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Information in the Term Structure - The Indian Evidence (I):
Modeling the Term Structure and Information at the
Short End for Future Inflation

Abstract

This study is first in part of an on-going work on assessing the information content of the term

structure in India for future inflation, future short rates and real interest rates.

In this paper, first the Indian term structure is modeled using three alternative specifications and
changes in slope of the term structure at the short-end assessed for forecastability of change in

inflation.

For the first time in the Indian context, two atheoretical (Nelson and Siegel, 1987 and Svensson,
1994) models are compared against empirical implications of a general equilibrium (Cox,
Ingersoll and Ross, 1985) model. While Svensson is seen to offer no improvement over Nelson-
Siegel, Cox-Ingersoll-Ross comes out as marginally superior to both on the criteria of mean
absolute pricing and yield errors (both in-sample and out-of-sample), behaviour of the short and
the long rates, stability of the parameters and behaviour of forward rates for maturities 1 — 8 years.
This is encouraging because models like Nelson-Siegel and Svensson are designed to fit the
observed yield curves, while Cox-Ingersoll-Ross is a theoretical model derived from

intertemporal description of a competitive economy.

On the information content of the term structure, in the sample under study, change in the slope of
the term structure seems to have no information for inflation changes over the horizon 1 month to
2 years. Results could be sample and/or sampling-frequency specific. Results for the long-end of

the term structure (from a bigger sample) follow.

[Preliminary draft. Please do not quote.]
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I. Introduction

It is aptly established that while yield curve has almost no ability to forecast future inflation
changes for short horizons, at horizons greater than a year the yield curve does contain a great
deal of information regarding both future paths of inflation' as well as future short rates’. To
analyze the information content of the term structure of interest rates regarding future short term
interest rate changes and future inflation, however, one needs a reliable term structure model.

Although currently the National Stock Exchange (NSE) publishes daily estimates of the term
structure based on the Nelson and Siegel (1987; henceforth NS) specification, it is not known how
well it compares with other models in the literature. This study intends to provide some evidence
on comparative performance of three popular models, including NS. Further, this study also
proposes to assess the information content of the estimated term structures for forecastability of
future inflation.

The plan of the paper is as follows. Section II motivates the importance of a term structure for
monetary policy analysis. Section III discusses the methodology of estimation of the term
structures given the choice of specifications in the study. Section IV presents the results of the
estimated term structures and discusses them on select criteria of evaluation. Section V presents
some evidence on the forecastability of future inflation. Section VI concludes with a summary of
results and scope for further work.

II. Motivation

Irving Fisher propounded that in a world void of uncertainty, the one period nominal interest rate
is the real return plus the anticipated rate of inflation. The (expected) real rate of interest is the
nominal rate less the expected rate of inflation:

E(r)y=i—E(nm) 1]
where E(r)is the expected real interest rate; 7 is the nominal interest rate and E(m) is
expected inflation.

Equation [1] is the Fisher equation. This equation suggests that the expected interest rates changes
in proportion to the changes in expected inflation or, alternatively, the (expected) real interest
rates are invariant to (expected) inflation.

If the Fisher effect holds, then movements in the short-term interest rates primarily reflect
fluctuations in expectations of inflation. This is also compatible with the neoclassical view of the
determinants of real rate, according to which the real interest rate is unaffected by changes in
money supply, and continues to be determined purely by non-monetary factors. This also explains
the parallel movement of the long-term interest rate and inflation.?

If one works under the assumptive framework of a constant long term real rate and identical
inflation expectations for both the short-term and the long-term, then the changes in yield spread
becomes identical with changes in the short term real rate. As Mishkin (1990a) in his survey*
finds, yield spread’ does contain information about future short-term interest rate changes.

! see Fama (1984, 1990), Mishkin (1990a, 1990b, 1991) and Jorion and Mishkin (1991) amongst others
% see Fama (1984), Fama and Bliss (1987) and Campbell and Shiller (1991) amongst others

? for empirical evidence see Fama (1975), Fama and Gibbons (1982), Mishkin (1992) among others

* for examples see Mishkin (1990a) and studies listed in footnote 2

> as defined by the difference between a long-term and a short-term rate
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As regards the ability of yield curve to forecast changes in future inflation both Fama (1990) and
Mishkin (1990b, 1990c) note that while yield curve has almost no ability to forecast future
inflation changes for short horizons, at horizons greater than a year the yield curve does contain
information regarding future inflation. This implies that at longer maturities the steepening of the
yield curve is an indication of future inflationary pressures. Indeed, as Estrella and Mishkin
(1995) find, that the yield spread serves as a very good leading indicator for the monetary policy
stance of a central bank.

For lack of liquidity in the bond markets till the recent past (see Figure 1 below for trading
activity in the Wholesale Debt Market (WDM) segment of the NSE) there hasn’t been any study
on the information content of the term structure. In fact, even the term structure estimation in
India is a rather nascent affair®,

Figure 1

n Met Traded Walue in NSE-WDM (Rs. Crares)
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This study purports to evaluate three alternative term structure models to enable the assessment of
information content of the term structure. The estimated term structure would be evaluated from
the point of view monetary policy analysis.

While at one level this study for the first time compares the performance of atheoretical and a
general equilibrium model on the Indian data, at the other, this study compares performance of
alternative parsimonious specifications. Earlier studies by Thomas and Saple (2000) and
Subramanian (2001) compare the performance of over-parameterized splines specifications with
parsimonious NS and extended NS respectively, but not amongst competing parsimonious
models.

The section that follows describes the methodology employed to estimate the term structure from
the market price of the Government Securities (G-Secs) traded in the Wholesale Debt Market

% if one excludes the studies analyzing the stochastic dynamics of short rates (e.g. Varma, 1997 and Apte,
2001)

L —
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(WDM) segment of the NSE. The sample period is Jun, 2001 to Jun, 2003 — in total 608 trading
days.

II1. Methodology
Estimating a term structure, Bliss (1997) notes, requires decision on the following aspects:

1. A Pricing function
2. A functional form for the discount/rate function
3. Estimation technique

Along with the above points, one also needs well defined criteria for evaluation of the estimated
term structure. This is important, because, for reasons discussed in detail in Dahlquist and
Svensson (1996) and touched upon later in this section, criteria for evaluation of a term structure
for the purpose of pricing derivatives/arbitrage decisions are considerably different for one for
monetary policy analysis. Thus, the fourth decision aspect becomes:

4. Criteria of evaluation
3.1 The Pricing Function

In absence of arbitrage, price of a default-risk free bond can be written as:

M
P=Yc,s, 2]
m=1

where M is the time to maturity of the bond, ¢, is the cash flow received at time m, and 0,, is

what is called the “discount function” in the term structure literature. The above equation relates
the discounted cash flows from the bond in discrete time periods to the price of the bond. It is a
rather straight forward matter to convert “discount function” to a “rate function” using the
following equation:

(m) = —20) 3]
m

Since, conditions for perfect markets don’t exist in reality, and cash flows are received only at
discrete times, in practice one needs to give a stochastic form to equation [2], such as:

P=flc,,r(m]+¢ [4]

where ¢ is the “error” term and accounts for whatever is not captured in the function f'about how
bonds are priced. Bliss (1997) uses the term “omitted pricing factors” for

“...factors which have been omitted from the bond pricing equation which nonetheless impact
the pricing of bonds””

Similar pricing functions have been used by Bolder and Streliski (1999) for Canada and Darbha,
Roy and Pawaskar (2003a, 2003b) and Thomas and Saple (2000) for India.

"R. R. Bliss (1997), “Testing Term Structure Estimation Methods”, Advances in Futures and Options
Research, 9
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3.2 The Discount Rate Function

The next decision in the exercise of term structure estimation involves the selection of a
functional form for the discount rate function.

In the literature a number of functional forms exist to derive the zero-coupon and forward curves
from observed data, with each one providing starkly different shapes for these curves. Popular
examples include McCulloch (1971, 1975) and variants, NS and Svensson (1994). As suggested
earlier, in this study following specifications have been used viz.

e NS
e Svensson
e Cox-Ingersoll-Ross (1985; henceforth CIR)

A glaring exclusion in the above list is the cubic splines technique (and its variants) propounded
first by McCulloch (1971, 1975). The reason for its exclusion is the ‘purpose’ for which the term
structure is to be modelled. Dahlquist and Svensson (1996) while Modeling term structure for
monetary policy analysis discuss the disadvantages of using the splines technique for term
structure Modeling for monetary policy analysis. For India, Thomas and Saple (2000) find that the
cubic splines technique performs better (only) for in-sample data and

“...the performance metrics suggest that NS might be a more robust measure of the term
structure for India given the current levels of liquidity..."”

Subramanian (2001) also finds that the NS specification out-performs both cubic splines (with
variable roughness penalty) and B-splines technique on the criterion of mean absolute error.

Darbha, Roy and Pawaskar (2003a, 2003b) discuss in detail the issues in estimating and pricing
G-Secs traded in NSE WDM, but they provide results only for the NS specification. Darbha
(2003) uses a stochastic frontier approach and finds improved error statistics when compared with
other existing Indian studies. What follows is a brief discussion on models to be estimated in this
study.

3.2.1 NS

NS assume that the instantaneous forward rate is the solution to a second order differential
equation with two equal roots. The forward rate function used by NS is:

f(m;b)= B, + P, exp(—m/rl)wzrﬁexp(—m/rl) [5]

where b= (f,, B,,,,7) is the vector of parameters to be estimated. The spot rate function can

in turn be derived by integrating the above equation. This gives:

1—exp(—m/t,)
m/t,

s(m;b) = By + (B + 5,) — B, exp(=m/7,) [6]

The spot rate function has four parameters. While 3, and £, + B, are implied long-rate and

short-rate respectively, £, gives the medium term component of the yield curve, and along with
7 defines the shape of the curve. The possible shapes of the term structure that result as

¥ S. Thomas and V. Saple, “Estimating the Term Structure of Interest Rates in India”, unpublished paper
IGIDR, 2000, p.16
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parameters vary can be found in NS, Svensson and Bolder and Streliski (1999) and won’t be
discussed here.

3.2.2 Svensson (also referred to as Extended NS)

Svensson adds a fourth term to the forward rate function given by NS, with two additional
parameters, (3;,7,), thereby adding to the flexibility of the shape of the term structure

(possibility of a second ‘hump’ — or what is often referred to as an S-shaped curve in the literature
— with S, and the other time decay parameter, 7, ). The corresponding functions are then given

as:

f(m:b) = B, + B, exp(—m]z,)+ B, ?exp(—m/rl )+ B, Tﬂexp(—m/rz)

2
(71
1—exp(-m/z,)
mjt,

s(m;b) = B, + (B, + B,) -5, eXp(_m/T1)

8]
1—exp(-m/7,)
mjt,

+ 5 - B exp(—m/rz)

3.2.3 Empirical Implications of the Cox-Ingersoll-Ross Model

The dynamics of the interest rate process in the CIR model is given as’:

dr, = k(0 —r)dt + ordz [9]
CIR, just like other affine models, in absence of arbitrage, results in the following pricing
equation:

P[r,t,T]= Alt,T]e """ [10]

where for =7 —t¢

AT BB,

[11]
¢2 [exp(¢lr _1]+¢1]
exp(¢7) -1
B[t,T]= 12
-1 {¢2 [exp(¢7) — 1]+ ¢, } 2l
where

¢ =[(xk+1) +20°]" [13]

L, =(k+A+¢,)/2 [14]

¢, =2k6/0’ [15]

° K is the mean reversion coefficient, & is the mean of the process, 7 is the instantaneous short rate, 0~ is
the scale factor for variance of 7, and A is the price of risk associated with 7.
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W.P. No. 2006-03-01 Page No 8



IIMA e INDIA
Research and Publications

Value of a coupon bond can then be written as:
Vit,e,d]=> ¢,P(r,1,d,) [16]
where d is the vector of coupon payment dates.

Then, given the prices of the traded bonds, one can estimate the parameters ¢, ¢,, ¢, and r

(though for actual dynamics it is not possible'” to separately identify the parameters, #, x and
A). The long-rate and volatility of the short-rate are given as a function of the parameters ¢, ¢, ,

@, as follows:

ry = (¢1 _¢2)¢3 [17]
o’ =2(4¢, — ) 18]

Before moving further, it must be acknowledged that the theoretical CIR model describes the
process of real rates, as opposed to nominal rates. However, that said, it is still attractive for
Modeling nominal rates because it precludes negative interest rates.

From the point of view of monetary policy also it is intuitive because, like NS and Svensson, the
model implies that the long rate (m — o) converges to a constant. Now, although, volatility of

the yield of the longest maturity bond traded in the money market is clearly not zero, the fact that
it converges to a constant makes it appealing for monetary policy purposes.

Thus, here it becomes important to state that it is not intended here to test the theoretical CIR
model, as in whether the restrictions it imposes are empirically fulfilled or not. Attempt is simply
to fit the data to the functional form on the lines of Brown and Dybwig (1986), Barone, Cuoco,
and Zautzik (1991), and Brown and Schaefer (1994) and others, and see how well an equilibrium
model compares with the atheoretical NS and Svensson functional forms.

3.3 Estimation

The optimization problem is to minimize the weighted sum of square of (price) errors
N
min) (o€, [19]
subject to non-negativity constraints imposed on the short-rate, the long rate (m — o) and on
ther s; where ¢, = P, — P, and
1/d,

N
D1/d,

- .

where d, is the Macaulay duration of the i” bond."'

w, = [20]

1

' for risk-neutral dynamics with A, the parameters of the process can be uniquely identified from
equations 5.13 —5.15

" This weighing scheme corrects for the heteroskedasticity problem in the error terms which occurs if the
price errors are used instead of yield error. See Coleman, Fisher and Ibbotson (1995), Bliss (1997) and
Bolder and Streliski (1999) for a discussion. Using duration weighted loss function is also a proxy to
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The loss function above has been specified as a function of price errors. An alternative exists in
taking the yield errors; and it may be argued that since for monetary policy purposes it is the
yields which are more important than the prices, and hence the loss function should be specified
as a function of yield errors (see Svensson, 1994). However, it is the bond prices that are traded in
the market, and not the yields, so it makes sense to specify a loss function in terms of the variable
which can be directly observed in the market. Further, the weighting scheme used — other than
taking care of heteroskedasticity — also takes care of minimizing yield errors indirectly. Recall
that duration is a function of first derivative of price w.r.t yield, and the weighting scheme is
inverse of duration.

While studies of NS and Svensson minimize yield errors, that of Bliss (1997), Bolder and
Streliski (1999), Brown and Dybwig (1986) and Brown and Schaefer ( 1996)'? minimize price
errors. Studies on Indian data discussed earlier have all minimized price errors.

The process of determining the parameters involves initialization of the parameters, finding
pricing errors based on ‘starting’ values and minimization of the objective function. For the
Svensson model, an additional constraint on the inequality of the two ‘time-decay’ parameters

(the 7 s) is required to identify the second ‘hump’ ( ;).

3.4 Criteria of Evaluation

Since the purpose of the study is to model the term structure for monetary policy analysis, the
most important criterion for evaluation of the performance of the models is the robustness of
parameter estimates. As Dahlquist and Svensson (1996) argue:

“The estimates in policy analysis should allow comparisons over time and across
countries, with different sets of bonds and Treasury bills, and be less sensitive to missing
observations and the number of bonds and bills used in the estimation.””

In practice, say Dahlquist and Svensson (1996), this boils down to comparing measures of fit and
convergence properties of the above models. Instead of focusing, however, on the measures of fit
one checks the out of sample properties of the estimated term structure, i.e. how well the
parameters of the estimated model fit the bonds that were excluded from the sample used for
estimation.

The idea being that in-sample errors are less important for monetary policy than for arbitrage
decisions. Expectations hypothesis tells us that forward rates can be interpreted as expectation of
future interest rates, which in turn depend on real interest rates and expected inflation. Splines-
based techniques, however, are in-famous for resulting in abrupt changes in implied forward rates.
It is unlikely that agents would have information that would allow them to have different
expectations for very long-term horizons, and that on a day-to-day basis.

In keeping with above observations, this study uses the following criteria for evaluation:
1. Objective function value

2. In-sample and Out-of-sample Mean Absolute Price Error (MAPE) and Standard of Absolute
Price Error (STDAPE)

minimize yield errors when price errors are used in the loss function. Subramanian (2001) uses a liquidity
(instead of duration) weighted loss function

"2 For CIR, Brown and Dybwig (1986) assume a Gaussian distribution for errors and maximize a likelihood
function w.r.t the four parameters. Brown and Schaefer (1994) specify a loss function in terms of simple
squared sum of errors and minimize its value.

" L.E.O. Svensson and M. Dahlquist, “Estimating the Term Structure of Interest Rates for Monetary Policy
Analysis”, Scandinavian Journal of Economics, 98, 1996, p. 164
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3. In-sample and Out-of-sample Mean Absolute Yield Error (MAYE) and Standard Deviation of
Absolute Yield Error (STDAYE)

In-sample and Out-of-sample MAPE by residual term to maturity

Time series behaviour of the parameters (robustness of parameters) and NSE’s own

Iterations, function count evaluations and time required for convergence

Time series behaviour of implied short and long rates and comparison with average of daily
MIBID/MIBOR (Mumbai overnight Inter-bank Bid/Offer Rate) and NSE’s own

8. Behaviour of forward rates for maturity between 1 to 8 years

Nk

While the first three in the above list would be important for evaluating any term structure model,
the last three are more relevant from the point of view of monetary policy analysis.

On Selection of Out-of-sample Bonds and Data

It was noticed from the WDM database that around 30-60 different bonds are traded each day. To
remove any biases in selection of out-of-sample bonds, 15% of bonds traded are selected each day
at random to assess the out-of-sample characteristics of the estimated term structure.

Issues in estimation of the term structure for India are discussed in detail in Darbha, Roy and
Pawaskar (2003b) and as far as selection of bonds and estimation strategy is concerned this study
follows their approach, i.e. all bonds traded during the day are included for estimation, value
weighted prices are used while calculating pricing errors, and errors are weighted by inverse of
duration. Also, only bonds with 7'+ 0 and T + [ settlement dates have been taken for the purpose
of estimation,'* to ensure that the estimated term structure best captures the expectations on the
trade date.

IV. Results and Discussion

Results are presented separately — mostly graphically — under the criteria of evaluation mentioned
above. For (same) 5 days no convergence was reached for all models.

4.1 Objective function value

The loss function minimized for estimation of parameters reflects the (weighted) price errors in
the units of Rupees squared. More informative, however, is the percentage error in basis points.
Even though the errors have been weighted by inverse of duration, a rough idea of this can be had
by taking the square root of the objective function value'.

The plot below (Figure 2) shows hundred times the square root of the monthly averages and
standard deviations in basis points. On an average all the three models converge to similar loss
function values. The following table (Table 1) presents the (square root of) summary statistics of
the objective function values:

Table 1
Summary statistics for 100 X (square root of the objective function)
Min Max Mean Std. Dev.
CIR 0.53991 38.718  8.4541 10.763
NS 0.25563 27.126  8.6647 10.174
SV 0.51061 37.902  8.5216 10.592

'* accounting for more than 90% of the number of trades on most days; dates where none of the bonds
settled on 7+ 0 or T + I dates, bonds settling on (7 + 2)" date would also be included
'3 since taking square root is a monotonic transformation, its use creates no problems.

e
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Figure 2

Monthly Averages of (Sguare Root of) Objective Function Value - Comparison
20 T T T T T T T

0 I I I I
Apr01 Julot Qeton Jan02 Apr02 Juloz Qcto? Jan03 Apr03 Julo3

Monthly Standard Deviation of (Sguare Root of) Objective Function Walue - Comparison
20

0 i i i i ] i ] ]
Aprdl Juldd Qetdl Jan0z Apro2 Juloz otz Jan03 Aprd3 Juldz

4.2 In-sample and Out-of-sample MAPE and STDAPE

The following table presents the summary statistics for in-sample MAPE in basis points.

Table 2a
Summary statistics for 100 X In-sample MAPE
Min Max Mean Std. Dev.
CIR 0.0007 990.09 74.13 77.05
NS 0.001 986.56 76.97 78.88
SV 0.004  1043.23 77.01 80.30

Note from the above table, that while some bonds are priced almost accurately (minimum MAPE
~ 0), the maximum pricing error for the entire sample period nears almost Rs. 10 for the three
models. This lack of in-sample fit is not entirely unexpected given that models used are all
parsimonious.

What is also seen is the standard deviation of the order more than that of mean, which suggests
that mis-pricing is not only high but also very volatile. This tells why the specifications used in
this study may not most useful in pricing contingent claims.

As to how useful these models could be to judge expectations for monetary policy purposes, other
criteria for evaluation would through further light.

Summary statistics for both in-sample and out-of-sample MAPE (Tables 2a and 2b respectively)
suggest that CIR fits marginally better than the other two. CIR is also seen to have lesser
variability. But, the differences again are only marginal, as their monthly comparisons of mean
and standard deviation confirms (Figures 3a and 3b respectively).

]
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Figure 3a
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Table.2b
Summary statistics for 100 X Out-of--sample MAPE
Min Max Mean Std. Dev.
CIR 0.0026  1107.66 76.70 80.05
NS 0.0025 808.24 78.59 81.77
N4 0.0199  1062.81 79.25 82.00
Figure 3b
i Out-of-sample MAPE Comparison
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4.3 In-sample and Out-of-sample MAYE and STDAYE

Although, as argued before, price errors are used to estimate the models, it may be worthwhile to
see how well the three models compare on yield to maturity errors. Figures 4a and 4b
respectively show results for month-by-month in-sample and out-of-sample MAYE in basis
points. Clearly, while it is hard to choose between any of the three as the ‘best” model, CIR has a
lower mean and appears and is less variable both in-sample and out-of-sample (see Tables 3a and
3b also for summary statistics).

Also, although for in-sample MAYE, SV performs slightly better than NS, pattern of overall
results stays more-or-less the same, with SV coming across as the least efficient functional form,
and CIR as somewhat better than the other two.

It is encouraging, however, that the mean yield error is of the order of only 12-13 basis points, a

level of precision that should be acceptable for monetary policy analysis (but what is bothering is
that — like for MAPE — standard deviation for yield error also has an order higher than the mean).

Figure 4a
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Figure 4b
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Table 3a
Summary statistics for 100 X In-sample MAYE
Min Max Mean Std. Dev.
CIR 0.0006 315.87 11.95 12.23
NS 0.0021 384.34 12.67 13.13
SV 0.0005 374.86 12.53 12.95
Table 3b
Summary statistics for 100 X Out-of--sample MAYE
Min Max Mean Std. Dev.
CIR 0.0011 165.6 12.57 12.25
NS 0.0002 244.34 13.05 12.96
N4 0.0026 277.02 13.18 14.41

4.4 In-sample and Out-of-sample MAPE by Maturity

Since prices of short-maturity bonds are relatively insensitive to yields, despite weighting by
inverse of duration, there may be a tendency to over-fit the short-end. Also, there may be security-
specific factors for long-maturity bonds which are not captured in the specified loss function. A
reason for better fit for short-maturity bonds could also be that omitted pricing factors are less
important for these bonds.

Thus, having seen that all the three models perform similarly on both MAPE/MAYE and
STDAPE/STDAYE, with CIR a tad better, it would be interesting to see how the errors behave by
the residual term to maturity.

D
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Figure 5 below plots MAPE by maturity, with MAPE in basis points on the ordinate and residual
term to maturity on abscissa'®. Notice that bonds with residual term to maturity less than 2 years
are priced the ‘best’. The huge rise in MAPE beyond that reflects the lack of trading/liquidity of
bonds in the short-to-medium term segment of the bond market. Errors are higher for maturities
after that too, but they stabilize reflecting that most long maturity bonds are priced with a similar
order of errors.

Thus, the short-end indeed is being over-fitted. This could be a useful, however, for pricing short-
term interest rate derivatives, with both in-sample and out-of-sample pricing error less than 20
basis points. Although most (path-dependent) interest rate derivatives require the empirical
probability distribution of short rates, these models could provide a starting point by looking at
dynamics of the rate derived from these models.

An area of future research, and a further test of these models, would be to assess the stochastic
dynamics of the short-rate derived from these models, say when compared to MIBID/MIBOR or
the call rate.

For variation of errors with liquidity, as found by Darbha, Roy and Pawaskar (2003a), there was
no pattern noticed across models for the sample under study. Error variation with liquidity
provides no further insight, and hence they are not reported.

The next three criteria looked at — the behaviour of parameters, the short and the long rate and the
forward rate for various maturities — are, as discussed earlier, more directly relevant from the
point of view of monetary policy analysis.

Figure 5

In-sample MAPE by Maturity - Comparison

Out-of-gample MAPE by Maturity - Cornparison
T T T T

' period 1 — 2 in abscissa refers to bonds with term to maturity greater than 1 year but less than 2 years and
S0 on
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4.5 Time series behaviour (robustness) of parameters and convergence characteristics

Table 4 below reports the summary statistics for parameters of the three models. Barring
parameters ¢ and ¢,, the coefficient of variation (CoV; standard deviation compared to the

mean) for CIR parameters is the least. Also, loosely speaking, it is the parameters /3, and f, of

NS/SV and parameter, » of CIR which may be compared, for both relate to the short rate. CIR
again comes across as slightly better than the other two. However, while convergence properties
of CIR (number of iterations and function count evaluations) as reflected by CoV are better, on an
average NS converges fastest. Thus, all three are computationally unproblematic, and as far as
estimation is concerned converge fairly fast.

Not knowing the exact estimation strategy of NSE, although one can’t directly compare results,
the coefficient of variation of NSE’s NS parameters is lesser than the NS model estimated in this
study.

However, all the three models being highly non-linear, the problem of local versus global optima
remains. Bolder and Streliski (1999) discuss this issue in detail and try to deal with it using a
thorough local grid search procedure. This study uses NSE starting values for the first trading day
of Jun, 2003 and from then on uses last (or next) day’s values as starting point for next (or
previous) day’s estimation.

One of the main issues is initialization of the parameters. In this study NSE NS estimates for first
trading day of June, 2003 have been used to get the starting value. For the first estimation, locally
the starting values were varied and results were found to be quantitatively insensitive. From that
day on, previous (or next) day’s converged parameter values were taken as the starting value. For
CIR, values of the implied short-rate and long-rate suggested appropriate starting values — again
based on results for first trading day of June, 2003.

e
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Table 4
Summary Statistics for Parameter Estimates and Convergence Properties
Min Max Mean Std. Dev. CoV
CIR
A 0.017 0.46 0.12 0.07 0.58
b, 0 0.41 0.07 0.07 1
@, 0.001 3.18 1.99 0.69 0.35
r 0.042 0.081 0.06 0.007 0.12
Iter 2 38 7.1 4.3 0.6
FnCount 20 260 64.9 28.02 0.43
NS
B, 6.38 16.75 9.77 2.34 0.24
B, -10.2 -1.18 -3.85 1.8 0.47
B, -7.15 6.55 0.84 2.85 3.39
T, 1.81 19.79 8.94 5.69 0.64
Iter 1 26 4.65 4.05 0.87
FnCount 11 169 33.08 24.6 0.74
NS NSE
B, 4.62 16.32 9.68 1.72 0.18
B, -9.4 1.99 -3.08 1.15 0.37
B, -15.2 2.99 -3.97 3.92 0.99
T, 1.12 15.5 5.02 3.74 0.75
N4
B, 6.37 20.84 9.73 245 0.25
B, -14.52 -1.15 -3.78 1.94 0.51
B, -12.24 0.59 -1.57 1.78 1.13
B -3.34 2.9 -0.71 1.16 1.63
7, 1.56 9.97 3.88 1.46 0.37
7, 2.85 10.22 5.62 2.12 0.37
Iter 1 37 6.56 591 0.90
FnCount 15 312 59.7 47.8 0.81

Note: - CoV: Coefficient of Variation; Iter: Iterations;, FnCount: No. of Function
Count Evaluations

4.6 Time series behaviour of implied short and long rates

The evaluation criterion discussed next is the time series behaviour of implied short and long
rates. If the models are correctly specified, then the short-rate derived from the models should
have high correlation with the very-short (one-day) rate prevailing in the money market.

The short and the long-rate for NS and SV are given by the parameters S, + £, and /S,

respectively. For CIR equation [17] gives the long rate. Figure 6a shows the evolution of implied
short and long rate from the three models. While the implied short-rates from the three models
broadly follow the similar pattern, at the beginning of the sample long rate from CIR and SV are
highly erratic.
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Inability of CIR to produce ‘smooth’ series for the long rate is not altogether surprising given that
it is a nonlinear function of the parameters ¢, ¢,, ¢ (equation [17]). After around 200 days,

CIR’s estimates are closer to NS and SV estimates suggesting that the parameter values have a
higher correlation than for the period prior to that'’. Also, long rates from the three models seem
to ‘converge’ after around 200 days, suggesting that relatively low trading activity in the market
may be causing the daily long-term rate to behave erratically and also differently across models.

None of the three models, however, quite capture the high volatility (‘jumps’) in the
MIBID/MIBOR series. This is not very surprising because the pricing model estimated in this
study captures only the cash-flow and coupon effects and not short-term liquidity mis-matches —
which would be the main reason for high short-term volatility of the over-night rate — and
security-specific properties (see also Darbha, Roy and Pawaskar, 2003a).

Summary statistics (see Table 5a) also reveal that while CIR, NS and SV are virtually similar in
the properties of the implied short-rate, MIBID/MIBOR is clearly more volatile with its highest
coefficient of variation. Long rate from comes SV across as the most volatile (especially in the
beginning of the sample period) while from CIR as the least.

NSE’s own estimates of the short and the long rates are also not much different from the ones
estimated in this study. Figures 6b and 6c, respectively, provides comparison of with NSE’s
estimates of short and long rates. Note the high volatility in NSE’s estimates for both short and
long rates.

Correlation statistics (see Table 5b) with the market short-rate MIBID/MIBOR are reasonable
with results from all models again very similar — an indication that on most days there are a
sufficient number of bonds traded with near-zero residual term to maturity allowing each model
able to capture the short-rate fairly closely. It is also an indication that the yield curve at the very
short-end is close to flat.

Figure 6a

Short Rate - Comparison and MIBID/MIBOR
18 T T T T

T
— CIR
e NS H
— 8
=== MIBID/MIBEOR H

.
i T Dn 'ﬁ. -
4 1 1 | 1 1
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Long Rate - Comparison
25 T T T T T

1 1 I 1 1
o 100 200 300 400 500 GO0

' For further 6 days it was noticed that for CIR, lower limit for ¢, (=0.001) was reached in estimation.

This would cause the long rate to become zero for those days. Hence those six days have been excluded in
analysis of the short and the long rate.
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Figure 6b
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Table.5a
Implied Short and Long Rates from the three models
Min Max Mean Std. CoV
Dev.

Short-Rate
CIR 4.24 8.13 5.92 0.76 0.13
NS 4.26 8.00 5.92 0.73 0.12
NS NSE 4.36 12.21 6.59 1.39 0.22
N4 4.24 8.04 5.94 0.73 0.12
MIBID/MIBOR 4.75 16.54 6.33 1.02 0.16

Long-Rate
CIR 3.23 12.88 8.39 1.33 0.16
NS 6.38 16.75 9.73 2.32 0.24
NS _NSE 4.62 16.32 9.68 1.72 0.18
N4 6.37 20.84 9.67 2.41 0.25

Table 5b

Correlation with MIBID/MIBOR
CIR NS NS NSE N4
0.72 0.69 0.65 0.71

4.7 Behaviour of forward rates for maturity between I to 8 years

The final criterion that is looked at is the behaviour of forward rates for maturities 1 to 8 years.
The idea is that if these term structure models are going to be of any use to the central banker they
should, in the least result in fairly ‘smooth’ series of forward rate for medium and long-term. The
argument is same as offered earlier, that agents would not be expected to change expectations
regarding future inflation abruptly on a day-to-day basis.

Given the parameters, forward rate for NS and SV are directly given by equations [5] and [7]
respectively. For CIR a functional form for instantaneous forward rate can be derived from
equation [10] noting that

oP(r,t,T) oP(r,t,T)
T1—— _ 21
Sirt.1] oT or [21]

where 7=T —t

Then, using the same notation as used in the set of equations [9] to [18], the instantaneous
forward rate function for time 7 =7 —¢ at time ¢ for CIR can be derived as:

Srt.T] ¢2¢3[¢1 exg@lr) _lj (¢1 jexp(¢l 7) [22]
where D = ¢,[exp@ 1) —1]+4,

e
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Figure 7a presents results for forward rates for 1, 2, 4 and 8 years for the three models. It is
apparent that not only has the term structure been upward sloping for almost the entire sample
period under study, the forward rate series for all the models do not have many ‘jumps’. Forward
rates from SV come across as most volatile during the beginning of the sample period.

Figure 7b is the same plot as Figure 7a with the long-rate superimposed. The plot shows that
how looking at the rate for infinity (long-rate) only may be misleading. While forward rate for
maturities which matter are fairly stable, long rate at the beginning of the sample is quite erratic
both for CIR and SV.

The last plot in this section, Figure 7c, is the monthly averages of CoV for forward rates for
maturities 1, 2, 4 and 8 years. Ordinate plots 100 times the CoV. The maximum CoV for any
month is less than 6%, which is quite good, i.e. average day-to-day variability of the forward rate
for 1 — 8 years maturities is not very high, which is a good sign from the point of view of
monetary policy. As on all other criteria discussed above, CIR comes across as slightly better than
the other two (NS and SV being almost exact in their properties, both in mean value and standard
deviation over the entire sample period).

Figure 7a
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Lastly, Table 6 below provides summary statistics on the stability of the forward rates for the four
maturities for which the results are reported. The column of interest here is CoV. It is clear that
forward rates for all the maturities are not very volatile with standard deviation of order far less
than the mean (1/5" — 1/8“’). Min and Max columns also suggest that range of forward rates for the
entire sample period (more than 2 years) is not too high (between 400 — 550 basis points) across
models.
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Table 6
Summary Statistics for Stability of Forward Rates for Maturities 1, 2, 4 and 8 Years
Maturity Min Max Mean Std. Dev. CoV
CIR
1 4.86 8.51 6.36 0.79 0.12
2 5.26 8.98 6.76 0.87 0.13
4 5.70 9.95 7.45 1.09 0.15
8 6.16 11.63 8.46 1.56 0.18
NS
1 4.90 8.49 6.38 0.80 0.13
2 5.31 8.94 6.78 0.90 0.13
4 5.78 9.87 7.49 1.11 0.15
8 6.22 11.39 8.50 1.51 0.18
N4
1 4.86 8.50 6.37 0.80 0.13
2 5.30 8.93 6.78 0.91 0.13
4 5.70 9.81 7.49 1.11 0.15
8 6.24 11.97 8.49 1.51 0.18

V. Information Content of the Term Structure: Results

Taking cue from a series of works by Fama and Mishkin'® on the information content of term
structure, this study further explores for the first time the term structure for forecastability of
inflation. This assumes significance because money markets in India are only now becoming
increasingly efficient in the Fama (1970) sense and it would be useful to know whether the Indian
central bank can use the term structure derived from the market price of G-Secs to get information
about likely paths of future inflation.

The methodology proposed by Mishkin (1990b) is now a standard in the literature. Essentially it
involves estimating the following “inflation change equation” and checking for the statistical
significance of the coefficient f:

Ty ~Tps = a +ﬂ(ik,t -1 )+‘9z [23]

n,t

where, 7, , is inflation rate from time ¢ to # + k, i, , is the k-period nominal interest rate at time ;

i.e. assessing the information content of the term structure involves regression of the change in
future k-period inflation over n period inflation on the slope of the term structure in the relevant
range.

A value of p statistically different from zero would suggest that the change in slope of the term
structure does contain information about paths of future inflation. Also, a value of / statistically
different from one would indicate that term structure of real interest rates is not constant over
time, which results directly from the Fisher equation, if it were to interpreted as an inflation
forecasting equation. Mishkin (1990b) provides a detailed discussion on the interpretation of the
Fisher equation as an inflation forecasting equation. The focus of this study, however, remains to
assess the forecastability of inflation.

18 See Fama (1975, 1984, and 1990), Fama and Gibbons (1982), and Mishkin (1990a, 1990b, 1990c, 1991)
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Although, clearly, the estimation framework is quite simple, there is an important econometric
consideration. It is that of the serial correlation in error terms arising from using overlapping
forecasts when the number of periods for the interest rate and inflation are greater than the
observation interval. The presence of this serial correlation would cause the standard errors to be
incorrect, thereby precluding the use of OLS.

5.1 Data / Convention Used

The sample for the estimation of inflation forecasting regressions remains the same as the one for
which the term structures have been estimated, i.e. Jun, 2001 to Jun, 2003.

The sampling frequency, however, is weekly. Contemporaneous end-of-week data has been used
for both inflation (calculated using All-Commodities Wholesale Price Index; 1993-94 = 100) and
interest rates (as estimated from all three models and NSE’s own estimates as available from its
website). Because the sampling frequency is weekly, monthly inflation refers to 4-weekly
inflation and similarly for quarterly and so on".

The timing convention goes like this. One month inflation for the end of first week of Jun, 2001 is
calculated from the index value of end of first week of Jun, 2001 and end of first week of July,
2001 and so on. The corresponding one month interest rate observation pertains to the interest rate
for one month as at the end of the first week of Jun, 2001 from all the three estimated models.
Throughout the study, all the variables have been used as annualized percentage figures. Inflation
is calculated as the first difference of the natural logarithm of prices.

The following 9 inflation change regressions have been estimated:

= 3 month — I month

= 6 month — 1 month

= 6 month — 3 month

= 12 month — 3 month
= 12 month — 6 month
= 18 month — 6 month
= 18 month — 12 month
= 24 month — 12 month
= 24 month — 18 month

For example, in the first case above, the following regression has been estimated:
T, =7y, =0+ Pl —i;, )+ €5, [24]

Although it was suggested in the original proposal that the regression change equations would be
estimated for the very-long-end of the term structure too, the sample size, extent of overlap
involved in those regressions, and concerns on tractability of study dictated the final selected
intervals.

5.2 Preliminary Evidence

Before formally conducting the results, it may be useful to study the time series characteristics of
the inflation/inflation change and interest rate/slope of the term structure. As we have already
looked at the time series properties of estimated term structures, here we’ll have a look at
inflation, change in inflation, and the slope of the term structure at the relevant horizons.

' For 5 weeks, contemporaneous data on WPI Index and interest rate could not be obtained. The previous
traded day’s interest rate has been used for those weeks

e
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The Table 7 below presents the summary statistics for inflation for the horizons mentioned above.

Table 7
Summary Statistics for Inflation
Inflation Max Min Mean Std Dev Median Coeff. of Var
I, 18.25 -7.26 3.61 6.22 3.21 1.73
7, 13.75 -4.83 3.67 4.36 2.96 1.19
7 8.37 -1.61 3.88 2.81 4.09 0.72
7, 6.95 1.14 4.51 1.27 4.65 0.28
T 6.92 2.33 5.00 1.21 5.09 0.24
T, 6.99 3.55 5.14 0.89 5.18 0.18

As expected the coefficient of variation for the longest horizon is the least, suggesting the oft-
noticed, that high frequency inflation series are noisy. See Figures 8a and 8b. Ignoring the high
frequency noise, one notices that inflation has largely been within 2 to 10% throughout the sample
period, and the distribution fairly symmetric as suggested by the near same-ness in the values of
mean and median.

More important, however, from this study’s point of view are the variations in change in inflation
rates and interest rates.
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Figure 8a
Inflation
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Table 8
Summary Statistics for Inflation Changes

[Vs) = my—m,]

Ar Max Min Mean Std_Dev Median Coeff. of Var
Vi 10.46 -8.31 0.06 4.6 -0.12 71.07
V6.1 13.69 -12.31 0.27 6.11 0.13 22.45
V6.3 6.87 -6.56 0.21 3.39 -0.14 16.36
Vi23 8.18 -7.89 0.84 3.63 0.86 4.35
Vizs 4.51 -3.19 0.63 2.05 0.64 3.27
Vis6 4.66 -2.67 1.12 2.15 1.8 1.91
YVis-12 2.39 -1.37 0.5 0.88 0.65 1.76
Va2 2.77 -1.46 0.64 0.85 0.55 1.34
Vou.18 1.61 -1.9 0.14 0.9 0.19 6.68

Figure 9

Inflation Change
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Table 9 above presents summary statistics for inflation changes for the selected horizons. The
high order of standard deviation compared to the mean suggests high volatility in inflation rate
changes at high frequencies. This is also borne out by high values of coefficient of variation
across the horizons in Figure 9. Also, while at higher frequencies the level ranges between —10 to
+10 %, at lower frequency, it is down to around —5 to 5% and less.

Comparing this with the characteristics of term structure slopes across the four models (NS, CIR,
SV and NS _NSE) in Table 9 and Figures 10a — 10d, one notices the following difference:

1. The change in term structure slope remains (equally) volatile at both high and low frequencies
(except for NS_NSE) as shown by the coefficient of variation (the last column) in Table 9

2. The independent variable ranges between 0 — 0.4% for most of the sample period across all
horizons, suggesting that the term structure has been more or less flat in the sample (and
horizons) under consideration

3. The difference between the ranges of the dependent —5 to 5% on an average) and the
independent variable — coupled with a flat term structure — does not lead one to expect much
information in the slope of the term structure for inflation changes.

5.3 Results

As mentioned earlier, overlapping data (sampling frequency < the frequency at which the data is
collected) induces serial correlation in the error term in equation [23]. For example in equation

[24], the error g, ;,, by construction would be serially correlated for (3 — 1) * 4 = 8 lags (because

weekly data is used and the regressions are in the multiples of four weeks).

Figure 10a (NS)
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Figure 10b (CIR)
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Figure 10c (NS_NSE)
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Figure 10d (SV)
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Table 9
Summary Statistics for Term Structure Slopes

[x31_nx = i3_ns _iI_ns]

Max Min Mean Std Dev Median Coeff. of Var

NS
x31 ns 0.13 0.0002 0.036 0.020 0.034 0.554
x61_ns 0.31 0.002 0.089 0.048 0.083 0.537
x63 ns 0.18 0.002 0.054 0.028 0.049 0.526
x123 ns 0.47 0.009 0.159 0.079 0.147 0.498
x126 _ns 0.29 0.007 0.105 0.051 0.099 0.485
x186 ns 0.49 0.016 0.187 0.087 0.175 0.467
x1812 ns 0.19 0.009 0.082 0.036 0.075 0.447
x2412 ns 0.34 0.019 0.155 0.068 0.142 0.435
x2418 ns 0.15 0.01 0.074 0.031 0.067 0.423

CIR
x31_cir 0.072 0.007 0.036 0.014 0.034 0.376
x61 cir 0.178 0.018 0.09 0.034 0.085 0.371
x63 _cir 0.106 0.011 0.054 0.019 0.051 0.368
x123 cir 0.313 0.032 0.158 0.057 0.151 0.361
x126_cir 0.206 0.021 0.105 0.038 0.099 0.358
x186_cir 0.365 0.038 0.186 0.066 0.176 0.354
x1812 cir 0.158 0.017 0.081 0.028 0.077 0.351
x2412 cir 0.299 0.032 0.154 0.054 0.146 0.349
x2418 cir 0.141 0.016 0.073 0.025 0.069 0.348

SV
x31 sv 0.088 -0.184 0.029 0.031 0.029 1.047
x61 sv 0.209 -0.411 0.074 0.072 0.074 0.969
x63 sv 0.122 -0.227 0.045 0.041 0.045 0.919
x123 sv 0.355 -0.532 0.136 0.108 0.135 0.797
x126_sv 0.234 -0.305 0.091 0.067 0.089 0.738
x186 sv 0.412 -0.436 0.165 0.109 0.16 0.667
x1812 sv 0.178 -0.130 0.073 0.043 0.07 0.584
x2412 sv 0.336 -0.183 0.141 0.076 0.134 0.539
x2418 sv 0.158 -0.053 0.067 0.034 0.063 0.495

NS NSE

x31 _ns_nse 0.052 -1.00 -0.078 0.189 0.007 241
x61 ns_nse 0.129 -2.21 -0.167 0.419 0.018 2.469
x63 _ns_nse 0.077 -1.2 -0.091 0.231 0.012 2.522
x123 ns_nse 0.225 -2.78 -0.199 0.544 0.039 2.727
x126 _ns nse 0.148 -1.57 -0.108 0.313 0.033 2.903
x186_ns_nse 0.262 -2.27 -0.141 0.461 0.065 3.272
x1812 ns nse 0.114 -0.69 -0.033 0.148 0.031 4.502
x2412 ns_nse 0.214 -1.06 -0.034 0.231 0.062 6.805
x2418 ns nse 0.101 -0.36 -0.001 0.084 0.032 80.76

NB: NS is Nelson Siegel; CIR is Cox-Ingersoll-Ross;, NS _NSE is NSE’s estimates of NS; SV is
Svensson
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Although valid standard errors can be computed using Hansen (1982) or Hansen-Hodrick (1980)
methodology (in case of no heteroskedasticity) with appropriate corrections (e.g. Newey-West,
1987) to ensure positive-definiteness of the variance-covariance matrix, they are valid only
asymptotically. The sample size in the study is, however, at best moderate. Huizinga and Mishkin
(1984) note that in finite samples with overlapping data the finite sample distribution differs
significantly from the asymptotic distribution. To take care of this problem critical values have
been calculated using Monte Carlo simulation. Both OLS and Newey West (1987) adjusted t-stats
have been reported in the results that follow.

Results for all cases for all horizons are reported in Table 10 below. For inferences Newey-West
corrected t-stats (with lag length corresponding to the induced correlation structure as explained
above) have been used. OLS results have been reported only for comparison’s sake. OLS standard
errors would be both inconsistent and inefficient.

As could have been expected from the preliminary results, change in term structure slopes does
not seem to have any information about inflation changes, except for a couple of horizons in the
Nelson-Siegel case, with all t-stats less than the corresponding finite samples critical values.

The high values of S s can be explained by the difference in level (range) of the dependent and

independent variables. From the results it seems that the appropriate horizons to study
forecastability of inflation changes from changes in term structure slopes would be more than a
year with a difference of a year or more. The 24 — 12 regressions for all cases results in much
reasonable values of £ (~ 1), albeit insignificant in the sample considered.

It suggests that a study considering a larger sample size with monthly frequency — maintaining a
compromise between sample size and the serial correlation structure of the error terms because of
the extent of overlap involved with horizons more than a year — may find more encouraging
results.
Table 10
Estimates of Inflation Change Regressions

CIR
t-critical for t-critical for
t-stat B=0 [stat £=0
B (Newey
(OLS) Monte Carlo West) Monte Carlo (Newey
(OLS) West)
3-1 -26.77 -0.82 -2.67 -0.59 -2.07
6—1 22.58 1.29 2.83 0.84 242
6-3 56.35 3.6 3.19 1.89 2.25
12-3 32.21 6.1% 4.04 2.77 2.97
12-6 20.47 4.18* 3.47 2.32 2.54
18—6 10.85 3.63 3.9 2.17 347
1812 -3.76 -1.26 -2.94 -0.93 -2.56
2412 1.95 1.28 341 1.07 343
2418 9.67 2.91 5.84 1.79 3.6
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NS
t-critical for t-critical for
5 t-stat B=0 (;I'géfé B =0
(OLYS) Monte Carlo Wes t)y Monte Carlo (Newey
(OLS) West)
3-1 -28.91 -1.31 -2.79 -1.13 -2.16
6—1 -6.67 -0.54 -2.76 -0.41 -2.41
6-3 9.19 0.79 3.85 0.36 2.41
12-3 17.0 42 3.47 1.84 2.71
12-6 21.92 6.7 4.67 3.36%* 3.10
18-6 12.17 5.86 4.04 3.70%* 3.21
18—-12 -2.79 -1.19 -3.47 -0.94 -2.49
2412 0.9 0.07 4.53 0.05 3.53
2418 4.77 1.73 7.27 0.97 4.64
** - Significant at 10%
NS NSE
t-critical for - stat t-critical for
B t-stat B=0 (Newe B =0
(OLS) Monte Carlo Wes t)y Monte Carlo (Newey
(OLS) West)
3-1 3.98 1.71 2.26 1.67%* 1.65
6—1 2.24 1.61 2.61 1.29 2.13
6-3 0.87 0.61 3.67 0.31 2.38
12-3 -1.67 -2.65 -4.06 -1.45 -3.06
12-6 -3.69 -7.07 -3.84 -3.92%%* -2.61
18—6 -2.41 -6.23 -5.79 -4.41 -5.62
18—12 3.8 0.67 2.23 0.37 1.28
2412 -0.7 -1.94 -6.04 -1.07 -6.49
24— 18 -2.28 -2.24 -8.21 -1.22 -5.21
** - Significant at 10%
SV
t-critical for stat t-critical for
B t-stat B=0 (Newe B =0
(OLS) Monte Carlo Wes t)y Monte Carlo (Newey
(OLS) West)
3-1 13.46 0.93 2.42 1.15 1.91
6—1 9.47 1.16 1.92 1.58 1.64
6-3 7.18 0.91 2.26 0.59 2.24
12-3 6.49 2.04 1.59 1.03 2.03
12-6 5.95 2.05 1.48 1.43 1.64
18—6 443 2.39 2.15 1.75 2.93
18—12 0.4 0.022 2.22 0.021 2.44
2412 0.51 0.47 2.86 0.39 3.05
24— 18 2.47 .95 2.43 0.73 2.39

5.4 The Monte Carlo Experiment

The Monte Carlo simulation to obtain the finite sample critical values for regressions proceeded

as follows.
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For each regression equation, different ARMA models® were fitted for inflation and interest rate
changes. The ARMA models were selected using top-down approach. Maximum AR and MA
orders were pinned-down upon for each case using Sample Autocorrelation Function and Sample
Partial Autocorrelation Function as a guide and then Akaike’s Information Criterion was used for
the final model selection, ensuring that the residual were white noise. The final order selected for
each case is given in Table 11 below. Also, provided are the lag-lengths used in the Newey-West
t-stats for each horizon pair (3 — 1, 6 — 1 etc.) in regressions as in [24].

For each horizon 10000 samples were generated using the estimated ARMA models. Beginning
of the sample provided the start-up values for each experiment. Error terms were drawn from a
normal distribution with standard deviation equal to the standard deviation of the error term from
each ARMA model. Errors from each ARMA model were found to be conditionally
homoskedastic, so no ARCH effect was introduced. Error terms from inflation change equation
and interest rate change equation were assumed to be independent.

For example, for 3 month to 1 month regression, univariate ARMA models were separately fit to
V3, = my—m, and x;;, = i;— i, for each case (i.e. NS, CIR, SV and NS_NSE). Under the null
that S = 0, simulated values of ARMA values were generated and OLS and Newey West

corrected t-stats recorded for each estimate of equation [23] for each draw of the experiment. The
critical values for 10% significance level (two-tailed test) were taken to be the 5" and 95
percentile values from the finite sample distribution of t-stats.

Table 11
Order of ARMA(p, q) Models in Monte Carlo Simulation

Horizon/ARMA  Lag Length y X ns X cir XSV X ns nse
Order forNewey p q p q p q p q p q
West
3-1 8 6 4 4 7 4 6 5 5 6 6
6—1 20 5 7 4 6 4 5 5 5 6 6
6-3 12 4 6 4 4 4 6 5 5 5 5
12-3 36 5 4 6 6 4 5 6 5 5 5
12-6 24 5.6 6 6 4 6 5 5 5 6
18-6 48 6 4 4 6 4 6 6 5 5 5
1812 24 5 4 4 7 4 6 5 5 5 5
2412 48 5 4 4 4 4 6 5 5 5 6
24— 18 24 4 6 4 5 4 6 4 6 5 5

VI. Conclusion

This study has been an attempt to provide evidence on the competitive performance of three
parsimonious models — one of which, CIR, is a general equilibrium model.

Function from derived from the theoretical CIR model comes across as best in pricing G-Secs in
the Indian market as compared to NS and Extended NS, on all the criteria discussed in the study.
Results, however, are only marginally superior to NS, and there is very little to choose between
the two. Though from the point of arbitrage decisions results only confirm what other Indian
studies have found — that MAPE and MAYE are far too high and volatile to have much faith in
using these for pricing derivatives.

For monetary policy purposes, however, the results are encouraging, in that all the models result
in smooth series for forward rates and a high correlation with average of MIBID/MIBOR. Further,

2 Unit Root tests revealed no unit roots in both inflation changes and term structure slopes for all horizons
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the MAYE is of the order of 12 — 13 basis points only for all the models, which should be
considered acceptable given the across the board liquidity in the bond market during the sample
under study (mid 2001 — mid 2003). Also, the fact that order of errors for both in-sample and out-
of-sample is very similar is an indication that results are robust to the selection of bonds used to
estimate the term structure. This is encouraging from the point of view of monetary policy
analysis.

It would be interesting to see, with increased trading and more efficient operation of NSE WDM
over the years, how these models compare in a sample period which includes data till date.

If computational resources permit, rigour can be added to this study by doing a local grid search
on the lines of Bolder and Streliski (1999) of Bank of Canada, which deals with estimation issues
quite comprehensively. It is not expected that results would improve drastically from what has
been reported in this study, as day-to-day term structures are not expected to vary by too much.

Extensions to this study would include checking for the predictability of future-short rates and
inflation from change in slope across the term structure and investigating the dynamics of the
short-rate derived from these models. Since CIR comes across as the best model, albeit
marginally, it would also be interesting to see how well the dynamics of the short-rate captured by
CIR compares with MIBID/MIBOR and call rate.

In the sample (and horizons) under study the term structure does not seem to contain any
information for changes in inflation. However, the findings here indicate that a study conducted
over a longer sample using lower frequency data at the longer-end may provide more encouraging
results. This is part of an on-going work.
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