find all or multiple optimal solutions

has been missing in literature. MILP solvers, given a different random starting seed, may

generate different solutions, though only for problems of modest sizes in a reasonable time. In

project scheduling problem instances, trivial multiple optimal solutions can be rapidly developed

from one optimal solution by carefully shifting the non-critical path activities within the

available slack, without changing their assigned modes. However, no approach to developing

multiple exact single objective solutions, and further, exact multi-objective solutions from them,

for even small problems exists in literature. Our research fills this essential gap in the literature

and opens new directions for further research.

1.3.3 Multi-Processor Algorithms

The advent of multi-processor architectures and availability of computer-clusters renders ever

increasing computational power available for solving difficult problems. However, algorithms to

exploit such architectures in solving difficult problems are lacking and research in this direction

is slowly gaining momentum. To the best of our knowledge, no multiprocessor or distributed

computing approach appears in the literature to obtain exact solutions for the MM-RCPSP. We

develop our breadth-first algorithm for implementation over a computer-cluster and test it on a

cluster of sixteen CPUs in shared memory processors (SMP) architecture. The algorithm scales

very well and solves small problems extremely fast and larger problems in much less time when

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 8

compared to a single processor. To the best of our knowledge, our multi-processor exact breadth-

first algorithm for the MM-RCPSP implemented over a computer-cluster is the first of its kind to

be able to exploit multiple processors, generate multiple optimal solutions, and enable exact

solutions to multi-objective optimization problems, with modest memory requirements in a

reasonable time. At the same time, it shows promising scalability with increase in number of

processors in our tests on up to sixteen processors, although not uninfluenced by Amdahl's law

(Amdahl (1967) and Gustafson(1988)). However, it is a disappointment that compute-clusters

being extremely expensive, this solution methodology may take some time before it becomes

available for exploitation to relatively small and medium sized organizations. As per our

literature review, no other exact solution tree search implementation on multiple processors is

available for the MM-RCPSP.

1.3.4 Other Important Studies

A project scheduling problem may be easy if resources are abundantly available. It may also be

easy if the resources are highly scarce, as in both the cases, the number of options to be explored

for simultaneously performed activities is reduced, reducing the needed search in the space tree.

Herroelen and De Reyck (1999) have studied the project scheduling problem's transition from

easy to hard and hard to easy levels under varying levels of resource availability and network

complexity. They concluded that while network complexity measures seem to reveal continuous

phase transitions for project scheduling problems, the resource parameters exhibit a relatively

sharp transition behavior in the problem's difficulty level. Sprecher (2000) has presented an

efficient model for the problem and a solution approach which requires far less memory than

other approaches.

As early studies examine only a few problem instances, there is a need to generate problems with

controllable difficulty levels. Klingman, Napier and Stutz (1974) have presented a network

generator, NETGEN, for generating assignment, transportation and Minimum Cost Flow

networks. For project networks, Kolish, Sprecher and Drexl (1995) presented ProGen, a

controlled-difficulty project network problem generator. However, in ProGen the feasibility of

the problems generated is required to be tested separately. Their work is extended by

Demeulemeester, Dodin, and Herroelen (1993) for generating feasible instances from the

generation space. Kolisch and Sprecher (1997) proposed a continuously upgraded bank of

problems including suggesting the collection of best-known solutions contributed by various

researchers, the PSPLIB (http://129.187.106.231/psplib/). Drexl, Nissen, Patterson, and

Salewski, (2000) have presented ProGen/Лx, which is able to generate problems for a variety of

networks, including crew scheduling and timetabling.

Testing a small number of benchmark problems is arguably only a limited proof of wide

applicability of any solution approach. Hence, researchers have chosen to generate a large

number of test problems and apply their algorithms on these. We test our algorithms on

established benchmark problem instances, as well as, on our own generated problem instances.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 9

1.4 Motivation

Among the approaches to obtain exact solutions to the PSP, including multiple resource

constrained projects, very few have considered the possibility of performing an activity in more

than one mode (Multi-mode). The existing studies of the problem use heuristic and/or

metaheuristic approaches to obtain good solutions. The exact solution approaches, both MILP

and the depth-first B&B technique, are able to solve only problems of a limited size. Research to

develop alternate techniques is, hence, continuously needed.

Nazareth and Bhattacharya (1993) and Nazareth, Verma, Bhattacharya and Bagchi (1999)

develop and apply a breadth-first approach to solving the single mode RCPSP, which generates

results comparable to the other existing algorithms. They also apply the best-first approach with

comparable results. However, these approaches have not been studied or applied further to the

MM-RCPSP. We study the MM-RCPSP for an exact solution for regular and non-regular

measures, developing breadth-first and best-first search procedures with pruning rules that do not

sacrifice the optimality of the solution. We extend our work to implement the breadth-first

approach on an SMP computer-cluster using OpenMP and show that it scales extremely well.

1.5 Summary of Results

In this paper we develop exact algorithms for the multi-mode project scheduling problem with

renewable and non-renewable resources. Though we do not treat doubly constrained resources

separately, these can be easily modeled by considering them as a pair of joint renewable and non-

renewable resources. We develop and test two different algorithmic approaches: (a) an exact

breadth-first tree search approach, and (b) a monotone best-first heuristic approach, both of

which yield an exact solution. We develop these algorithms to solve problems with regular

performance measure, as well as, non-regular measures.

These algorithms are described with examples in Shukla and Verma (2014a and 2014b) with

experimental results on problem sets from the PSPLIB. Proofs of the optimality of the algorithms

are included. The methods have been compared with the depth-first method of Sprecher and

Drexl (1998) using similar data structures for both approaches, and prove to be faster. Among the

two, the best-first is faster on a single processor. However, the first advantage of breadth-first is

in its ability to generate multiple exact single-objective solutions, from which exact multi-

objective solutions can be readily obtained. Secondly, exploiting the design of our breadth-first

algorithm, we develop it for implementation on an SMP architecture multi-processor compute-

cluster. Extensive tests of the distributed version of breadth-first algorithm show a promising

scalability.

Our non-regular measures algorithm considers the maximization of NPV. We consider the

generalized case of activities with positive or negative cash flows at each time period of their

being performed, as well as, at the start and end of each activity. In our analysis, we also include

a component of bonus for the project to be completed earlier than its due date for up to four unit

time periods. The algorithms are explained using examples. We test both these algorithms on

payment schedules generated by our own problem generator using PSPLIB instances as the base

problems. The results are briefly indicated in Table 1.1 below.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 10

Table 1.1: Study of Exact Solutions to MM-RCPSP – Summary of Research Results

Multi-mode resource constrained project scheduling problem – exact solution algorithms

Single processor results

Problem set Resource type(s) Measure

studied

New algorithm(s)

developed

Algorithm

compared with

Brief

results

(fastest

algorithm)

PSPLIB set n0 Renewable Makespan

(regular

measure)

Breadth-first and

Best-first

Sprecher and

Drexl (1998)

Depth-first

Best-first,

Breadth-

first

PSPLIB sets

j10, j12, j14,

j16, j18, j20,

j32

Renewable and

non-renewable

Makespan

(regular

measure)

Breadth-first and

Best-first

Sprecher and

Drexl (1998)

Depth-first

Best-first,

Breadth-

first

NPV problem

sets generated

using PSPLIB

sets j10, j12,

j14, j16, j18,

j20

Renewable and

non-renewable

Net present

value (non-

regular

measure)

Breadth-first and

Best-first

No exact

solution

algorithm to

compare with

Best-first,

Breadth-

first

Multiprocessor results

PSPLIB sets

j10, j12, j14,

j16, j18, j20,

j32

Renewable and

non-renewable

Makespan

(regular

measure)

Breadth-first No exact

solution

algorithm to

compare with

Faster than

a single

processor

Breadth-

first

The best-first approach outperforms the breadth-first approach on a single processor for the size

of problems studied. The performance of breadth-first approach improves on multi-processor

compute-cluster implementation as more processors are deployed and becomes nearly as good as

the best-first approach on sixteen processors using SMP. It remains to be seen whether it

outperforms the best-first monotone heuristic on even larger compute-clusters. Results obtained

have been compared with CPLEX and shown. The breadth-first approach for NPV objective is

also adaptable to distributed implementation on multiprocessor SMP architecture computer-

cluster to solve the problems faster, though for non-regular measures multiple optimal solutions

and the possibility of exact multi-objective solutions is rather rare.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 11

2 MULTI-PROCESSOR BREADTH-FIRST ALGORITHM FOR REGULAR MEASURES

2.1 Introduction

Advances in computer architecture have enabled development of computers with multiple

processors. Common desktop and laptop machines now possess multiple processor

motherboards. For high performance computing requirements computer-clusters with a large

number of central processing units (CPUs), each with their own arithmetic and logic unit (ALU)

and substantially larger random access memory (RAM) have become available in recent years.

Development of standards and programming paradigms to exploit multiple processors, such as,

Message Passing Interface (MPI) and OpenMP has closely followed developments in

technology. However, beyond the operating systems, relatively less development has been seen

on the front of designs of algorithms and applications which exploit multiple processors. Their

growth is picking up momentum and it is expected that in the coming years, as multicore systems

become more affordable, matching commercial applications shall become available in the

markets.

A special characteristic of our regular and non-regular measure Breadth-first algorithms is their

ability to be modified for execution over multiple CPUs. In fact, the core algorithm's strategy and

data structures can be gainfully deployed for solving a large number of problems of scientific

and managerial interest (a few of which are suggested in the last chapter with ideas for further

research). The primary interest in developing a distributed processors algorithm is many folds:

(a) a problem instance can be solved faster; (b) larger problem instances can be solved in realistic

time; and (c) the benefit of exact multiple objective optimization solutions can be sought, as

compared to currently available practices such as MCDM or Pareto bound analysis, which

sacrifice the single objective optimality. To the best of our knowledge, no other methodology

exists to obtain multiple exact single objective solutions to an MM-RCPSP problem, and no

other methodology exists for exact multi-objective optimization, though existence of multiple

single objective solutions has been recognized. There also does not exist any methodology for

exploiting multiprocessor architectures for solving the MM-RCPSP and this is the gap we

address with our multiprocessor implementation.

MPI is an Application Programming Interface (API) library specification, which enables

communication between processors, say connected over a LAN or Internet, thus, enabling them

to pass values of variables, data structures, and/or control messages to each other. A feature that

differentiates it from OpenMP, is its ability to execute code on distributed processors of even

different architectures. However, a drawback is the delay due to the inherent latency of

communication between processors connected over an LAN or Internet.

OpenMP enables specifying compile time directives in the code which enable parallelization of

loops (typically for loops) when the compiled code is running on a Symmetric Multi-Processors

(SMP, often also called Shared Memory Processors) system. OpenMP utilizes specification of

pragmas in the code as parallelization directives, with declarations of shared and private

variables. These directives are used during compilation of the code to distribute the execution of

a number of threads on different processors. Both, MPI and OpenMP, are supported by large

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 12

groups of researchers, academia, vendors, implementors, and users.

2.2 Multi-Processor Breadth-first Algorithms (MPBFA)

To exploit the Breadth-first algorithm's distributable structure we develop two different versions

of the Breadth-first algorithm for regular measures for tests on a computer-cluster – one using

MPI and another using OpenMP. The characteristics and results of experiments with these

versions are discussed below.

2.2.1 MPBFA using MPI

The MPI version requires substantial passing of data between processors. In brief, the MPI

version appears handicapped by: (a) the message passing latency over the communication

network, and (b) the loss in advantage of the pruning rules (especially the dominance pruning

rule) due to the generation of identical states by several processors.

In our first Breadth-first MPI version (BRD-MPI-1) we solve the first level at the master node,

and distribute its states for further processing to separate processors connected over a 1 GBPS

LAN. After developing the child states for the incoming parent state, each processor

communicates the results back to the master processor and waits for the next parent state to be

assigned to it. We find that even for the small problem instances in PSPLIB, the message passing

latency during communication between two processors outweighs the advantage of distributed

processing by multiple processors using MPI.

In an alternate implementation (BRD-MPI-2), after developing the first level at the master

processor, we consider assigning each processor a state to be processed entirely up to the final

level. This version results in the generation of (thousands of the) same states by various

processors at interim levels. Thus, different processors end up solving same states, separately.

The collective number of states processed in such an implementation sometimes is several times

that of the same problem instance when solved using a single processor! No advantage gained in

wall clock time in solving the problem is noted.

We also consider an alteration wherein the processors communicate the best solution so far

developed by anyone to all other processors, for use in pruning inferior partial solutions.

However, by the time any processor reaches a solution state, other processors have also advanced

substantially in their partitions of the search tree, and very little benefit appears to be gained. We

hypothesize that an MPI version may be suitable for extremely large problem instances, where

the message passing latency over a communication network is offset by the large computational

time needed for solving the problem instances using a single processor. We hope the challenge of

further research in this direction attracts more researchers. Our tests using OpenMP yield better

results. Hybrid OpenMP and MPI versions, too, may prove beneficial for further research.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 13

2.2.2 MPBFA using OpenMP

We next develop an implementation using OpenMP and test it over multiple processors in SMP

(Shared Memory Processors) architecture. Typically, OpenMP is used for parallelizing either

processing of data (a simple example being finding the average of five hundred numbers using

multiple processors) or parallelization of different tasks (for example, modern operating

systems).

In our distributed implementation of the Breadth-first algorithm, each processor is performing a

large number of tasks in a sequence, some of which, for example, are: (a) computing the earliest

finish time in a partial schedule which is provided for processing (in the real implementation this

is actually done while a state is being built); (b) determining the activities which were in progress

and have completed at this decision point; (c) building the new list of candidate activities; (d)

building the resource satisfying sets (RSS); ... and so on. Hence, our algorithm is very different

from “data parallelism” in OpenMP. Michael J. Quinn explains “data parallelism” and “task

parallelism” in the book Parallel Programming in C with OpenMP and MPI (McGraw Hill,

2004).

Further, each of the processors in our algorithm is performing a series of tasks which are

identical for all processors. Thus, it is also different from OpenMP “task parallelism”, where

essentially processors are performing separate or different tasks. Only on a very broad scale,

features of our algorithm may be called similar to task parallelism (for example, each processor

may be said to be performing the key task of: “given a partial schedule as a parent schedule,

generate all its partial child schedules”). However, our implementation is substantially different

from both, “data parallelism” and “task parallelism”. As discussed above, our algorithm falls into

a new category which characterizes “logic parallelism”. There is a complex logically arranged

series of tasks that each processor has to perform. This task involves using data from the key

problem instance (global constants), as well as, results of processing from some (any) processor

earlier (i.e. the partial schedules). Each processor appends its results to the search tree being

generated in shared memory. These results are accessible to all other processors to use. Each

processor also picks up (or is assigned) its next job from this search tree. While the iterations

performed on the same problem instance could vary substantially every time, the core set of tasks

and their sequence of assignment (to whichever is the next available processor) remains the

same. Note that even in a run of the same problem instance on the same cluster of processors

using the same algorithm, it is not necessary that the processors solve the same set of parts of the

problem instance which they solved in the previous run! Also, that if a single objective optimal

solution is pursued, a different optimal solution may be yielded in two different runs (provided

the problem instance has multiple single objective optimal solutions)! In exact multi-objective

solution's pursuit, if multiple exact multi-objective solutions exist for a problem instance, then in

different runs any one of them may be yielded as the final solution!

At first we test a “master-worker” work distribution version of the Breadth-first algorithm, in

which a single processor (the master processor) assigns tasks to all the remaining available

worker processors. In this implementation, each processor produces and appends its results to a

common tree which is being generated in the breadth-first manner, from where it is also assigned

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 14

its next task (by the master processor). Each assigned task needs substantial computational time

for being processed keeping the worker processors busy. We find that in such a distribution, the

“master” processor remains underutilized, as it is idle after workers have been assigned their

current tasks till any-one submits its results.

Hence, we develop another scheme in which all processors work at an equivalent level (as team

members). This implementation yields better results. We keep all processors in a team as equal

members (working with the same rank and sharing work), picking up their “next task” from a

common pool of available tasks and also appending their results to it (making sure that only one

processor is appending its results at a time). This common pool is actually the state tree

generated by our algorithm, and being Breadth-first in nature, simplifies the selection of

subsequent tasks (from the current level being processed) and appending the results generated

(which is always at least one level further). Before a new level is started, the level before it is

completely processed.

Note that this leads to the intermittent processor idling (consonant with Amdahl's law, Amdahl

(1967) and Gustafson (1988)) as in OpenMP's parallelization pragma the threads parallelize and

close together. Thus, only when the last processor has appended its results to the main tree, all

processors move to the next set of tasks. For example, when all states at a level are processed,

the processors move to the next level. However, within a level, we organize the data structures in

a manner that processors keep completing their task and collecting the next task, and minimal

wait is encountered. An explanation of our data structure implementation and its advantages for

distributed processing is now necessary to elaborate how the above drawback is partially

overcome using linked lists (the parallelization of linked lists using OpenMP proves to be a little

tricky!).

For the conservation of memory, our data structures organize the search tree (using linked lists)

such that common information for multiple states is shared. This aids in faster implementation of

our pruning rules too. A state is completely identified by a set of three data structures: two sets of

the data structures are shared with several other states, and a third data structure is exclusively its

own. The first shared data structure (which we call OVER) preserves the information associated

with the activities completed, non-renewable resources consumed, and the candidate activities. It

is appended to a linked list of another data structure (which we call PROG) containing

information pertaining to its associated (feasible) sets of activities and their modes, which are in

progress. These two shared data structures may belong to several states at once (in even very

small problem instances of twelve or fourteen activities, they may be shared by hundreds of

states). The information pertaining to each state which exclusively identifies it from other states,

primarily the start times of activities scheduled, is contained in the third data structure (which we

call STET). A few supporting data structures are also deployed which we avoid discussing here

for brevity. As thousands of instances of each of these data structures are generated for even

small problem instances, there is immense scope for parallelization provided a distributable

scheme to generate the search tree can be designed. The elements of design in Breadth-first

algorithm possess this characteristic.

Briefly, the way we parallelize the while loops in our algorithm is as below:

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 15

(a) Declare necessary thread private variables at global scope using #pragma omp

threadprivate(...).

(b) Set maximum number of threads using omp_set_num_threads()as desired for the

experiment(s).

(c) Deploy parallelization directives for the while loop to be parallelized (note that our main

algorithm incorporates a for loop with three levels of embedded while loops, of which we

parallelize only the innermost while loop):

 while () {...

 #pragma omp parallel num_threads(NumThreads) {

 #pragma omp single firstprivate(parStet) nowait {

 #pragma omp task {...

 }}} ...}
Thus, our algorithm enables the multiple processors to pick up separate nodes from the search

tree, process it, and append the resultant nodes further in the search tree. By keeping a limitation

on the numbers of processors and threads solving a problem in various versions, we study the

ability of multiple processors to solve the MM-RCPSP problems. A critical part of our

implementation involves the addition of new child states generated by a processor by comparing

them to already existing child states in the search tree. At this stage, if two processors are

simultaneously comparing and appending their child states to the tree, while also removing the

dominated partial solution states already existing in the tree, one may cause the other to loose the

trace of the last state that the processor was comparing its new child states with. Hence, in our

implementation, we enable the appending of new child states for only a single processor at any

given time. More research is needed to enable simultaneous appending of new child states by

more than one processor at a time, for example, when the two processors are to append their new

child states at different levels, which may improve the time taken to solve a problem instance. As

different processors reach the stage of appending their new child states to the search tree at

different times, this wait is not likely to be high, but it helps to avoid a crash of the run. We

Figure 2.1: Wall Clock Time in Seconds for Entire Problem Set with Number of Threads

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 16

conduct computational experiments using the PSPLIB problem sets using up to sixteen

processors and up to forty-eight threads. The next section discusses the results of our OpenMP

multi-processor implementation.

2.3 Experimental Observations

We conduct detailed tests on the j10 and j12 problem sets from the PSPLIB. These problem sets

are solved using one thread, two threads, and further up to forty eight threads using all

combinations at an increment of two threads. As the number of processors available on one

compute-cluster we use is sixteen, the number of threads per processor is one with sixteen

threads and more than one beyond it, with three threads per processor at a total of forty eight

threads. The improvement in real time or wall clock time as the number of threads is increased,

along with total CPU time consumed by all threads is shown in graphs below. As the number of

threads per processor rises above one, the performance starts deteriorating (note that only one

Arithmetic Logic Unit (ALU) is available per CPU). The problem sets j10 and j12 are solved in

298.9 and 971.42 seconds, respectively, on a single processor, while they are solved in 44.6

and 108.06 seconds using sixteen threads with sixteen CPUs, which is faster than CPLEX (on

the dektop machine). The problem set j14, too, was solved by breadth using sixteen threads with

sixteen CPUs in 759.6 seconds compared to 4511.8 seconds by CPLEX. Our Breadth-first

approach is a tree search procedure with branch (but not bound) and pruning rules. Though

CPLEX solves larger problems faster, it does not yield exact multi-objective solution like our

Breadth-first algorithm.

We also test run larger PSPLIB sets j14 and j16 with one, eight and sixteen threads and the

results are similar. In set j16, five problem instances are not solved by a single thread even in two

Figure 2.2: Percent Improvement in Wall Clock Time for Complete Problem Set

j10 on Increasing Number of Threads

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 17

hours of run time each, however, the multi-processor implementation overcomes this limitation.

Noticeably, the multi-processor implementation even with sixteen threads on as many processors

is unable to solve the problem instances faster than our single thread Best-first algorithm!

Perhaps, using even more processors this may be possible, and is fruitful due to the exact multi-

objective solutions delivered by the Breadth-first algorithm. Figure 2.1 to Figure 2.3 present the

results of our observations.

The improvement in real time taken to solve is observed only up to one thread per processor

(note that there is only one ALU per processor), as seen in Figure 2.1 to Figure 2.3 for problem

sets j10 and j12. Our experiments have been carried on a compute-cluster with sixteen

Figure 2.3: Percent Improvement in Wall Clock Time for Complete Problem Set j12 on

Increasing Numbers of Threads

Figure 2.4: Screen Shot: Multi-processor Breadth-first Algorithm on Eight CPUs

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 18

processors. The fastest solutions in real time are obtained with one thread per processor on all

sixteen processors. Time is lost due to switching of threads by processors when the number of

threads rises above the number of processors. Hence there is a deterioration in the real time

performance after the number of threads is increased above the number of processors (i.e.

sixteen).

During the runs we observe some more characteristics of multicore operating systems. A screen

shot of the processors' usage (shown below) demonstrates some behavior of the processors. A

small element of processing power is consumed by the (non-GUI thin version of the) operating

system processes too. At the times when a processor is assigned no task by the algorithm (and is

waiting for another processor(s) to complete), it is engaged in the default (user or system) idle

process. This is visible in the screen shots shown in Figure 2.4 and Figure 2.5.

In Figure 2.4, the task with process ID 10661 (COMMAND column showing

'brmmnrmpj30P8T8') running on eight processors is our algorithm solving a problem instance

from the PSPLIB j30 set using eight threads. In Figure 2.5 another j30 set problem instance is

under process using sixteen processors and sixteen threads. The %CPU column in system statistics

columns shows the CPU utilization over past few second(s) (in this case one second) and %MEM

shows the percentage of system RAM used by the process. The TIME+ column shows the

Figure 2.5: Screen Shot: Multi-processor Breadth-first Algorithm on Sixteen CPUs

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 19

cumulative time consumed by all processors (all threads) together and letter R in column S shows

the sleeping or running status of the job. Note that when all sixteen processors are engaged, for

its own tasks the operating system may wait till a processor is idle or interrupt a processor

depending on the system tasks' priority. We execute our experiment runs at normal user priority

in Red Hat Linux Enterprise 5 environment (which is twenty five). A particular, though

small, percentage of CPU time is regularly needed for the operating system tasks. This is much

higher for operating systems with GUI, though compute-clusters are mounted with relatively

thinner versions of the operating system being primarily designed for computational purposes. A

screen shot of all the sixteen processors engaged by the algorithm is shown in Figure 2.5 below

with the task number 3754 of our interest.

Some more interesting observations and analysis from the parallel processors runs are as follows:

(a) As the number of processors is increased, the problem instances are solved faster. However,

the incremental benefit of adding a processor gradually diminishes (diminishing return on

investment, as indicated by Amdahl's law). This is due to one or more of several reasons: (i)

Different (parent) states need different processing times. (ii) The parent states assigned to threads

are in the order they were earlier appended in the tree. Any one of them could be longest for

processing. (iii) The threads in a parallel OpenMP construct are required to culminate and

terminate together, else some of them idle till the last one completes its assigned task. Thus, the

single latest finishing thread determines when the next set of tasks can be picked up by all

threads, and to that time other threads need to be idle.

(b) The order of generation and addition of states to the search tree may become different in

different runs on the same problem instance. As different partial solutions, i.e. parent states, are

processed simultaneously by different processors, the order in which they append their results to

the search tree is different from that in a single processor case. Hence, the states which dominate

other states in a single thread implementation, as they were generated first, may sometimes

themselves be dominated in a multi-processors implementation by other states which came to be

generated first!

(c) The above phenomenon leads to another interesting observation. The final solution yielded

for a problem instance may be different in different runs of the same problem instance! If single

objective optimization is pursued, even for the same problem instance in different runs, different

optimal solutions may be yielded, depending up on which processor appended its results to the

tree first, which later dominates some other partial schedules! In exact multi-objective solutions

this situation arises if multiple exact multi-objective solutions for the problem instance exist and

during different runs, different partial solutions were appended to the search tree first.

(d) Increasing the number of threads beyond one per processor appears to be of no advantage as

the algorithm requires intensive use of the ALU (for mathematical and logical operations), of

which only one per processor is available. As soon as a processor is assigned two or more tasks,

the switching of processing from one thread to another wastes much more time than is gained by

having added one more thread. The situation is worse for three threads assigned to each available

processor. This appears to be the reason for the rise in the time taken to solve the problem

instances by increasing the number of threads to more than the number of processors.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 20

The attraction of optimal solutions to real life size problems has supported research on project

scheduling (and many other families of similar NP-hard problems) since several decades. Exact

solutions have, however, remained elusive due to several bottlenecks, such as, speed of

processors and the size of memory. Advances in past few years have raised both of these limits,

though some constraints are now being faced, such as in increasing the CPU clock speed, and it

may be some time before these are overcome. The available memory address space in a

computing system with a 32 bit architecture was barely 4 GB (i.e. 2^32), which for 64 bit

architecture has risen to 4 G times 4 GB. Multi-processor mother-boards and operating systems

have driven out erstwhile single processor computers from the market almost entirely. Hence, the

platform is now ripe for development of more and more distributable algorithms. Our

implementation of the Breadth-first algorithm over multiple processors is a small step in this

direction.

2.4 Summary

The Breadth-first regular measures algorithm is readily extendable to implementation over

multiple processors. It is then able to solve problem instances faster or solve larger problems in a

reasonable clock time. Many different design schemes for such implementations are possible. In

this chapter we have described our OpenMP multiple processor algorithm including its

comparison with MPI versions and presented the results of our experiments. While the multiple

processor Breadth-first implementation is unable to solve the problem instances faster than the

single processor Best-first algorithm, even when using up to sixteen processors, it is attractive as

it yields exact multi-objective solutions commensurate with the needs of managers. A few

alterations to the data structure designs and implementation on larger number of clusters may be

able to yield solutions to real life problems of up to a few hundred activities, and is worthy of

further research (we elaborate this in the last chapter).

The development on the front of multi-processor algorithms has been somewhat slower, and is

on road to gain momentum. Distributable algorithms and applications which exploit the

availability of multiple processors and large amounts of memory, are now expected to attract

more attention in the research domain. It is anticipated that solution methodologies to solve

larger problems would become available through these directions of research in many more

problem domains. We hope the results of our research will prove to be an additional step in this

direction and stimulate more attention to distributed computing algorithms in the future.

3 CONCLUSION

3.1 Summary of Results

In this research we have explored the breadth-first and best-first tree-search algorithms in solving

the multi-mode resource constrained project scheduling problem (MM-RCPSP). Further, we

have developed the breadth-first algorithm for implementation on a compute-cluster using

OpenMP and deploying logic parallelism as compared to normal data or task parallelism. The

algorithms are designed and tested for regular and non-regular performance measures and

described in Chapters 2 and 3 respectively. Experimental comparison with the best-known tree-

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 21

search algorithm, the depth-first algorithm of Sprecher and Drexl (1998) is presented. Both the

algorithms solve the PSPLIB problems much faster when tested on a single processor in a cluster

with Quad-Core AMD® Opteron® Processor 8360 SE, 2511.578 MHz running a thin (non-

GUI) version of Red Hat Enterprise Linux 5.

The breadth-first algorithm reveals multiple optimal solutions for regular measures, and by re-

traversing the last level of the solution space tree, an exact multi-objective optimal solution can

be found to minimize the non-renewable resources consumed for several possible multi-objective

goals. Simple modifications can easily enable search for an exact multi-objective optimal

solution which optimizes consumption of non-renewable resources (a) by their given priority, (b)

by their given unit costs, or (c) by their relative weights or costs. Supporting examples have been

used to describe the algorithms in detail and proof of optimality of the algorithm provided where

necessary.

Being extremely difficult problem sets to solve, no exact solution approaches for non-regular

measures for MM-RCPSP exist in literature. Standard problem sets for non-regular measures are

also missing from libraries of such problems. We test the algorithms for non-regular performance

measures on payment schedules generated using our own generator, where the PSPLIB problem

instances are used as the base problems. The breadth-first algorithm for non-regular measures is

also extensible to multi-processor SMP implementation. As the difference in the performance of

best-first for non-regular measures vis-a-vis breadth-first is not as large as in regular measures,

the multi-processor implementation of breadth-first for non-regular measures may yield superior

performance to best-first with only a few processors.

Chapter 4 discusses the extension of the breadth-first algorithm for implementation on a

distributed computing environment (using a computing-cluster) with OpenMP and results of its

extensive tests with up to sixteen processors in SMP (shared memory processors) architecture.

The new implementation demonstrates promising down scaling in real time taken to solve the

problem instances enabling larger problem instances to be solved.

3.2 Extension to other problems

The breadth-first and best-first, as well as, the distributed breadth-first approach can be extended

to several other problems of interest, such as, design and configuration problems (for example,

sheet cutting, vessel loading, etc.), bin packing and partitioning problems, combinatorial

mathematics problems (such as, perfect square placement and number partitioning),

Bioinformatics (such as, DNA word design), etc. These are all known to be very tough families

of problems to solve, and lack applications of exact tree-search algorithms. We refer the

interested reader to The TPTP (Thousands of Problems for Theorem Provers) website

(http://www.cs.miami.edu/~tptp/) which also provides links to many other problem libraries

including the PSPLIB and ORLib.

3.3 Scope for Further Research

The work in this paper, especially the compute-cluster implementations, promise a mechanism

for solving larger problem instances, both, faster and yielding multiple optimal solutions, among

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 22

which exact multi-objective solutions can be found. The computational requirements for exact

solutions to even small problem instances are extremely large. We envisage further research for

development in the following directions as fruitful:

(a) Shared renewable resources: An interesting model of the problem to study would be the

consideration of renewable resources which are shared among activities, as is typically the case

in real life problems. Consider for example, resources such as a common pool vehicle or a

photocopying machine in an office. The estimation of relative utilization of a resource by

different activities (in its various modes) and a wait time if the resource is engaged may pose

some difficulty.

(b) Dynamic and stochastic problem models: Extension of these algorithms is also possible to

cases in which activities are dynamically arriving (dynamic project scheduling) where job

duration becomes known only when it becomes available for processing, and to stochastic

project scheduling models.

(c) Improved pruning rules: Identification of more powerful pruning rules to reduce the size of

the search tree may enhance the overall performance of both algorithms. For example,

computation of minimum requirements of non-renewable resources needed for completion of

remaining activities and its comparison with the actual residuals of these non-renewable

resources, may be able to reduce the size of the search tree by pruning some of its branches.

(d) Hybrid algorithms: Use of a good available upper bound, computed through other heuristic

algorithms, could help in cutting large portions of the tree as searched by the breadth-first

approach. Such an integration could yield faster algorithms and is worth exploration.

(e) Inclusion of resource vacations/withdrawals: An extension towards consideration of

periods of resource vacations (for example a machine falling under repair for some time) or

renewable resource withdrawals (for example, diversion of a renewable resource towards another

project in a firm processing multiple projects) would further the algorithm towards solving

problems closer to real life situations. Similarly, interim addition of renewable resources may

also be considered for bringing the problem closer to real problems.

(f) Improved data structures: Although the memory requirements of these algorithms are

modest for the standard test problem sets, these would be much larger for bigger problems,

especially for the best-first algorithm. Improved data structure implementations could aid in

reducing this requirement as well as in reducing computational effort involved in pruning rules,

thus enabling larger problems to be solved with limited memory usage.

(g) Hybrid OpenMP and MPI implementations: It is noticed that MPI implementations of the

algorithm over distributed processors are handicapped by the message passing latency between

two processors over a network, which may be as high as 3 to 5 milliseconds in 100/1000 MBPS

Ethernet networks of today. Hybrid (MPI and OpenMP) implementations of the algorithms may

be able to solve larger problems, as the message passing latency would be countered by the gain

in processing speed and expected resulting reduction in overall solution time. For approaching

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 23

solutions to large, real life, problems, this appears to be a promising field of research. Depth-first

approach using OpenMP and/or MPI may also yield promising results.

4 REFERENCES

Alcaraz, J., C. Maroto, and R. Ruiz, 2002. A New Genetic Algorithm for the Multi-Mode

Resource-Constrained Project Scheduling Problem. Dpto de Estadistica e Investigacion

Operativa, Universidad Politecnica de Valencia, Spain.

Alcaraz, J., C. Maroto, and R. Ruiz, 2003a. Multi-Mode Resource-Constrained Project

Scheduling Problem: An Advanced Genetic Algorithms. The Fifth Metaheuristics

International Conference, Kyoto, Japan.

Alcaraz, J., C. Maroto, and R. Ruiz, 2003b. Solving the Multi-Mode Resource- Constrained

Project Scheduling Problem with Genetic Algorithms. The Journal of the Operational

Research Society, 54(6): 614-626.

Amdahl, G. M., 1967. Validity of the single-processor approach to achieving large scale

computing capabilities. In AFIPS Conference Proceedings (Atlantic City, N.J., Apr. 18–

20), 30: 483–485.

Ballestin, F., and Blanco, R., 2011. Theoretical and practical fundamentals for multi- objective

optimisation in resource-constrained project scheduling problems. Computers &

Operations Research, 38(1): 51-62.

Behzadian, M., Kazemzadeh, R. B., Albadvi, A., and Aghdasi, M., 2010. PROMETHEE: A

comprehensive literature review on methodologies and applications. European Journal of

Operational Research, 200(1): 198-215.

Berman, E. B., 1964. Resource Allocation in a Pert Network under Continuous Activity Time-

Cost Functions. Management Science, 10(4): 734-745.

Bouleimen, K. and H. Lecocq, 2003. A new efficient simulated annealing algorithm for the

resource-constrained project scheduling problem and its multiple mode version. European

Journal of Operational Research, 149(2): 268-281.

Buddhakulsomsiri, J. and D. Kim (2006). Properties of multi-mode resource-constrained project

scheduling problems with resource vacations and activity splitting. European Journal of

Operational Research, 175(1): 279-295.

Buddhakulsomsiri, J. and D. Kim, 2007. Priority rule-based heuristic for multi-mode resource-

constrained project scheduling problems with resource vacations and activity splitting.

European Journal of Operational Research, 178(2): 374-390.

Chyu, C.C., Chen, A.H.L., and Lin, X.H., 2005. A Hybrid Ant Colony Approach to Multi- mode

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 24

Resource-Constrained Project Scheduling Problems with non-renewable types. 1st

International Conference on Operations and Supply Chain Management.

Daniels, R. L. and J. B. Mazzola, 1994. Flow Shop Scheduling with Resource Flexibility.

Operations Research, 42(3): 504-522.

Dayanand, N., and Padman, R., 1997. On modelling payments in projects. Journal of the

Operational Research Society, 48(9): 906-918.

De Reyck, B., E. Demeulemeester, and W. Herroelen, 1998. Local search methods for the

discrete time/resource trade-off problem in project networks. Naval Research Logistics,

45(6): 553-578.

De Reyck, B. and W. Herroelen, 1999. The multi-mode resource-constrained project scheduling

problem with generalized precedence relations. European Journal of Operational Research,

119(2): 538-556.

Demeulemeester, E., B. Dodin, and W. Herroelen, 1993. A random activity network generator.

Operations Research, 41(5): 972-980.

Demeulemeester, E. and W. Herroelen, 1992. A branch-and-bound procedure for the multiple

resource-constrained project scheduling problem. Management Science, 38(12): 1803-

1818.

Drexl, A. and J. Gruenewald, 1993. Non-Preemptive Multi-Mode Resource Constrained Project

Scheduling. IIE Transactions, 25(5): 74-81.

Drexl, A., R. Nissen, J.F. Patterson, and F. Salewski, 2000. ProGen/Лx–An instance generator for

resource-constrained project scheduling problems with partially renewable resources and

further extensions. European Journal of Operational Research, 125(1): 59-72.

Erenguc, S. S., T. Ahn, and D.G. Conway, 2001. The resource constrained project scheduling

problem with multiple crashable modes: An exact solution method. Naval Research

Logistics, 48(2): 107-127.

Gustafson, J. L., 1988. Reevaluating Amdahl's law. Communications of the ACM, 31(5): 532-

533.

Hartmann, S., 2001. Project Scheduling with Multiple Modes: A Genetic Algorithm. Annals of

Operations Research, 102(1): 111-135.

Hartmann, S. and A. Drexl, 1998. Project Scheduling with Multiple Modes: A Comparison of

Exact Algorithms. Networks, 32: 283-297.

He, Z. and Y. Xu, 2008. Multi-mode project payment scheduling problems with bonus– penalty

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 25

structure. European Journal of Operational Research, 189(3): 1191-1207.

Heilmann, R., 2003. A Branch-and-bound Procedure for the Multi-mode Resource- constrained

Project Scheduling Problem with Minimum and Maximum Time Lags. European Journal

of Operational Research, 144(2): 348-365.

Heilmann, R., 2004. A Priority Rule Method for the Multi-Mode Project Scheduling Problem

MRCPSP/max. Retrieved May 23, 2008 from:

 http://www.mathematik.uni-

osnabrueck.de/research/OR/pms2000/abstract/heilmann127.de.ps

Herroelen, W. and B. D. Reyck, 1999. Phase Transitions in Project Scheduling. The Journal of

the Operational Research Society, 50(2): 148-156.

Icmeli, O., and Erenguc, S. S., 1996. A branch and bound procedure for the resourceconstrained

project scheduling problem with discounted cash flows. Management Science, 42(10):

1395-1408.

Józefowska, J., M. Mika, R. Rózycki, G. Waligóra, and J. Weglarz, 1999. Solving the Multi-

Mode Resource-Constrained Project Scheduling Problem by Simulated Annealing. Seventh

International Workshop on Project Management and Scheduling.

Józefowska, J., M. Mika, R. Rózycki, G. Waligóra, and J. Weglarz, 2001. Simulated Annealing

for Multi-Mode Resource-Constrained Project Scheduling. Annals of Operations Research,

102(1): 137-155.

Kavalak, N., 2005. Client-Contractor Bargaining Problem in the Context of Multi-Mode Project

Scheduling with Limited Resources. Masters Thesis, Sabanci University.

Klingman, D., A. Napier, J. Stutz, 1974. NETGEN: A Program for Generating Large Scale

Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems.

Management Science, 20(5): 814-821.

Kolisch, R. and A. Drexl, 1997. Local search for nonpreemptive multi-mode resource-

constrained project scheduling. IIE Transactions, 29(11): 987-999.

Kolisch, R. and A. Sprecher, 1996. PSPLIB - A project scheduling problem library : OR

Software - ORSEP Operations Research Software Exchange Program. European Journal of

Operational Research, 96(1): 205-216.

Kolisch, R., A. Sprecher, A. Drexl, 1995. Characterization and Generation of a General Class of

Resource-Constrained Project Scheduling Problems. Management Science, 41(10): 1693-

1703.

Leachman, R., 1980. Multiple Resource Leveling in Construction Systems through Variation of

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 26

Activity Intensities. Retrieved May 23, 2008 from:

http://stinet.dtic.mil/oai/oaiverb=getRecord&metadataPrefix=html&identifier=ADA089988

Leachman, R., A. Dincerler, and S. Kim, 1990. Resource-Constrained Scheduling of Projects

with Variable-Intensity Activities. IIE Transactions, 22(1): 31-40.

Lova, A., Tormos, P., and F. Barber, 2006. Multi-Mode Resource Constrained Project

Scheduling-Scheduling, Priority rules and mode selection rules. Artificial Intelligence,

10(30): 69-86.

Mika, M., Waligóra, G., and J. Weglarz, 2008. Tabu search for multi-mode resource- constrained

project scheduling with schedule-dependent setup times. European Journal of Operational

Research, 187(3): 1238-1250.

Mori, M. and C. Tseng, 1997. A genetic algorithm for multi-mode resource constrained project

scheduling problem. European Journal of Operational Research, 100(1): 134-141.

Nazareth T., Verma S., Bhattacharya S., & Bagchi, A., 1999. The multiple resource constrained

project scheduling problem: A breadth-first approach. European Journal of Operational

Research, 112(2): 347-366.

Nazareth T., and Bhattacharya S., 1993. A breadth-first search scheme to solve the resource

constrained project scheduling problem, Proc IFIP 93 on Systems Modelling and

Optimizaiton, Compeigne, France, July 5-9, 641-644.

Özdamar, L. and H. Dündar, 1997. A flexible heuristic for a multi-mode capital constrained

project scheduling problem with probabilistic cash inflows. Computers and Operations

Research, 24(12): 1187-1200.

Patterson, J. H., 1984. A Comparison of Exact Approaches for Solving the Multiple Constrained

Resource, Project Scheduling Problem. Management Science, 30(7): 854-867.

Peteghem, V. V. and M. Vanhoucke, 2008. A Genetic Algorithm for the Multi-Mode Resource

Constrained Project Scheduling Problem. Working Papers of Faculty of Economics and

Business Administration, Ghent University Ghent University, Belgium. Retrieved May 23,

2008 from:

 http://www.FEB.UGent.be/fac/research/WP/Papers/wp_08_494.pdf

Prashant Reddy, J., S. Kumanan, O.V. Krishnaiah Chetty, 2001. Application of Petri Nets and a

Genetic Algorithm to Multi-Mode Multi-Resource Constrained Project Scheduling. The

International Journal of Advanced Manufacturing Technology, 17(4): 305-314.

Pulat, P. S. and S. J. Horn, 1996. Time-resource trade off problem [project

scheduling].Engineering Management, IEEE Transactions on, 43(4): 411-417.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 27

Quinn, Michael J. Parallel Programming in C with OpenMP and MPI. McGraw Hill, 2004.

Sabzehparvar, M. and S. Seyed-Hosseini, 2008. A mathematical model for the multi- mode

resource-constrained project scheduling problem with mode dependent time lags. The

Journal of Supercomputing, 44(3): 257-273.

Schirmer, A., 1996. New Insights on the Complexity of Resource-Constrained Project

Scheduling-Two Cases of Multi-Mode Scheduling. Manuskripte aus den Instituten für

Betriebswirtschaftslehre der Universität Kiel, 391. Retrieved May 23, 2008 from:

 http://citeseer.ist.psu.edu/46793.html

Shan, M., Q. Hong, and W. Juan, 2007. Multi-Mode Multi-Project Scheduling Problem for

Mould Production in MC Enterprise. Wireless Communications, Networking and Mobile

Computing, 2007 (WiCom 2007), International Conference on: 5311- 5315.

Shan, M., J. Wu, and D. Peng, 2007. Particle Swarm and Ant Colony Algorithms Hybridized for

Multi-Mode Resource-constrained Project Scheduling Problem with Minimum Time Lag.

Wireless Communications, Networking and Mobile Computing, 2007 (WiCom 2007),

International Conference on: 5893-5897.

Shukla, M. and Verma, S, 2014, Breadth-first and Best-first Exact Procedures for Regular Measures of the

Multi-mode RCPSP. Working Paper, IIM Ahmedabad, W.P. No. 2014-10-4.

Shukla, M. and Verma, S, 2015, Breadth-first and Best-first Exact Procedures for Regular Measures of the

Multi-mode RCPSP. Working Paper, IIM Ahmedabad, W.P. No. 2015-03-06.

Sprecher, A., 2000. Scheduling Resource-Constrained Projects Competitively at Modest Memory

Requirements. Management Science, 46(5): 710-723.

Sprecher, A. and A. Drexl, 1998. Solving Multi-mode resource-constrained project scheduling by

a simple, general and powerful sequencing algorithm. European Journal of Operational

Research, 107(2): 431-450.

Sprecher, A., Kolisch, R., and A. Drexl, 1995. Semi-active, active, and non-delayschedules for

the resource-constrained project scheduling problem. European Journal of Operational

Research, 80(1): 94-102.

Sprecher, A., Hartmann, S., and A. Drexl, 1997. An exact algorithm for project scheduling with

multiple modes. OR Spectrum, 19(3): 195-203.

Sunde, L. and S. Lichtenberg, 1995. Net-present-value cost/time tradeoff. International Journal

of Project Management, 13(1): 45-49.

Talbot, F. B., 1982. Resource-Constrained Project Scheduling with Time-Resource Trade offs:

The Non-preemptive Case. Management Science, 28(10): 1197-1210.

IIMA INDIA
Research and Publications

W.P. No. 2015-03-25 Page No. 28

Ulusoy, G., S. S. Funda, and S. Sahin, 2001. Four Payment Models for the Multi-Mode Resource

Constrained Project Scheduling Problem with Discounted Cash Flows. Annals of

Operations Research, 102(1-4).

Ulusoy, G. and S. Sahin, 1998. Three Different Payment Programs for the Multi-Mode Resource

Constrained Project Scheduling Problem with Discounted Cash Flows: A Genetic

Algorithm Approach. Retrieved May 23, 2008 from:

 http://www.mathematik.uni-osnabrueck.de/research/OR/pms2000/abstract/ulusoy90.tr.ps

Vanhoucke, M., Demeulemeester, E., and W. Herroelen, 2001. On maximizing the net present

value of a project under renewable resource constraints. Management Science, 47(8): 1113-

1121.

Dhavale, N. P., Verma, S., and A. Bagchi, 2003. Scheduling Partially Ordered Jobs Under

Resource Constraints To Optimize Non-Regular Performance Measures. Working Paper

No. 2003-07-03, IIM Ahmedabad.

Voss, S. and A. Witt, 2007. Hybrid flow shop scheduling as a multi-mode multi-project

scheduling problem with batching requirements: A real-world application. International

Journal of Production Economics, 105(2): 445-458.

Waligóra, G., 2008. Discrete-continuous project scheduling with discounted cash flows-A tabu

search approach. Computers & Operations Research, 35(7): 2141-2153.

Weglarz, J., Józefowska, J., Mika, M., and Waligóra, G., 2010. Project scheduling with finite or

infinite number of activity processing modes-a survey. European Journal of Operational

Research (In press).

